
Interactive Theorem Proving:An Empirical Study of User ActivityJ. S. Aitken, P. Gray, T. Melham and M. ThomasDepartment of Computing Science, University of Glasgow, Scotland21 November 1995AbstractIn this paper the interaction between users and the interactive theorem prover HOLis investigated from a human-computer interaction perspective. First, we outline threepossible views of interaction, and give a brief survey of some current interfaces and howthey may be described in terms of these views. Second, we describe and present the resultsof an empirical study of intermediate and expert HOL users. The results are analysedfor evidence in support of the proposed view of proof activity in HOL. We believe thatthis approach provides a principled basis for the assessment and design of interfaces totheorem provers.1 IntroductionIn the most general terms, mechanised theorem proving is about using computers to justify theelevation of a conjecture into a theorem by �nding a formal proof|or at least by convincingoneself that such a proof exists. In the algorithmic tradition, this means employing a computerprogram to determine automatically the truth of a proposition by means of a mathematically-justi�ed decision procedure or some more heuristic method. The main elements here arecomputation over symbolic data representing propositions and the automated search for alegitimate proof in some space of possible proofs.In the more interactive tradition, the user interacts with a computer program in orderto participate in proof discovery and construction. While the main elements still includecomputation over symbolic data representing propositions, as in the algorithmic tradition,the concept of interaction between user and system during the search for legitimate proofbecomes central.Interactive theorem provers and proof-assistants have been developed for a wide rangeof logics, styles of reasoning, and applications; some examples include HOL, Isabelle, LP,Mural, MERRILL and NuPrl. A commonly-cited di�culty with the use of interactive proversis associated with the key feature of any interactive system, namely the user interface. A poorinterface obstructs the interaction between the user and the system. As a result, the centraland distinctive concept of this approach to theorem proving, the interactive element, is notfully realised. In response to this, several projects have been undertaken to develop good,usually graphical, interfaces for speci�c systems. Many interfaces o�er a bewildering varietyof options such as menus, windows, mouse, click and drag, structure editors and proof trees.While the interface designers have clearly considered their interfaces carefully, the principles1



for design are seldom explicitly formulated; and even when they are, the evidence for thoseprinciples is lacking.As a consequence, the resulting interfaces have met with mixed success and many interfaceproblems remain unsolved. The user and the designer usually have no other criteria forevaluation of an interface than anecdotes and experience. More speci�cally, the interfacedesigners have almost universally failed to draw upon the most relevant discipline|namely,human-computer interaction|in the analysis of the task structure and information 
owsbetween users and the proof system (Hewitt et al., 1992).Our long term goal is to rectify this lack of analysis and to produce design principlesfor interactive theorem provers based on the results of task-oriented analysis and empiricalinvestigation of user activity. In this paper we present some preliminary results of our inves-tigations. We present our thoughts on a framework for information 
ow and the results of anempirical study of intermediate and expert users of one particular interactive theorem prover,the HOL system (Gordon and Melham, 1993).The HOL system is a LCF-style interactive theorem prover for constructing (or discov-ering) proofs in higher order logic. The LCF approach, devised in the late 1970s by RobinMilner, means that theorems are represented by the values of an abstract data type in astrongly-typed functional programming language. In the case of HOL, this is the languageML (Paulson, 1991). Theorem proving in HOL takes place by executing ML functions thatoperate on theorems. These functions may be primitive inference rules or more complex,user-de�ned ML functions. In all cases, however, the LCF approach ensures that functionscan be constructed only so as to perform valid logical inferences.The HOL system has been chosen for initial experiments because of our own familiaritywith it, the system's large and active user community, and the fact that the interface problemhas been signalled by the construction of several graphical interfaces for it. But this does notpreclude the consideration of other interactive theorem provers in our future work.The structure of this paper is as follows. We begin in Section 2 with some backgroundmaterial on LCF-style goal-directed proof and proof trees. In Section 3 we propose a threelevel model of interaction and within that model, discuss three styles, or `views', of interactionbetween users and proof systems: proof as programming, proof by selection, and proof asstructure editing. In Section 4 we give a brief overview of some current HOL interfaces, notingthe views which are supported by each interface. In Section 5 the experimental method weuse to evaluate user activity in theorem proving is presented; this is followed by the results ofour experiments and an analysis of them. In the �nal section we draw some conclusions andoutline our plans for future work.2 Goal-directed Proof SearchThe most primitive notion of formal proof is one in which rules of inference are simply appliedin sequence to axioms and previously proved theorems until the desired theorem is obtained.Computations that achieve this so-called forward proof process are the ultimate basis forall logical deduction in LCF-style theorem provers, including HOL. In the LCF tradition,one performs forward proof by executing a program that invokes the appropriate sequence ofinference rules. Thus, for example, a decision procedure is just an ML program that invokesthe appropriate sequence of inference rules to prove any desired member of a well-de�ned andgeneral class of conjectures. 2



