
Probabilistic Formal Analysis of App Usage
to Inform Redesign

Oana Andrei, Muffy Calder, Matthew Chalmers, Alistair Morrison, Mattias Rost
School of Computing Science

University of Glasgow
Glasgow, UK

firstname.lastname@glasgow.ac.uk

ABSTRACT
This paper sets out a process of app analysis intended to
support understanding of use but also redesign. From us-
age logs we infer activity patterns – Markov models – and
employ probabilistic formal analysis to ask questions about
the use of the app. The core of this paper’s contribution is
a bridging of stochastic and formal modelling, but we also
describe the work to make that analytic core utile within a
design team. We illustrate our work via a case study of a mo-
bile app presenting analytic findings and discussing how they
are feeding into redesign. We had posited that two activity
patterns indicated two separable sets of users, each of which
might benefit from a differently tailored app version, but
our subsequent analysis detailed users’ interleaving of activ-
ity patterns over time – evidence speaking more in favour
of redesign that supports each pattern in an integrated way.
We uncover patterns consisting of brief glances at particular
data and recommend them as possible candidates for new
design work on widget extensions: small displays available
while users use other apps.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—User Interfaces; D.2.4 [Software Engineering]:
Software/Program Verification—Statistical methods, Model
checking

General Terms
Software redesign, Verification, User Interface

Keywords
Log Analysis, Inference, Markov Models, Model Checking

1. INTRODUCTION
Good design of user-intensive applications (henceforth re-

ferred to as apps) is challenging – because users are sel-
dom homogeneous or predictable in the ways they navigate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’16 Austin, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

around and use the functionality presented to them. Differ-
ent populations of users will engage in different ways, and
redesign may be desirable or even required to support pop-
ulations’ different styles of use.

This simple hypothesis raises many questions, including:
how should we identify the different populations, what char-
acterises a population, and does that characterisation evolve,
e.g. over an individual use session, and/or over a number
of sessions over days and months? This paper attempts to
answer these questions, in the context of informing future
redesign of an app. We propose that formal, probabilistic
analysis of inferred patterns of logged app usage is key, and
we refer to these patterns as activity patterns. Our con-
cept of population is therefore based on inferred temporal
behaviours, i.e. activity patterns, rather than on static or
slowly changing user attributes such as gender and age. The
novelty of our approach is realising the concept of popula-
tion through a combination of three powerful ‘ingredients’:

• inference of Markov models of activity patterns from
automatically logged data on user sessions,
• characterisation of the activity patterns by probabilis-

tic temporal logic properties using model checking,
• longitudinal analysis of usage data drawn from differ-

ent time cuts (e.g. logged sessions over the first day,
first month, second month, etc.).

The focus of this paper is how populations of users are
identified and characterised, and how they evolve. The con-
tribution is defining the whole process from identifying ques-
tions that give us insight into an application, to event and
attribute logging, data pre-processing and abstraction from
logs, model inference, temporal logic property formulation
using the probabilistic temporal logic PCTL with rewards [2],
and visualisation of results. We illustrate throughout with a
case study of AppTracker [4], a freely available mobile app
that allows users to collect quantitative statistics about the
usage of apps installed on one’s phone. AppTracker users
can measure, for example, which apps one uses the most,
how much time one has spent on each app, the average daily
use, and the most and least active days. The application
comprises several screens that display statistics in numeri-
cal as well as graphical formats.

A notable conclusion of our work is that, while our anal-
ysis of AppTracker’s use identifies several clearly distinct
activity patterns, it also reveals the distribution of activity
patterns over the population of users and over time. For
AppTracker, this mitigates against a simple partitioning of
the app into two different versions, each specific to one ac-

tivity pattern. However, our analysis does offer a more prin-
cipled way of selecting glanceable information.

The paper is organised as follows. First we give an overview
of our approach followed by a technical background includ-
ing probabilistic models, logics, and inference. Section 4 con-
tains an overview of AppTracker and Sect. 5 describes how
the methods of our approach are applied. Section 6 presents
results from the analysis and Sect. 7 discuss how they offer
insights into redesign of the app. Related work is discussed
in Sect. 8, followed by a discussion about generalising our
approach to analysis of other type of apps. Conclusions and
future work are in Sect. 10.

2. APPROACH
Our approach begins with instrumenting an app, so that

we can log usage behaviours. In our case, the app was in-
strumented by the developers, using the SGLog data logging
infrastructure [10]. SGLog detects user events (such as but-
ton taps or screen changes within the app), stores log entries
in a local text file on the device, and periodically uploads
this data back to the developers’ servers. The raw logged
data are processed to create sets of user traces expressed in
terms of higher level actions. The higher level actions are
carefully selected to relate to the intended analysis, namely
to the underlying atomic propositions. The choice of these
propositions is key: they determine the scope of properties
that can be revealed by temporal property analysis and also
determine the dimensions of the state space underlying the
model. They are defined jointly by analysts and developers;
in the case study, the propositions are the high level states
relating to the core functionality of app, e.g. select main
view, show selected statistics of device and app use, close
app, etc. The sets of traces can be partitioned into differ-
ent time cuts, e.g. the first 7 days of usage, the first week,
the second month, so that we can determine how activity
patterns evolve over time and experience with the app.

We run an Expectation-Maximization algorithm [5] on a
set of user traces to infer admixture models of activity pat-
terns, i.e. we infer a number of activity patterns that repre-
sent the set of user traces, ’bottom up’ rather than imposing
a set of categorising features a priori. Each activity pattern
is a discrete-time Markov chain, and we can then charac-
terise each user trace as a weighted mix of activity patterns.
We note an aspect of the paper’s contribution here: to the
best of our knowledge, inferring such temporal structures
has not been described in prior work outside our group.

We then hypothesise temporal probabilistic properties, ex-
pressed in the probabilistic temporal logic PCTL extended
with rewards [2, 12], to explore the inferred activity pat-
terns. A typical probabilistic temporal property is the ex-
pected number of visits to a given state within N steps from
the start of a session, for each activity pattern and for dif-
ferent time cuts. Analysts define the temporal properties for
various admixture models and time cuts, and discuss the re-
sults with developers. The discussions prompt the analysis
of more properties, models and time cuts, and hypotheses to
test, but more generally provide new insights into app usage
and afford new ideas for redesign that are solidly grounded
in observed activity patterns.

3. TECHNICAL BACKGROUND
We assume familiarity with Markov models, bigram mod-

els and Expectation-Maximisation algorithms [5, 15, 16], the
probabilistic temporal logic PCTL and probabilistic model
checking for DTMC [2, 12]; basic definitions are below.

3.1 Discrete-time Markov chains
A discrete-time Markov chain (DTMC) is a tuple D =

(S, s̄, P, `) where: S is a set of states; s̄ ∈ S is the ini-
tial state; P : S × S → [0, 1] is the transition probability
function (or matrix) such that for all states s ∈ S we haveP

s′∈S P(s, s′) = 1; and ` : S → 2A is a labelling function
associating to each state s in S a set of valid atomic propo-
sitions from a set A. A path (or execution) of a DTMC is a
non-empty sequence s0s1s2 . . . where si ∈ S and P(si, si+1) >
0 for all i ≥ 0. A transition is also called a time-step.

3.2 Probabilistic logics and model checking
Probabilistic Computation Tree Logic (PCTL) [2] allows

one to express a probability measure of the satisfaction of a
temporal property. The syntax is:

State formulae φ ::= true | a | ¬φ | φ ∧ φ | P./ p[ψ]
Path formulae ψ ::= Xφ | φU≤n φ

where a ranges over a set of atomic propositions A, ./∈ {≤
, <,≥, >}, p ∈ [0, 1], and n ∈ N ∪ {∞}. State formulae are
also called temporal properties.

A state s in a DTMC D satisfies an atomic proposition
a if a ∈ `(s). A state s satisfies a state formula P./ p[ψ],
written s |= P./ p[ψ], if the probability of taking a path
starting from s and satisfying ψ meets the bound ./ p, i.e.,
Prs{ω ∈ PathD(s) | ω |= ψ} ./ p, where Prs is the prob-
ability measure defined over paths from state s. The path
formula Xφ is true on a path starting with s if φ is satisfied
in the state following s; φ1 U≤n φ2 is true on a path if φ2

holds in the state at some time step i ≤ n and at all pre-
ceding states φ1 holds. The propositional operators false,
disjunction and implication can be derived using basic logi-
cal equivalence. In this paper we use the eventually operator
F where F≤n φ ≡ true U≤n φ. If n = ∞ then superscripts
are omitted.

The PRISM probabilistic model checker [13] allows us to
leave the bound ./ p unspecified and computes the satis-
faction probability by verifying the property P=? [ψ]. Addi-
tionally, PRISM allows for experimentation: the verification
of an open formula, when the range, and step size of the
variable(s) are specified. PRISM supports a reward-based
extension of PCTL called rPCTL. A reward structure as-
signs non-negative real values to states and/or transitions.
We employ rewards assigned to transitions and cumulative
and reachability reward properties. Then whenever a tran-
sition is taken, the reward associated with it is earned. The
cumulative reward property, R=?

ˆ
C≤N

˜
, computes the ac-

cumulated reward along all paths within N time-steps. The
reachability reward property, R=? [F φ], computes the re-
ward accumulated along all paths until the state formula
φ is satisfied. The reward properties are usually annotated
with specific reward structures.

The PRISM default is to reason over state formulae from
the initial state of the DTMC under analysis. Filtered prob-
abilities check for properties that hold from sets of states
satisfying given propositions. In the examples illustrated in
this paper we always use state as the filter operator: e.g.,
filter(state, φ, condition) where φ is a state formula and
condition a Boolean proposition uniquely identifying a state
in the DTMC.

(a) Main menu (b) Overall stats (c) Device usage for one
day

Figure 1: Screenshots from AppTracker

3.3 Inference of admixture bigram models
Given a vocabulary V of size n, an observation sequence

(or trace) over V is a finite non-empty sequence of sym-
bols from V . Let x be a data sample of M traces over
V , x = {x1, . . . , xM}. Consider K n × n transition matri-
ces denoted Φk, for k = 1, . . . ,K, such that Φkij denotes
the probability of moving to state j from i. At any point
in time Φk is used by the trace xm with probability Θmk.
Let λ = {Φk,Θmk | k = 1, . . . ,K, m = 1, . . . ,M} be the
parameters of the statistical model. Then we estimate the
likelihood of observing the trace xm given λ, i.e., p(xm|λ),
which takes the form:

p(xm|λ) =

nY
i=1

nY
j=1

“ KX
k=1

ΘmkΦkij

”xmij

We use the Expectation-Maximisation (EM) algorithm [5] to
find the (locally) maximum likelihood parameters, restarting
the EM algorithm whenever the log-likelihood ln(p(xm)|λ)
has multiple-local maxima. Each trace xm can be repre-
sented as a DTMC: the set of states S = {0, 1, . . . , |V |}
where |V | is the size of V , the initial state is 0, the transition
probability matrix is the n×n transition-occurrence matrix
such that xmij on position (i, j) gives the number of times
the pair (xmi, xmj) occurs in the trace xm, and ` : S → V
is a bijective function such that `(0) is the symbol on the
first position in the trace xm. Let all traces in x start with
the same symbol. Then the EM algorithm finds maximum
log-likelihood estimates for λ consisting of K DTMCs with
the same sets of states S and initial state 0, and an M ×K
weighting matrix Θ. The result is a Θ-weighted mixture of
the K DTMCs Φk forming an admixture bigram model: Θmk

indicates the probability of using Φk to transition between
states. The model is bigram because only dependencies be-
tween adjacent symbols in the trace are considered.

4. CASE STUDY: APPTRACKER
AppTracker is an iOS application that provides a user

with information on the usage of his/her device. The app
operates on iPhones, iPads and iPod Touches, running in

the background and monitoring the opening and closing of
apps as well as the locking and unlocking of the device. App-
Tracker was released in August 2013. To date it has been
downloaded over 35,000 times. AppTracker’s interface dis-
plays a series of charts and statistics to give insight into how
long one is spending on one’s device, the most used apps,
and how these stats fluctuate over time. Figure 1 shows
three views from the app. The AppTracker interface has
a main menu screen (Main), presenting four main options
(Fig. 1(a)). The first menu item, Overall Usage, contains
quick summaries of all the data recorded since AppTracker
was installed: the view TopApps shows a list of the user’s
most-used apps and the view Stats shows summary statis-
tics such as the number of apps used in an average day
(Fig. 1(b)). The second menu item, Last 7 Days, displays a
chart limited to the last week’s activity, showing a stacked
bar graph of usage of the top 5 apps during that period; this
view is called Last7Days. The third menu item, Select by Pe-
riod, opens up the PeriodSelector view where a user can see
usage statistics by any day, week or month, and drill down
to a particular period of interest. For example, one could
investigate which apps one used the most last Saturday, see
how time one spent on Facebook varied each day across last
month, or examine patterns of use over a particular day
(Fig. 1(c)). The final menu option, Settings, allows a user to
start and stop the tracker, or to reset his/her recorded data.