Decision procedures operate without the need for user intervention, but forward proofsmay also be performed interactively. The user speci�es to the theorem prover which inferencerule is to be applied at each step, obtaining feedback by observing the theorems that aregenerated by the rules. The machine acts as a proof-checker, but gives little support for proofdiscovery. This is often not a feasible way of �nding a proof, since the exact sequence ofinferences required|or even the �rst inference required|is rarely known in advance.A more promising and natural approach is to set about discovering a proof by workingbackwards from the statement to be proved (called a goal) to previously proved theoremsthat imply it. This is the backward proof style, in which the search for a proof is the activityof exploring possible strategies for achieving a goal. For example, one possible approach toproving a conjunctive formula P ^Q is to break this goal down into the two separate subgoalsof proving P and proving Q. Likewise, one may seek to prove an implication 8x: P [x] � Q[x]by reducing this to the subgoal of proving Q[x] under the assumption P [x] for arbitrary x.The HOL system, following LCF, supports this style of proof by means of ML functionscalled tactics. These are used to break goals down into increasingly simple subgoals, until thesubgoals obtained follow immediately from theorems already derived. In addition to breakinga goal down into subgoals, a tactic also constructs a sequence of forward inference stepswhich can be used to prove the goal, once the subgoals have themselves been proved. This isnecessary because all theorems must ultimately be obtained by forward proof.In addition to tactics, ML allows one to implement functions (called tacticals) that combineelementary tactics together into more complex ones. This allows the user to build compositetactics that fully decompose a conjecture into immediately-provable subgoals, and hence canbe executed to generate a complete proof of the conjecture. In practice, these monolithic,composite tactics are the main products of the theorem proving activity; the software deliver-able for a theorem proving project using HOL largely consists of �les of ML source text thatexecute composite tactics of this kind, generating a body of theorems related to the problemdomain at hand.The most primitive interface to HOL is just an ML interpreter o�ering only the facil-ity to evaluate the application of tactic functions to goals. In practice, however, interactivegoal-directed proof is supported by means of an interface that operates on a proof statewhich records the history of the decomposition of a conjecture into subgoals (including thebehind-the-scenes forward proofs that justify the decompositions) together with the subgoalsremaining to be proved. The most rudimentary interface is still a version of the ML inter-preter, but one in which a suitable proof state has been implemented by an ML data structureand some associated functions for modifying and inspecting it.The proof state can be viewed abstractly as a goal decomposition tree. This is often referredto as a proof tree|it being understood that the steps in the `proof' are goal decompositionsin a backward proof attempt. A proof tree represents successive stages in the decompositioninto subgoals of a conjecture to be proved. The root is the original conjecture, and the leavesare the subgoals remaining to be proved. A goal-directed proof attempt is successful whenall the leaves are immediately provable. The theorem prover provides a means for dismissingsuch trivial subgoals.A simple example of a proof tree is shown in Figure 1. The initial goal is a conjunction.In the �rst decomposition, this is split into two subgoals consisting of the two conjuncts. Theexistential subgoal 9x: P [x] is then reduced to the subgoal of proving P [w] for some witnessvalue w. The other subgoal 8y: P [y] � Q[y] is reduced to the subgoal of proving that Q[y]follows from the assumption P [y] for arbitrary y.3



` (9x: P [x]) ^ (8y: P [y] � Q[y])������ HHHHHH` 9x: P [x] ` 8y: P [y] � Q[y]` P [w] P [y] ` Q[y]Figure 1: A simple proof treeThe notion of a proof state|the current state of a goal-directed backward proof attempt|lies at the core of interface support for goal-directed proof. The proof state is not a primitiveHOL concept; the means by which proof states are interactively created, modi�ed, and in-spected are supplied by the implementation of an interface. Support for goal-directed proofin HOL is provided by the subgoal package, a collection of ML functions that operate on adata structure representing the proof state.To complete a goal-directed proof, it is ultimately necessary to prove all the subgoals thatarise. It is generally the case that subgoals are independent of each other and as a result theorder in which subgoals are proven is not signi�cant. This suggests that there is no real bene�tto be gained by switching attention from branch to branch of the search tree. The searchtree can simply be explored in a �xed depth-�rst order. Furthermore, it is not necessaryto consider the proof as a whole; only the current subgoal need be considered. The currentproof context can be indicated by a record of the proof steps applied so far. A record of pastsubgoal states is not necessarily the best indication of proof context. The overall shape of theproof is important, and a review of the progress of the proof may take it into consideration.3 Describing Proof BehaviourA number of theories and assumptions about user-proof system interaction underlie the de-sign of existing interfaces. In many instances these ideas are not articulated explicitly. Indescriptions of interface designs, the designer's views of the interaction are not always easilydistinguished from other issues, such as system architecture, or from representational issuespeculiar to a particular logical framework. In this section we aim to formulate precisely andexplicitly certain views of user-proof system interaction which are relevant to the constructionof e�ective user interfaces for interactive theorem-provers.Cooperative, interactive theorem proving, like most human-computer (inter)activity, canbe described at several di�erent levels of abstraction. The very same user action, at a certainpoint in the proof, can be described as:� { Choosing a tactic for application.� { Selecting an item from a list.� { Clicking the mouse button with the cursor at a particular location on the display.4