A Terms and Conditions screen is shown to a user on first
launch, that explains the nature of AppTracker as a research
project, describes all the data that will be recorded during
its use and provides contact details to allow the user to opt
out of the study at any time. These terms must be agreed to
before the user has access to any other part of the app. The
overall functionality of AppTracker is illustrated in Figure 2.

5. METHODS APPLIED TO APPTRACKER

5.1 Preparing the raw SGLog data
SGLog data. Data collected by SGLog [10] (the log-

ging framework used to instrument AppTracker) consists of
timestamped logs of events, such as user actions. Each log

TopApps

Task Feedback

Stats Main PeriodSelector

UsageBarChartTopApps

Settings InfoTermsAndConditions

Last7DaysUsageBarChartStats UsageBarChartAppsUseStop

AppsInPeriod

Figure 2: AppTracker state diagram

Table 1: The AppTracker higher level states

Id State Description

0 TermsAndConditions Terms and conditions page

1 Main Main display

2 TopApps Summary of all recorded data

3 Last7Days The last 7 days of top 5 apps used

4 PeriodSelector Choose a time period

to see app usage

5 AppsInPeriod Apps used for a selected period

6 Settings Settings view

7 UseStop Close AppTracker

8 Stats Select statistics of app usage

9 UsageBarChartTopApps App usage when picked from TopApps

10 UsageBarChartStats App usage when picked from Stats

11 Feedback Screen for giving feedback

12 UsageBarChartApps App usage when picked from

AppsInPeriod

13 Info Information about the app

14 Task A feedback question chosen from

the Feedback view

contains information about the user and device, and the
event that took place. For our analysis, we are interested
in the events resulting in a switch between views within the
app, and from that we focus on which view the user transi-
tions to. We therefore transform the raw logs of events into
user traces of views, which is a list of views visited within the
app. A special view denotes when the user leaves the app
(UseStop). This results in a total of 15 unique views listed in
Table 1. These views and transitions between views are used
as states and transitions between states, and relate directly
to the underlying atomic propositions. Figure 3 illustrates a
fragment of a logged user trace: information about the user’s
device, start and end data of AppTracker usage, and the first
session. The log data is stored in a MySQL database by the
SGLog framework. Raw data is extracted from the database
and processed using JavaScript to obtain user traces.

All data analysed for this paper was gathered between
August 2013 and May 2014, from 489 users. The average
time spent within the app per user is 626s (median 293s),
the average number times going into the app is 10.7 (median
7), the average user trace length is 73.6 view transitions.
(median 46).

Time cuts. We use JavaScript to segment the log data
into time cuts of the interval form [d1, d2), which returns the
user traces from the d1-th up until the d2-th day of usage.

Computing transition-occurrence matrices. We use

JavaScript for mapping each user trace to a 15×15 transition-
occurrence matrix: the number in position (i, j) denotes how
many times the i-th view is followed by the j-th view in the
trace. A transition represents an action performed by the
user to switch to one of the 15 views obtained from the SGlog
data, including UseStop.

5.2 Inferring activity patterns
For each value of K and time cut of the app usage we

obtain K DTMCs with 15 × 15 transition matrices called
activity patterns and an M ×K matrix Θ, where M is the
number of user traces, and with each row a distribution over
the K activity patterns.

For each activity pattern APk , for k = 1, . . . ,K, we gener-
ate automatically a PRISM model with one variable for the
views of the app with values ranging from 0 to 14. For each
state value of x we have a PRISM command defining all
possible 15 probabilistic transitions. Φkij is the transition
probability from state x = i to the updated state x′ = j in
activity pattern APk, for all i, j = 0, . . . , 14. For each state
value we associate the label corresponding to a higher level
state in AppTracker (see the mapping in Table 1) as well as
a reward structure which assigns a reward of 1 to that state.
The PRISM file for each activity pattern also includes a re-
ward structure assigning a rewards of 1 to each transition
(or time step) in the DTMC. All PRISM models have at
most 15 states and at most 51 transitions for all values of K
and types of time cut.

We implemented the EM algorithm in Java, applying the
algorithm to datasets with 100 iterations maximum and 200
restarts maximum. Running the EM algorithm takes about
119s for K = 2, 162s for K = 3, and 206s for K = 4 on
a 2.8GHz Intel Xeon. Timings are obtained by running the
algorithm 90 times. The algorithm is single threaded and
runs on one core.

5.3 Temporal properties for activity patterns
We use the following types of rPCTL properties to analyse

activity patterns for different states in PRISM.

Property 1. The probability of reaching a given state
labelled by l for the first time from the initial state within N
time steps: P=?[! lU≤N l].

Property 2. The expected number of visits to a given
state labeled by l from the initial state within N time steps:
R{”r l”}=?[C≤N].

Property 3. The expected number of time steps to reach
a given state from the initial state: R{”r Steps”}=?[F l].

[{"deviceid":"xx:xx:xx:xx:xx:xx","totalevents":230,"firstSeen":"2013-08-20 09:10:59","lastSeen":"2014-03-24 09:57:32",
"sessions":[[{"timestamp":"2013-08-20 09:11:02","data":"TermsAndConditions"},{"timestamp":"2013-08-20 09:11:23", "data":"Main"},
{"timestamp":"2013-08-20 09:11:46","data":"TopApps"},{"timestamp":"2013-08-20 09:11:50", "data":"Main"},{"timestamp":"2013-08-20
09:11:52","data":"Last7Days"},{"timestamp":"2013-08-20 09:11:56", "data":"Main"},{"timestamp":"2013-08-20 :11:59",
"data":"PeriodSelector"},{"timestamp":"2013-08-20 09:12:04", "data":"Main"},{"timestamp":"2013-08-20 09:12:06","data":"UseStop"}],...

Figure 3: Example of a user trace fragment.

Property 4. The probability of reaching for the first time
a state labelled by l1 from another state labelled by l2 during
the same session:

probToReach(l1)from(l2)DuringOneSession
4
=

filter(state,P=?[(! l1 & ! ”UseStop”) U≤N l1], l2)

The next property generalises Property 3 by starting from
a state not necessarily the initial one:

Property 5. The expected number of time steps to reach
a state labelled by l1 from another state labelled by l2:

stepsToReach(l1)from(l2)
4
=

filter(state,R{”r Steps”}=?[F l1], l2)

Properties 1, 2, and 3 are generic temporal properties
used for sketching a first image of a DTMC. They become
more app-specific when we apply them for specific states
prompted by designers’ hypotheses. Properties 4 and 5 were
identified during the rPCTL analysis stage for specific pairs
of states when more in-depth analysis was required to make
sense of the activity patterns.

While we cannot give a general interpretation of the re-
sults of the latter two properties because they depend on the
state labels, we interpret the results of first three properties
above as follows:

• the higher the probability computed by Prop. 1 for the
l-labelled state, the better;
• the higher number of visits to the l-labelled state as

computed by Prop. 2, the better;
• the fewer (non-zero) number of time steps to reach the
l-labelled state as computed by Prop. 3, the better.

6. ANALYSIS RESULTS
In this section we analyse different admixture bigram mod-

els for K = 2, K = 3 and K = 4, and for various time
cuts of the logged data. We verify rPCTL temporal prop-
erties enumerated in Sect. 5.3 on all activity patterns and
then compare longitudinally the weightings given by Θ. In
this paper we show only properties concerning the follow-
ing five states: TopApps, Stats, PeriodSelector, Last7Days,
UseStop, because these states showed significant results and
differences across time cuts and temporal properties when
we analysed the entire set of states and, in the same time,
the designers showed particular interest in them when for-
mulating hypotheses about the actual app usage.

6.1 Analysis for K = 2

6.1.1 Verifying rPCTL properties
We verify Prop. 1, 2 and 3 on the two activity patterns

AP1 and AP2 for six time cuts: first day [0, 1), first week
minus the first day [1, 7), the first month minus the first week
[7, 30), the first month [0, 30), the second month [30, 60)
and the third month [60, 90), and for N ranging from 10 to

150 with step-size 10. The results for N = 50 are listed in
Table 2; the conclusions drawn in this section hold also for
the other values of N we considered. In the following we
interpret the results from Table 2.

Property 1 computes the probability of reaching for the
first time a given state within 50 time steps. Both AP1
and AP2 have very good results for TopApps and UseStop.
AP2 has better results for PeriodSelector and Last7Days than
AP1, with Last7Days slightly more popular than PeriodSe-
lector; Stats also discriminates between the two activity pat-
terns – better results for AP1 than for AP2, except for the
time interval [30, 60).

Property 2 computes the expected number of visits to a
state within 50 time steps while Property 3 returns the ex-
pected number of time step taken before reaching a state.
We see similar results for these two properties: AP1 has bet-
ter results for TopApps and Stats than AP2, while AP2 has
better results for PeriodSelector and Last7Days than AP1.
The∞ results indicate that the state is unlikely to be reached,
therefore we can treat such results as zero for this property.
A session is delimited by two UseStop states, except the
initial session which starts from the initial state. Thus by
looking at UseStop, on average we see twice as many sessions
under AP1 than under AP2 and the average session length in
terms of time steps under AP2 is double the average session
length under AP1.

The three properties above show slightly different results
for the time interval [30, 60) compared to the more consis-
tent results for the other five time intervals. For this in-
terval, a high number of visits to and a relative low num-
ber of time steps to reach Stats no longer belongs to AP1,
but to AP2. Also, Prop. 1 and Prop. 2 for PeriodSelec-
tor no longer discriminate clearly between AP1 and AP2
due to very close results. As a consequence we analyse ad-
ditional rPCTL properties (see Table 3) for the time in-
terval [30, 60) in order to gain more insight into the two
activity patterns. The results show that under AP1 it is
very unlikely to go to PeriodSelector and Last7Days from
TopApps and also it is unlikely to move between PeriodSe-
lector and Last7Days, while under AP2 these behaviours are
more likely. The expected numbers of time steps to Period-
Selector and Last7Days from TopApps are lower under AP1
than in AP2, while it takes fewer steps to reach TopApps
from PeriodSelector or Last7Days under AP1. Also it takes
fewer steps to move between PeriodSelector and Last7Days
under AP2 than under AP1. It takes fewer time steps on
average to reach TopApps from Main than it takes to reach
PeriodSelector or Last7Days under AP1 than under AP2,
and vice versa. All these results tell us that the two ac-
tivity patterns learned from the time cut [30, 60) are respec-
tively similar to the two activity patterns learned for the
rest of time cuts analysed. The difference in the behaviour
around Stats could be explained by a new usage behaviour of
the AppTracker around the 30th day of usage due to a full
month worth of new statistics, leading to a spurt of more

Table 2: Property 1 (the probability of reaching a given state for the first time within N steps), Property 2
(the expected number of visits to a given state within N steps), and Property 3 (the expected number of
time steps to reach a given state) checked for different states and time cuts, and for N = 50 steps

Prop. Time TopApps Stats PeriodSelector Last7Days UseStop

cut AP1 AP2 AP1 AP2 AP1 AP2 AP1 AP2 AP1 AP2

P
ro

p
e
rt

y
1 [0, 1) 0.99 0.99 0.99 0.83 0.47 0.79 0.49 0.96 0.99 0.99

[1, 7) 0.99 0.99 0.98 0.80 0 0.93 0 0.98 0.99 0.99

[7, 30) 0.99 0.99 0.99 0.64 0.01 0.94 0.84 0.96 0.99 0.99

[0, 30) 0.99 0.99 0.99 0.75 0.21 0.92 0.44 0.98 0.99 0.99

[30, 60) 0.99 0.99 0 0.90 0.73 0.83 0.56 0.98 1 0.99

[60, 90) 1 0.95 0.96 0.72 0 0.94 0 0.97 1 0.99

P
ro

p
e
rt

y
2 [0, 1) 13.94 7.44 7.63 2.15 0.79 1.82 0.70 3.13 11.41 6.17

[1, 7) 17.22 5.77 4.00 2.31 0 3.97 0 4.03 12.91 6.30

[7, 30) 14.93 7.15 5.43 1.47 0.01 4.61 1.78 3.41 12.86 5.74

[0, 30) 14.67 6.48 5.08 1.90 0.24 3.58 0.58 3.99 11.00 6.51

[30, 60) 13.40 6.83 0 3.76 4.41 2.04 0.85 4.54 12.46 5.61

[60, 90) 17.30 5.83 2.94 2.60 0 3.26 0 4.43 13.96 5.63

P
ro

p
e
rt

y
3 [0, 1) 3.31 8.41 8.18 28.67 79.32 32.46 74.87 15.56 4.86 7.88

[1, 7) 2.05 10.70 12.44 31.90 ∞ 19.12 ∞ 12.38 3.85 7.55

[7, 30) 2.52 9.68 9.70 48.61 ∞ 17.78 26.61 14.58 3.88 8.44

[0, 30) 3.05 9.73 11.01 36.03 209.68 19.94 87.54 12.19 4.67 7.43

[30, 60) 4.04 10.34 ∞ 22.33 38.21 28.28 61.74 11.08 1 8.82

[60, 90) 2.02 15.28 16.53 39.68 ∞ 17.41 ∞ 11.56 3.57 8.90

exploratory usage of AppTracker. We note that in the third
month of usage, the time cut [60, 90), the results listed in
Table 2 make again a clear distinction between the two ac-
tivity patterns with respect to the states PeriodSelector and
Last7Days. We might say that in the third month the ex-
ploratory usage of AppTracker settles down and users know
exactly what to look for and where. A finer-grained longi-
tudinal analysis based on one-week time cuts could reveal
additional insight into the behaviour involving Stats around
the 30th day of usage.