All are `correct' and complete descriptions of the same action, but each is framed in terms ofa di�erent model (set of objects and applicable operations) of the activity.These descriptions of the activity are related to one another in at least two importantways. First, the relationships can form an explanation of user activity. That is, each levelexcept the top level1 can be viewed as an explanation of the level below it. Thus, the userclicks the mouse at a certain point in order to choose an item from a list, and s/he selectsthe item in order to choose a tactic for application. Second, from a design point of view, adesigner must choose a representation (or choose not to o�er a representation) in a lower levelfor the objects and operations in the next most abstract level. Thus, if selecting a tactic forapplication is a desired user action to support, then selecting an item from a list is one of thepossible ways to e�ect this, and similarly, clicking the mouse button at a certain point is away to e�ect the menu selection.Such a multi-level view of interaction has been used as the basis for previous explanationsof human-computer interaction, albeit never applied speci�cally to the domain of interactivetheorem-proving. Nielson (1986) presents a linguistic account of interaction by assertingthat the levels correspond to the lexical, syntactic and semantic levels of linguistic activity.Norman (1988) asserts that translations from one level to another form the basis for importantpotential interaction problems (the so-called gulfs of execution and evaluation) which arisewhen a user is not able to perform the transformation from one level to another. Thischaracterisation of interaction forms the basis for an explanation of the potential advantagesof direct manipulation (Hutchins, Holland and Norman, 1986) (viz., it reduces the complexityof the inter-level mappings) and metaphorical representations (viz., mappings can be inferredbased on a similarity relation to a separate known representation).How many levels of abstraction are necessary to characterise an interaction? This willdepend upon the purpose and nature of the explanation or design rationals which the char-acterisation is used to support (Pylyshn, 1986). We have found that for a design-orienteddescription of user interfaces to theorem-provers it is su�cient to use three levels:A logical level. This is a description solely in terms of logical concepts.An abstract interaction level. At this level are the shared objects and operations in termsof which information is communicated from user to system. Typically, these are vi-sual(isable) objects and the operations upon them, but abstracted away from details oftheir physical form. Examples include diagrams, structured text, visualised lists.A concrete interaction level. At this level are actions on input devices and the perceptualcharacteristics of display objects.Each level of abstraction is self-contained, in the sense that a full description of the activitycan be framed within a level. One can instruct a user to carry out a full proof entirely interms of articulations of devices. Or, assuming that the user knows, can guess, or learn therepresentation, the user can be instructed in terms of the higher level abstractions.But a full description, even at a given level, must include operations which extend beyondthose in which there is a 
ow of information between the parties to the interaction. That is,there are operations which belong solely to one party or the other and are needed to form1The top level description forms the motivational basis of the activity. That is, goals at this level are notopen to further explanation. To move beyond this level is to look for the motivation of the user to engage inthe activity. 5