We conclude that there are two distinct activity patterns:

• Overall Viewing pattern corresponds to viewing mainly
TopApps and Stats, thus more higher level stats visu-
alisations, and

• Time-partitioned Viewing pattern corresponds to view-
ing in particular Last7Days and PeriodSelector, and also
to some extent viewing TopApps and Stats (but less
than for the Overall Viewing pattern), thus more in-
depth stats visualisations.

This conclusion meets the developers’ hypothesis about
two distinct usages of the apps. However developers ex-
pected also to see one pattern revolving around TopApps and
Stats, one around PeriodSelector and another one around
Last7Days. The choice of K = 2 showed only 2 distinct pat-
terns, the last two patterns conjectured by developers being
aggregated into a single one. As a consequence, we investi-
gate higher values for K in Sect. 6.2.

6.1.2 Θ-based comparison
In addition to analysing rPCTL properties, we also com-

pare how the distribution Θ of the two activity patterns for
the entire population of users changes in time. For each
time cut considered for the rPCTL analysis above and ac-
tivity pattern AP2, we order non-decreasingly the second
column of Θ and re-scale its size to the interval [0, 1] to rep-
resent the horizontal axis, while the ordered Θ values are

projected on the vertical axis. Figure 4 shows the Θ val-
ues for AP2 for the population of user across the first three
months of usage. Since each row of Θ sums up to 1, it is easy
to picture a similar chart for AP1. We conclude that during
the first day of usage, up to 40% of users exhibit exclusive
Time-partitioned Viewing behaviour (probability close to 1 on
the y-axis) corresponding to an initial exploration of the app
with significant number of visits to TopApps, Stats, PeriodSe-
lector, and Last7Days. Also, at most 10% of the users exhibit
exclusive Overall Viewing behaviour maybe because they feel
less adventurous in exploring the app, preferring mostly the
first menu option of looking at TopApps and subsequently
at Stats. We note that the distributions of the two activity
patterns in the population of users are similar for the time
intervals [0, 1) and [30, 60) – probably because more users ex-
hibit a more exploratory behaviour during these times (new
types of usage statistics become available after one month
of usage). At the same time, the plots for the time intervals
[1, 7), [7, 30), and [60, 90) are also similar, and we think that
they correspond to a settled (or routine) usage behaviour.

6.2 rPCTL Analysis for K = 3 and K = 4

Let us consider the admixture model inferred for K = 3.
We verify Props. 1, 2, and 3 on the time interval [0, 30)
(first month of usage) and N = 50, and list the results in
Table 4. Based on these results we conclude that:

• AP1 is an Overall Viewing pattern because TopApps
and Stats have best results for all three properties; Pe-
riodSelector and Last7Days are absent.

• AP2 is a ’weaker’ Overall Viewing pattern than AP1
because TopApps has poorer results, and better results
than Stats and Last7Days; PeriodSelector is absent.

• AP3 is a Time-partitioned Viewing pattern because Pe-
riodSelector has the best results, followed closely by
TopApps and Last7Days.

As for K = 2, the sessions for the Overall Viewing pattern are

Table 3: Properties 4 and 5 verified for K = 2, time interval [30, 60).
Property 4 AP1 AP2

probToReach(TopApps)from(PeriodSelector)DuringOneSession 0.26 0.30

probToReach(PeriodSelector)from(TopApps)DuringOneSession 0.008 0.23

probToReach(TopApps)from(Last7Days)DuringOneSession 0.66 0.26

probToReach(Last7Days)from(TopApps)DuringOneSession 0.006 0.49

probToReach(PeriodSelector)from(Last7Days)DuringOneSession 0.08 0.15

probToReach(Last7Days)from(PeriodSelector)DuringOneSession 0.02 0.38

Property 5 AP1 AP2

stepsToReach(TopApps)from(PeriodSelector) 11.09 14.89

stepsToReach(PeriodSelector)from(TopApps) 38.30 31.21

stepsToReach(TopApps)from(Last7Days) 3.62 10.56

stepsToReach(Last7Days)from(TopApps) 61.83 14.01

stepsToReach(Last7Days)from(PeriodSelector) 68.68 15.61

stepsToReach(PeriodSelector)from(Last7Days) 36.69 28.77

Property 5 AP1 AP2

stepsToReach(TopApps)from(Main) 2.22 9.347

stepsToReach(PeriodSelector)from(Main) 36.03 27.28

stepsToReach(Last7Days)from(Main) 59.56 10.08

stepsToReach(UseStop)from(PeriodSelector) 9.23 11.51

stepsToReach(UseStop)from(TopApps) 1.49 11.74

stepsToReach(UseStop)from(Last7Days) 3.61 6.24

Figure 4: The distribution of the Time-partitioned
Viewing over the population of users for K = 2 and
time cuts [0, 1), [1, 7), [7, 30), [30, 60), [60, 90)

twice as short and twice more frequent than for the Time-
partitioned Viewing pattern.

We now consider the admixture model inferred for K = 4.
We verify Props. 1, 2, and 3 on the time interval [0, 30) (first
month of usage) and for N = 50, and list the results in
Table 4. Based on these results we conclude that:

• AP1 is mainly a TopApps Viewing activity pattern be-
cause it has the best results for TopApps, compared to
Stats, PeriodSelector, and Last7Days which score very
weak results.

• AP2 is a Stats – TopApps Viewing activity pattern,
with very weak results from Last7Days, PeriodSelector
is absent.

• AP3 is a Time-partitioned Viewing pattern with domi-
nant Last7Days followed closely by TopApps and Peri-
odSelector; Stats is absent.

• AP4 is mainly a TopApps Viewing pattern because
TopApps has the best results, while all other states
need on average an infinite number of time steps to be
reached. The fact that it takes on average an infinite
number of time steps to reach the end of a session (i.e.,
the state UseStop), pushed us to analyse this pattern
with other temporal properties and for other states.
As a consequence we saw that UsageBarChartTopApps

has similar properties as TopApps, meaning that this
pattern corresponds to repeatedly switching between
TopApps and UsageBarChartTopApps.