a complete picture of the activity. In our example, the user must have determined that thetactic to be chosen is the appropriate one at the current state of the proof. This determinationmay be an entirely private, cognitive activity. Similarly, once the tactic has been speci�ed tothe computer system, its application is an internal computer action requiring no interventionon the part of the user.There is a class of user cognitive activity which, although not strictly part of the user-system interaction as described so far, is an important part of our analysis. User goals andplans determine the form of the interaction and the outcomes of interaction fed back into sub-sequent plan formulation. We take no theoretical stance on the form of such cognitive activityor the mental representation of cognitive structures (mental models), but we are concernedto discover user plans and beliefs which in
uence and are in
uenced by the interaction.It is our contention that developments in user interface design for interactive theoremprovers have been driven largely by considerations at the level of the concrete interactiondomain and its relationship to the abstract interaction domain. These are often called stylesor techniques of interaction and include such components as particular visual representationsof tree structures, drag-and-drop interaction techniques, pop-up menus, and so on.Relatively unexamined is the relationship between the abstract interaction domain andthe logical domain. Our work to date has focused on this relationship. In the same way thatrepresentation choices at the lower level are grouped as styles, one can categorise the waysthat the top level, logical, domain is related to its representation in the abstract interactiondomain. We call these categories views. Views determine what in the logical domain will berepresented, how it will be represented (at least in part), and place constraints on the natureof the relationship.It should be emphasised that neither the notion of views, nor our multi-level accountof proof construction activity, imply that the user is aware of the mediating relationship.A user might think of the proof activity, and develop action plans, entirely in terms of adescription in the logical and/or abstract interaction domain. We follow Nardi and Zarmer(1993) in believing that the abstract interaction domain|the shared representation of userand system|forms a structure or framework in terms of which to solve problems in the logicaldomain. Views provide the organising principles by which such a framework can be generated.The view determines:1. The aspects of the logical domain which should be made salient to the user.2. The relevant operations in the logical domain which should be performed in the abstractinteraction domain.3. Constraints on action and properties of the logical domain which either need not orshould not be represented.In examining current user interfaces to theorem provers, we have identi�ed three suchviews, although others are possible. They are proof as programming, proof by pointing, andproof as structure editing. We now turn to an examination of these views.3.1 Proof as programmingThe proof as programming view stems from two fundamental elements of the LCF approach totheorem-proving: the system's command language is a strongly-typed programming language,6



and an abstract data type of formal theorems in this language is used to distinguish formulasthat have been proved from arbitrary propositions. The merit of this scheme is that thetype discipline ensures security; theorems can be generated only by using the functions thatimplement primitive inference rules and programs that call them. A consequence is that,whatever code a user may write intending to implement a particular proof strategy, thesystem can never perform an invalid logical inference.In LCF-style systems, backward proof is implemented using tactics|higher order func-tions that map goals into subgoals together with proof procedures that justify this decompo-sition. Historically, backward proof using tactics is the chief method of proof in LCF-stylesystems; indeed, for many users it is virtually the only method of proof. But tactics arenot the only way of generating theorems; with the security of the LCF approach comes thefreedom to write arbitrary code intended to compute a desired theorem. One could, for ex-ample, code a decision procedure that operates purely by forward proof (e.g. by equationalrewriting, or �rst-order resolution) and can be invoked to generate any element of a wholeclass of theorems. In this case, the user is clearly engaged in an activity having the nature ofprogramming|writing programs that compute theorems.The view that proof is programming also regards tactic proofs as programs to computetheorems. The user develops tactic proofs piecemeal, by applying individual tactics thatbreak down the goal into ever simpler subgoals. But once the proof has been found, thetactics are composed into a monolithic and complete proof strategy|a functional programthat can be executed to prove the desired theorem from scratch. The �nal product of theactivity is a program; and thus goal-directed theorem proving using tactics is a specialisedkind of programming activity.Thus, proof as programming recasts the proof problems, as de�ned in the logical domain,as programming problems. Figure 2 sketches the levels of abstraction making up the proofas programming view. As can be seen, construction and execution of program texts is afundamental organising concept of this view. Tactics and the functions that combine themare the medium through which the user interactively explores possibilities and constructs aproof. But they also constitute program texts, which are executed to extend the proof stateand are kept as a permanent record of the proof.It does not follow from the above that users think of proof construction as programming.Rather, one would expect that, given a successful user interface, users would be relativelyunaware of writing and executing parts of a program. This is an important point. Progammingis not a metaphor for proof construction; instead, programming is the medium through whichproofs are constructed and expressed. One would expect that a descent from thinking at thelogical level to planning and evaluating at the abstract interaction level would occur if there isa breakdown in the interaction (i.e., some required information is not available or an operationnot known). An advantage of proof as programming is the fact that when breakdown occursbecause of the lack of a representation in the abstract interaction domain (e.g. there is notactic which represents some desired goal decomposition), one can `bridge the representationalgap' without switching abstract interaction domains.It is not, of course, clear that the idea of programming is to be extended to the goal-directed process of proof discovery itself. Nonetheless, the analogy is one possible explanationof the activity that relates the user's notion of the proof strategy and the abstract interactiondomain concepts of proof states and tactics. Hence this view has implications for interfaceevaluation and design|how well does proof as programming explain what really goes on, anddoes designing an interface consonant with this view increase productivity?7