By verifying the Props. 1, 2, and 3 also for the state UseS-
top (details not included in the paper) we observe twice as
many sessions for AP1 than for AP2 and AP3, only a couple
of sessions on average for AP4, fewer time steps per session
for AP1 than for AP2 and AP3.

We do not show the probability transition matrix for the
activity patterns analysed in this section for the sake of
simplicity. The properties investigated here create an over-
all image of the likelihood of correlations between what we
identified as most relevant five states. Figure 5 illustrates
the state-transition diagrams of all K = 4 activity patterns
with thickness of the transitions corresponding to ranges of
transition probabilities: the thicker the line, the higher the
probability of that transition, while transitions with very
small probabilities are not shown. Such graphs offer a high-
level characterisation of patterns, but we note that a high
probability from one state s to a state s′ in such a graph
does not mean that the transition is very likely within the
execution of the DTMC: if the probability of reaching s is
very low, then the transition from s to s′ will have a low
probability to take place during execution. However, when
considering the characteristics of each pattern as discovered
through rPCTL analysis, such graphs aid in pattern iden-
tification and understanding. In particular AP4 stands out
with a very thick transition between states TopApps (2) and
UsageBarChartTopApps (9).

6.3 Θ-based analysis
In Fig. 6 we plot the weightings of all users for each ac-

tivity patterns for K = 2, 3, 4 and the time cut [0, 30). Fig-
ure 6(a) tells us that for K = 2 the Time-partitioned Viewing
has higher weightings across the user population with al-
most 25% of the users using the app exclusively like this,
hence either exploring the app or genuinely interested in
in-depth usage statistics. Figure 6(b) tells us that almost
10% of the users are exclusively interested in TopApps, Stats
and Last7Days but not PeriodSelector; this behaviour is the
most popular among users. From Fig. 6(c) we see that al-
most 50% of the users do not behave according to AP4 –
switching repeatedly between TopApps and UsageBarChart-

Figure 5: The DTMCs of the activity patterns for K = 4 where states are enumerated from 0 to 14

Table 4: Property 1 (the probability of reaching a given state for the first time within 50 time steps),
Property 2 (the expected number of visiting a given state within 50 steps), and Property 3 (the expected
number of time steps to reach a given state) checked for five states, time cut [0, 30): (a) K = 3, (b) K = 4

(a)

Prop. TopApps Stats PeriodSelector Last7Days UseStop

AP1 AP2 AP3 AP1 AP2 AP3 AP1 AP2 AP3 AP1 AP2 AP3 AP1 AP2 AP3

1 0.99 0.99 0.93 0.99 0.91 0.39 0 0 0.97 0 0.91 0.96 0.99 0.99 0.99

2 15.45 6.94 6.74 5.56 2.57 0.99 0 0 8.46 0 2.32 3.98 13.65 8.20 6.00

3 2.45 7.35 17.43 9.33 22.01 98.96 ∞ ∞ 11.74 ∞ 20.99 12.55 3.78 5.86 8.08

(b)

Prop. TopApps Stats PeriodSelector Last7Days

AP1 AP2 AP3 AP4 AP1 AP2 AP3 AP4 AP1 AP2 AP3 AP4 AP1 AP2 AP3 AP4

1 0.99 0.99 0.99 0.95 0.04 0.99 0 0.06 0.06 0 0.85 0.57 0.02 0.13 0.99 0.58

2 15.79 9.93 4.64 17.84 0.03 10.85 0 0.19 0.09 0 2.97 3.03 0.02 0.14 5.70 1.34

3 2.64 4.36 ∞ ∞ ∞ ∞ 26.51 ∞ ∞ 378.76 8.46 ∞ 3.49 7.30 6.54 0

TopApps. Note that for K = 3 and K = 4 no pattern stands
out as very different than the others.

7. INFORMING APP REDESIGN
Our analysis initially uncovered two activity patterns for

AppTracker. These patterns can largely be characterised by
the type of app usage data the user is examining: either
Overall Viewing – more higher level usage statistics visual-
isations for the entire recorded period, or Time-partitioned
Viewing – more in-depth usage statistics visualisation for
specific periods of interest. We have not found one usage
pattern to be significantly dominant over the other. For
the majority of users, usage is fairly evenly distributed be-
tween the two patterns, suggesting that a revised version
of AppTracker should continue to support both rather than
focusing on only one.

The two patterns identified in the admixture model with
K = 2 correspond quite closely to options presented on
AppTracker’s main menu (see Fig. 1(a)), which is the ini-
tial page shown when AppTracker launches. Overall View-
ing shows more usage of TopApps and Stats, which are in-
terface screens accessed through the Overall Usage menu
item. Time-partitioned Viewing sees higher probabilities for
reaching PeriodSelector and Last7Days, which are accessed
through Select by Period and Last 7 Days, but also some
usage of TopApps and Stats. Our results indicate that us-
age sessions corresponding to Overall Viewing are generally
shorter. This means that during these sessions, users are
performing fewer actions between launching AppTracker and
exiting back to the device’s home screen. The diverse pat-
terns suggest that, in a future version of AppTracker, if de-
velopers wanted to keep the two major styles of usage sep-

arated between different screens, they could explicitly de-
sign for these glancing-like short interactions in Overall Us-
age and longer interactions in a new Select by Period screen
along with the initial Last 7 Days screen. Also more filtering
and querying tools could be added to Select by Period.

In noting that activity patterns divide between main menu
options in this way, we might be concerned that users are
simply following the suggested paths as defined by the inter-
face. We therefore probed further, running further admix-
ture bigram models for K = 3, K = 4 and K = 5 (the last
is not included in this paper). For the case of K = 3, if the
analysis was merely mirroring the menu structure, we might
expect to see one pattern centered around each of the first
three menu items. Although we see a pattern AP2 centered
around TopApps, Stats, and Last7Days but no PeriodSelector,
we do not see a pattern centered around PeriodSelector and
not including Last7Days. For K = 4 we find these two views
together in a pattern, with Last7Days slightly more popu-
lar than PeriodSelector. This combination also occurred for
K = 2 and K = 5.