Concrete Interaction Level:sequences of keypressesmodi�cations to edited textdisplayed dataAbstract Interaction Level:editing tactic texts (ML code)executing tactics (function application)the proof stateLogical Level:backward proof and goal decompositionlogically legitimate proof-stepsconjectures to be proved (goals) ` P ^ Q` P ` Q��� HHHP ^ Q| {z }P Qz }| {?"P /\ Q""P""Q"Figure 2: Proof as Programming3.2 Proof by pointingProof by pointing (or, perhaps more accurately, proof by selection) has been proposed byBerot, Kahn and Th�ery (1993) as a means of synthesizing commands to the theorem proverby selecting a subexpression of the current goal (typically, using a mouse). It has been shownthat in the Sequent Calculus, an appropriate sequence of rules drawn from the rules forelimination and introduction of logical connectives can be selected by identifying a particularsubexpression on the left or right hand side of the turnstile symbol `. For example, pointingat `P (a)' in the disjunctive hypothesis of the goal P (a)_Q(a) ` R is interpreted as a desire todo a case analysis, and consequently two new subgoals are introduced, one for each of the twodisjuncts. Selecting a subterm not governed by the outermost connective is interpreted as adesire to bring that term to the outside. In doing so, the prover may apply several inferencerules and may be able to solve any simple subgoals that arise.In tactic-based provers, proof by pointing is intended to free the user from having to editcommands during goal-directed proofs (Bertot, 1994). The user may then concentrate directlyon the goals and theorems of the proof. The proof by pointing tool in the Coq theorem proverdeals with the logical connectives ^;_;�;:; 8 and 9. If a subexpression of a premise is selectedand the premise is existentially quanti�ed, then a command which produces a witness for thisformula will be generated. If the premise is universally quanti�ed then a command whichgenerates an instance of the formula will be produced. In a similar fashion, commands thatbreak up conjunctions and introduce case splits will be generated according to a convention.For simple logics, proof by pointing provides a complete proof technique that can beexecuted by purely mouse-based input operations. For the logics of most tactic-based provers,however, pointing can replace only some typed commands. Certain sequences of tactics canbe synthesised from pointing actions, but for others some di�erent kind of input may berequired|perhaps a selection from a list of several possible actions, or even some text. Thisis because there may be no clear one-one correspondence between logical-level maneuvers andthe expressions at which one may possibly point.The proof by pointing idea can, however, be extended by connecting the application8



of a tactic with the pointing action. This yields the so-called `point and shoot' technique.Suppose that Elim is the induction proof command. Then the actions `point' and `select Elim'introduce an induction scheme that would validate the propositional expression pointed to.In proof by pointing, the logical level appears to be identical to that in proof as pro-gramming. But at the abstract interaction level, there are no program texts and no programexecution. There is only a proof state, which is transformed by acts of selection|choosingan operation to perform on the current goal.3.3 Proof as structure editingSome logical formalisms include an object-language notion of proof. For example, in typetheory (Martin-L�of, 1984) one has the `propositions-as-types' reading, in which one views atype A as a proposition and a well-typed term a :: A as a proof of A. Here, the logical terma is a formal proof object|a syntactic object, with an underlying syntactic structure relatedto the structure of the proposition A. This makes possible the view that proof constructionand exploration consist in editing proof objects using a structure editor.One theorem-proving system that exempli�es the proof as structure editing view is theALF proof editor (Nordstr�om, 1993). In ALF, the process of proving a conjecture A consistsin building a proof object for A. The proof state has two components: the goal A, togetherwith an incomplete proof object that represents the current state in the process of provingA. The intent is that a proof object is built up by direct manipulation|i.e. some form ofstructure editing. An incomplete proof object is a structure with one or more placeholdersindicating positions in the structure for those parts of the object yet to be created. A typicalediting operation extends an incomplete proof object by �lling in a placeholder with a proofobject, perhaps itself incomplete.Proof as structure editing can also take place when the notion of proof is meta-linguistic,where proofs are not objects in the term language of the logic. For example, the Mural system(Jones et. al., 1991) supports essentially the same `natural deduction' style of proof as HOL,but using a structure editing interface for proof construction and display. This is in keepingwith one of the general principles adopted by the designers of Mural, namely to allow `directmanipulation' of objects wherever possible. This leads to extensive use of structure editors,not just for proof construction, but for the construction and editing of many other objects aswell.In proof as structure editing, the abstract interaction level is organised around a proofstate which includes proof objects. The proof proceeds by structure editing of these proofobjects. We suspect that this view leads to a di�erent perspective at the logical level, but wehave not yet investigated the issue in depth.4 Some Interfaces to HOLIn this section we describe three interfaces to HOL, with reference to the views describedabove. All three adopt the proof as programming view to a greater or lesser extent. Twoare X-windows based interfaces, XHOL and CHOL, and extend the basic emacs interface toHOL by providing a proof tree display and a simple structure editing facility respectively.We begin by describing a proposal to extend support for proof as programming withoutnecessarily modifying the visual presentation of HOL.9



4.1 Extending support for proof as programmingSlind and Prehofer (1994) advocate that users of veri�cation systems be given support inthree areas: formalisation, proof and interface. These cover the entire range of veri�cationactivities, from the formalisation in logic of the domain of interest, through to the proofprocedure and storing the product of the proof attempt. They do not aim to provide adistinct new interface, but to extend the ML environment in useful ways. Such extensionswould provide the user with a more supportive programming environment, and hence thiswork can be classi�ed under the proof as programming heading.When discussing the interface, Slind and Prehofer note the problems of the presentation oflong and complex expressions. Their recommendations for interface design include modifyingcertain technical aspects of the ML interface to HOL, for example the overloading of constants.They also discuss the use of prettyprinting facilities and the possibility of using full scaledocument preparation systems for the presentation of expressions. They endorse the argumentthat the visualisation of theories (and their relationships) increases modularity, which mustaid the development of large proofs.Slind (1994) describes a proof manager whose role is to handle the complexities of a largeproof attempt which involves a collection of proofs. This is to be achieved by introducingnotes, a form of documentation originally due to Kalvala (1991, 1994), into the ML datastructures. The basic approach to discovering a proof using the proof manager is depth-�rstsearch, although forward proof is also permitted. While a proof attempt is being made,the user makes textual notes that comment the proof, perhaps describing the reasons forparticular decisions. In developing a collection of proofs, the user makes notes on entire proofattempts.The interface should be capable of presenting information in multiple forms, appropriateto the context. The interface should, presumably, support the informal documentation ofproofs and maintain the appropriate links between notes.4.2 XHOL: An interface with a proof tree displayThe XHOL interface to HOL has been developed by Schubert and Biggs (1994). This providesa four-panelled display, including a window where a standard HOL session runs, an emacs-style window which displays the proof script, and a window displaying a proof tree. The usercan type tactics into the editor window or select tactics from a menu and these appear in theeditor window. The highlighted region of the proof script can be sent to the HOL session byclicking on a `send' button. This replaces the typical cut and paste method of transferring thetactic text from the editor to HOL. XHOL provides a means of automatically constructinga new tactic as the concatenation of a sequence of tactics. The operation is termed `tacticextraction'. Once extracted, a tactic sequence can easily be re-applied to a new problem.This facility aids the user at the abstract interaction level, and is clearly within the proof asprogramming view. This interface modi�es many features at the concrete interaction level,while remaining similar to the emacs interface at the surface level.XHOL displays the subgoal structure of the current proof as a tree. A tree is a naturalrepresentation of the decomposition of a goal into subgoals. In backwards proof, a proof treeshows what has been proven and what subgoals remain to be proven. It has been claimed(Schubert and Biggs, 1994) that such a display provides clues about the techniques and tacticsthat may be useful in completing the proof attempt.10



Schubert and Biggs are concerned with the needs of large proof development and withspeeding up the user-proof system interaction. In order to cope with the former, their HOLinterface provides a means to view only part of the proof tree (which may become very large)and to control how much information is displayed at each node of the tree. Speeding up theinteraction is addressed by providing a menu of tactics which the user may select from, witha view to saving the time required to type complex commands.The rationale for the proof tree presentation appears to be that it is useful, during theproof attempt, to view the proof as a whole. It must also be assumed that a display ofgoal states is the most appropriate way to display the proof. Evidence for the usefulness ofexamining the proof as a whole has not been presented. In addition, no justi�cation has beengiven for the decision to present the goal states and not to present the tactics which transformone state into another, or to label the branches of the proof tree in some appropriate way,e.g. with the case argument (P and :P in a case split) or with the name of a witness in anexistence proof.The idea of presenting the proof attempt as a tree is intuitively appealing, but requiresscrutiny. There are practical problems in the use of proof trees as in long proofs many nodesare generated and their contents may be large expressions. This appears to work against theaim of providing support for large scale proof development.4.3 CHOL: A Centaur interface to HOLCHOL (Th�ery, 1993) is also an X interface to HOL. The proof script window of the standardinterface is retained, but its functionality is altered so that tactics may be entered by editingor by menu selection and placeholders may be left in the tactic script. For example, afterintroducing INDUCT_TAC (which would usually be followed by two arguments) it is possibleto leave the �rst argument blank, and to �ll in the second argument. This is equivalent tosolving the step case of the induction �rst, and then proceeding to solve the base case. Theview here is no longer proof as programming, where the same e�ect could be achieved byrotating the subgoals (i.e. using an ML command to swap the subgoal order). A structureediting view is required to explain this style of interaction.CHOL does not present the user with a window to the HOL session; instead, the currentgoal is displayed in a `goal window'. If the proof appears to require a rewriting step, CHOLhas the capability to calculate all possible rewrites of a selected expression and to present theseas a menu to the user (Th�ery, Bertot and Kahn, 1992). The user can then select the requiredrewrite and CHOL will update the goal state. The user can select the theories which are usedto calculate the possible rewrites, and hence, exercise control over this process. The user isgiven visual feedback as to the tactic which e�ected the particular rewrite s/he selected, asthe tactic, including the theorem name, appears in the script. This treatment of the rewriteoperation has much in common with the proof by pointing view. However, as the user is alsoinformed about which tactic was used, the proof as programming view is maintained.2At the concrete interaction level, there is little similarity to the standard HOL interface,hence a learning overhead for all users is inevitable. CHOL also provides assistance to the userin searching the contents of the theory libraries for theorems and de�nitions. This activitycan be very time consuming for new users and also for those unfamiliar with a particularlibrary.2The automatic insertion of the tactic in the script could also be consistent with the structure editing view:the insertion being automatic instead of manual. 11