For K = 4, we see a distinct new cluster of activity show-
ing users repeatedly switching between TopApps and Usage-
BarChartTopApps. TopApps is an ordered list of the user’s
most used apps; selecting an item from this list opens Us-
ageBarChartTopApps, a bar chart showing daily minutes of
use of this app. This persistent switching suggests a more
investigatory behaviour, which is more likely to be associ-
ated with the Time-partitioned Viewing. Yet this behaviour
is occurring under the Overall Usage menu item which we
hypothesised and then identified as being associated with
more glancing-like behaviour. This suggests that our results
are providing more nuanced findings than simple uncover-

(a) K = 2 (b) K = 3 (c) K = 4

Figure 6: Pattern distributions for K = 2 (Overall Viewing, Time-partitioned Viewing), K = 3 (Overall Viewing,
weak Overall Viewing, Time-partitioned Viewing,) and K = 4 (mainly TopApps Viewing, equally Stats and TopApps
Viewing, Time-partitioned Viewing with no Stats, exclusive TopApps and UsageBarChartTopApps), time cut [0, 30).

ing of existing menu structure. Also, if developers wanted
to separate the two types of usage between different menu
items even more, they could move the TopApps – UsageBar-
ChartTopApps loop from Overall Usage to Select by Period).

Discovering glancing activity patterns has significant ben-
efits in app redesign. Since the release of the iOS 8 SDK in
2014, Apple has allowed the development of ’Today widgets’.
These are extensions to apps comprising of small visual dis-
plays and limited functionality that appear in the device’s
Notification Centre, accessible by swiping down from the
top of the screen. On the subject of Today widgets, Ap-
ple’s Human Interface Guidelines (HIG) 1 state that “it’s
best when your Today widget displays the right amount of
information and limits interactivity”, encouraging develop-
ers to “keep user interactions limited and streamlined” and
explaining that “Because your Today widget provides a nar-
rowly focused experience, it can work well to direct people
to your app for more information or functionality.” Beyond
these pieces of advice, however, developers might struggle to
decide which pieces of their app’s contents would best suit
inclusion in a Today widget. Few conventions have built up
on this in the limited time the SDK has been available, and
most developers would have to rely on their own judgement
to select appropriate content from their app to populate this
view. In our analysis, we have explicitly uncovered the spe-
cific screens that people look at when they are undertaking
short sessions of glancing-type behaviour, i.e. the typical
glancing patterns for AppTracker – the Overall Viewing pat-
tern and the TopApps-centered patterns. In identifying such
activity patterns, our methods provide a more principled
method of selecting content appropriate for an app exten-
sion such as a Today widget.

8. RELATED WORK
Logging software is also frequently used to understand

program behaviours, and typically to aid program compre-
hension – building an understanding of how the program
executes [17]. There are various techniques that use logs of
running software, such as visualising logs (e.g. [6]) and cap-

1https://developer.apple.com/library/ios/
documentation/UserExperience/Conceptual/MobileHIG/
AppExtensions.html

ture and replay (e.g. [14], [9]). The motivations for doing
this is often failure analysis, evaluating performance, and
to better understand the system behaviour (as it executes).
In contrast, we are interested in what ways users are inter-
acting with the software, and we are doing so by analysing
logs captured during the use of the software. The difference
here is important. In the case of program comprehension,
log analysis is used to understand better what is going on
within the code and how the artifact is engineered (in order
to be better prepared for improvements and maintenance).
In the second case however, analysing usage logs is done
to learn about distinct uses of the software to inform im-
provements on the higher-level design. There is however an
interest from software engineer practitioners to learn about
the use of an app through data science [3].

The approach of [7] also employs usage logs as a resource
for improvement on design, and applies temporal logical
analysis, but a key difference is that their models are based
on relatively static user attributes (e.g. city location of
user) rather than on inferred behaviours. Their approach
assumes within-class use to be homogeneous, but our re-
search demonstrates within-class variation.

We first introduced the concept of representing the be-
haviour of users through a weighted mixture over data gen-
erating distributions [11], refining the concept substantially
in [1] where we defined activity patterns for an individual
user as user meta models (DTMCs), with respect to a pop-
ulation of users. We then inferred behaviours for individual
user activity from large scale logged usage data for a mobile
game app and analysed them using probabilistic temporal
properties (without rewards). This current work builds on
that approach, but differs substantially in that here our goal
is redesign in the context of a different app. To this end we
investigate a range of values for the number K of activity
patterns and completely different temporal properties (e.g.
using rewards) for longitudinal analysis. In [1] we analysed
individual user models, whereas in this paper we analysed
the whole population of users as we compared the distribu-
tions of activity patterns across the user population longi-
tudinally for a fixed value K as well as for three different
values for K.

9. DISCUSSION
At present, the kind of approach we describe here is likely

to involve collaboration between developers familiar with
app development and instrumentation, and analysts familiar
with statistics and formal modelling. With this in mind, we
note some methodological issues that those considering such
joint work may wish to consider.

Firstly, our approach gains from having significant vol-
umes of log data to work on, in order to allow the statistical
methods to be applied more reliably. However, the volume of
log data to analyse is not relevant for the probabilistic model
checking, only the number of higher level states for analysis
selected from the raw data determines the complexity of the
model checking problem. Our case study involved a vocab-
ulary of 15 states, which was comfortably manageable, but
we note that the combinatorial growth of the complexity of
model checking argues against very large vocabularies.

Our second point follows on from the first: the issue of
what to log is not trivial. Clearly, it is possible to instru-
ment an app with logging in many different ways. This
is typically decided during development, and the resulting
logs – both between apps but also within apps – are there-
fore diverse. Unless it is strictly decided precisely what to
log, the collection of log entries can include anything from
a button press, to the change of WiFi signal of the device,
and so on. For the method of analysis as used in this pa-
per, one needs to go from these logs to transitions between
states. One therefore needs to identify what these higher
level states are, and how they correlate with the logs, as the
choice of states is the choice of the lens through which one
interprets the use of the app. In [7] states were related to
web page views (similar to views in AppTracker, to some
extent). In contrast, in [1], the states were related to spe-
cific game actions in the game. The two perspectives (and
associated atomic propositions) are different in nature, and
they each capture something different about what users do
with the system under investigation.

In the case of AppTracker, we decided to use states cor-
responding to individual screens possible to transition to
within the app. This highlights the rather simple nature of
AppTracker – it is essentially a browser of information. In
contrast, a game such as Angry Birds allows the user to per-
form a much more complex set of actions. Even after prun-
ing the logs to include only user actions (rather than lower
level device events), one still needs to decide how to model
these actions as a state space. In the end, the chosen state
space will ultimately influence what activity patterns be-
come visible. We also note the need for care over the choice
of what to log, the possibility of revision of that choice in
the light of ongoing analysis, and the potential cost of rec-
onciliation or integration of log data from different logging
regimes. We therefore suggest that discussion and prelimi-
nary analysis be done early in the development process, so
that the decisions about what to log and what the state
space should be are made by developers and analysts jointly
in a well-informed way.