4.4 Changing viewsWe see from the discussion above, that the CHOL interface does not exclusively adhere tothe proof as programming view. This raises the interesting question as to whether users caneasily move from the dominant view, which we believe for HOL is proof as programming, toone or both of the other views utilised in CHOL.However, prior to being able to investigate whether users can make use of di�erent views oftheir activity, we should validate the proposed view of proof as programming. In the followingsection, we present an empirical investigation into the use of the standard HOL interface.5 An Empirical Investigation of Interactive Proof in HOLThis investigation aims to discover the degree to which proof as programming matches whatusers actually do in practice. The prover under consideration is the HOL prover and theorganising view of the standard interface to this prover is proof as programming. We arecertain of our model of the prover's behaviour and our objective is validate our model of itsuse.In common with Polson (1987) we do not try to model fundamental cognitive processessuch as retrieval of knowledge from long term memory. Rather, we are testing our claimsregarding the logical and abstract interaction levels of the proposed view. In this study, weare not interested in evaluating the interaction model at the concrete interaction level; thiswould only con�rm properties of the chosen editor at the keystroke level, which we do notbelieve to be critical in the proof as programming view. In other views, the evaluation wouldnecessarily consider the concrete interaction level. For example, in proof by pointing the pointand click action is central to the user-system interaction.In the following sections we describe the behaviour we expect to observe, indicate howcommon we expect it to be and state how we shall quantify it. We then present the resultsof an experimental trial and our assessment of the proposed view of interaction. We alsoexamine features of the user-HOL interaction about which we can make no predictions, butwhich are important to interface design. These include the granularity at which users entercommands and the errors made when eliminating logical connectives from formulae. Thelatter is a task which might be aided by a graphical interface.Experimental data on the granularity of user input is relevant to interface design as design-ers often modify the way in which users are able to input commands. Interface designers mustmake decisions as to what information will be displayed and by what means. Experimentalevidence about the visual cues that users commonly utilise can be used to rank the impor-tance of the many sources of information that might be displayed by a graphical interface.Therefore, the investigation we describe is not restricted to testing the proof as programmingview, it also aims to provide valuable information about how users perform proof using thecurrent HOL interface. This information can be used to inform interface design and can serveas a reference against which new designs can be evaluated.5.1 Experimental methodSubjects were asked to prove a theorem using HOL88 or HOL90, the two most widely usedHOL implementations. They were asked to start up a HOL session in an emacs window andto set up an editor window for the ML �le in the manner in which they would usually do so.12
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SuccessfulFigure 3: A partially completed questionnaireThe interface then consisted of two windows and the activities in both windows were recorded.Subjects were given the theorem to be proved and asked to think-aloud while performing theproof but not to give detailed explanations. Their speech was recorded on audio tape.After the proof was completed subjects were asked to explain the central ideas of the proofand to complete a questionnaire. For each proof step, i.e. for each sequence of tactics input toHOL, the subject was asked the questions listed in Figure 3.3 The subject was also asked togroup proof steps together to indicate the strategic thinking behind the phases of the proofattempt.The experimental method records all proof steps entered into HOL and the results of theirapplication. Hence the sequence of user inputs can be assessed at the abstract interaction level.The subjective importance of visual cues is documented. This provides valuable evidenceabout the visual cues which users make use of during the proof attempt. Evidence about thestructure of the proof at the logical level can also be inferred from the post-proof questionnaire.A detailed analysis of the think-aloud protocols yields more knowledge of the logical levelthinking of the subjects and its relation to the abstract interaction level, but this is beyondthe scope of this paper. We can make predictions about the way in which proofs are developedand about the relative importance of visual cues from the proof as programming view, as weshall now show.5.1.1 Backwards proofWe predict that proofs will be developed in a backwards manner. As described above, thismeans of developing a proof is supported by the HOL subgoal package and is an essentialfeature of the abstract interaction level. We also expect users to explore unfruitful parts ofthe search space and to use the backup command to return them to an earlier proof state.In order to judge the extent to which this happens, we decided to quantify the number ofbacking up steps and the size of the proof space explored. Proofs may also be developed in aforwards manner and we might expect users to perform short proofs of lemmas in this way.We hypothesise that proof steps are selected on local context information and the experi-mental trial was designed to test this hypothesis. The local context is de�ned by the currentgoal and the current assumptions and is a component of the abstract interaction level asillustrated in Figure 2. It is certainly the case that task structure (Norman, 1988), or logical,considerations also play a very important role in decision making. However, there is no means3In fact, the questionnaire also asked other questions, but these are of no relevance here.13