Thirdly, the value of K is clearly key to analysis, but
what is the most appropriate value for K? While we could
use model selection or non-parametric methods to infer K,
there might be reasons to fix a value of K based in do-
main knowledge and/or developer’s knowledge of the app.
We suggest that the analyst should expect to work in an
incremental and exploratory way, using results from ongo-

ing analysis as well as the developers’ knowledge of the app
and the application domain. In the case study, we noted
that AppTracker’s developers expected that two or three
particular activity patterns would be uncovered by the anal-
ysis. Two major different patterns were in fact found – one
of which subsumed the developers’ expected patterns. The
findings from K = 2 were useful in themselves, but also led
to analysing higher values of K and thus to findings that
required developer knowledge for full interpretation.

Lastly, we note the complementarity of our methods based
on inferred behaviours to methods using attributes selected
a priori (such as [7], discussed in Sect. 8), and also to more
everyday analysis such as counting how often a particular
UI state was reached (e.g. via simple SQL queries over the
log data). In our case study, we often used SQL queries and
JavaScript visualisations to explore and prepare for more
complex temporal analysis, with developers and analysts
working together via those queries to frame more specialised
analytic work – which in turn often led on to further SQL
and JavaScript work. Similarly, we suggest that attributes
selected a priori can be used to express domain knowledge in
ways that both generate useful findings and lead on to other
questions and analyses. We propose that the presented tem-
poral logical analysis should be seen as adding to the toolkit
available to developers, analysts and researchers, rather than
competing with other methods.

10. CONCLUSIONS
We have outlined our approach to informing redesign based

on probabilistic formal analysis of actual app usage. Our ap-
proach is a combination of bottom up statistical inference
from user traces, and top down probabilistic temporal logic
analysis of inferred models. We have illustrated this via a
mobile app, and discussed how the results of this analysis
inform app redesign that is grounded in existing patterns of
behaviour.

Future work lies in two directions. First, we have devel-
oped and employed a prototype web-based environment for
creating the time cuts, preparing data for and running the
EM algorithm, and for generating PRISM models from the
EM outputs and visualisations. Manual interventions are
still required at various stages, particularly when analysing
PRISM properties and generating visualisations, and ongo-
ing work focuses on developing an analysis framework that
encompasses all the stages within one easily adaptable web
based environment, easing and speeding up the collaborative
work of analysis. Second, our choice of bigram admixture
models is based on the work of [8] in modelling web-browsing
activity across populations of individuals. What type of
probabilistic model would help us investigate possible causes
for a user to transition from one type of behaviour to another
one? Can we determine the context in which they are likely
to make that transition? Future work involves Hierarchical
Hidden Markov models [15], where the first abstract level
in the hierarchy consists of contextual features and then the
activity patterns learned for each feature.

11. ACKNOWLEDGMENTS
This research is supported by the EPSRC Programme

Grant A Population Approach to Ubicomp System Design
(EP/J007617/1).

12. REFERENCES
[1] O. Andrei, M. Calder, M. Higgs, and M. Girolami.

Probabilistic Model Checking of DTMC Models of
User Activity Patterns. In G. Norman and W. H.
Sanders, editors, Proc. of QEST’14, volume 8657 of
Lecture Notes in Computer Science, pages 138–153.
Springer, 2014.

[2] C. Baier and J.-P. Katoen. Principles of Model
Checking. The MIT Press, 2008.

[3] A. Begel and T. Zimmermann. Analyze This! 145
Questions for Data Scientists in Software Engineering.
In Proc. of ICSE14, pages 12–23, New York, NY,
USA, 2014. ACM.

[4] M. Bell, M. Chalmers, L. Fontaine, M. Higgs,
A. Morrison, J. Rooksby, M. Rost, and S. Sherwood.
Experiences in Logging Everyday App Use. In Proc. of
Digital Economy’13. ACM, 2013.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):pp. 1–38,
1977.

[6] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring.
Live trace visualization for comprehending large
software landscapes: The ExplorViz approach. In
Proc. of VISSOFT’13, pages 1–4, 2013.

[7] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli.
Mining Behavior Models from User-Intensive Web
Applications. In P. Jalote, L. C. Briand, and
A. van der Hoek, editors, Proc. of ICSE’14, pages
277–287. ACM, 2014.

[8] M. Girolami and A. Kaban. Simplicial Mixtures of
Markov Chains: Distributed Modelling of Dynamic
User Profiles. In S. Thrun, L. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

[9] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein.
RERAN: Timing- and Touch-sensitive Record and
Replay for Android. In Proc. of ICSE’13, ICSE ’13,
pages 72–81, Piscataway, NJ, USA, 2013. IEEE Press.

[10] M. Hall, M. Bell, A. Morrison, S. Reeves,
S. Sherwood, and M. Chalmers. Adapting ubicomp
software and its evaluation. In Proc. of EICS’09, pages
143–148, New York, NY, USA, 2009. ACM.

[11] M. Higgs, A. Morrison, M. Girolami, and
M. Chalmers. Analysing User Behaviour Through
Dynamic Population Models. In Proc. of CHI’13,
Extended Abstracts on Human Factors in Computing
Systems, CHI EA’13, pages 271–276. ACM, 2013.

[12] M. Z. Kwiatkowska, G. Norman, and D. Parker.
Stochastic Model Checking. In M. Bernardo and
J. Hillston, editors, SFM, volume 4486 of LNCS, pages
220–270. Springer, 2007.

[13] M. Z. Kwiatkowska, G. Norman, and D. Parker.
PRISM 4.0: Verification of Probabilistic Real-Time
Systems. In Proc. of CAV’11, volume 6806 of LNCS,
pages 585–591. Springer, 2011.

[14] J. Mickens, J. Elson, and J. Howell. Mugshot:
Deterministic Capture and Replay for Javascript
Applications. In Proc. of the 7th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’10, pages 11–11. USENIX Association, 2010.

[15] K. P. Murphy. Dynamic Bayesian Networks:
Representation, Inference and Learning. PhD thesis,
University of California, Berkley, 2002.

[16] S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu,
K. Havelund, S. A. Smolka, and E. Zadok. Runtime
Verification with State Estimation. In Proc. of RV’11,
volume 7186 of LNCS, pages 193–207. Springer, 2011.

[17] A. von Mayrhauser and A. Vans. Program
comprehension during software maintenance and
evolution. Computer, 28(8):44–55, 1995.