other than protocol analysis to assess the in
uence of the subject's current logical strategyon tactic choice and we shall not investigate this question here.It is possible that the user may modify the proof script at a place other than the end ofthe script. The proof script is an object at the abstract interaction level and the activity ofediting the script is consistent with the proof as programming view. However, this activitydoes require the user to understand the proof script as a program. As stated above, we do notexpect users to view their activity as programming and so we do not expect the re�nement ofthe proof script to be common. The frequency of this behaviour was measured by countingthe number of times a tactic is inserted into the proof script (at a position other than theend of the current script). A second measure of this activity is to count the number of timesthat expressions occurring in commands are repeated. If we observe that a subject repeatedlymodi�es a command and replays it, we can conclude that command re�nement is taking place.If the subject follows the backwards proof model, then it is unlikely that an expression usedin a previous tactic would occur again. Hence, we do not expect command re�nement to becommon.5.1.2 Command granularity and the usefulness of visual cuesIt was observed in an earlier study of HOL users that one interaction, that is one proofstep, may combine several tactics. The granularity at which users might enter tactics is notrestricted by the standard interface. We determined the granularity at which users actuallydo enter tactics from the trace of the proof session.Users base their choice of tactic on many sources of information; the possibilities includethe current goal, the current assumptions and past subgoal states. Past subgoal states aresometimes displayed in the proof tree presentation and evidence that users examine thesestates would support the use of proof trees as an appropriate display for HOL proofs. Therelative importance of these information sources was assessed by the questionnaire of Figure3. The questionnaire asks for the subject's opinion on whether a particular cue was usedand is intended to collect subjective evidence for the use of a cue. These questions are notintended to document whether or not a particular tactic modi�es the goals or modi�es theassumptions in a purely logical sense. However, a strong correlation between these is to beexpected.5.1.3 Investigating the logical levelIt is known that several tactics are often required to perform a particular operation at thelogical level. For example, the tactic for a key proof idea (e.g. induction) may be precedeedby several tactics that put the goal into the right form �rst. Likewise, some tidying up stepsmay be needed afterwards.The number of tactic groups, or contexts, in a proof attempt therefore re
ects the logicallevel structure of the proof better than the number of proof steps or the number of individualtactics. To further investigate the relation between tactics, proof steps, and contexts, wedecided to ask subjects to group proof steps into sequences of related steps.5.1.4 The utility of a pointing mechanism for HOLSelecting a particular subexpression e.g. with the mouse, is one potential application of proofby pointing in HOL. This arises in the elimination of quanti�ers and truth functional con-14



1# GEN_TAC THEN STRIP_TAC THEN LIST_INDUCT_TAC 
           THEN ASM_REWRITE_TAC[];;

2# GEN_TAC THEN FIRST_ASSUM(UNDISCH_TAC o 
                           assert is_forall o concl);;

3# DISCH_THEN(MP_TAC o SPEC "h*:");;

4# DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC);;

5# DISCH_THEN(MP_TAC o SPECL ["[h:*]"; "l:(*)list"]);;

6# ASM_REWRITE_TAC[APPEND];; 

A

B

C

D Figure 4: An example of a tactic proofnectives from the goal and from assumptions. In the command line interface to HOL, theuser must expand tactics which successively eliminate connectives to the desired depth. Thismay result in errors such as eliminating too many quanti�ers by a choosing a tactic such asREPEAT STRIP_TAC, which repeatedly removes connectives, and subsequently having to backup and apply STRIP_TAC until the desired connective is reached. We analysed the traces of theproof sessions for this type of error. The observation of such errors alone does not provideevidence for proof by pointing as a framework for interaction with HOL. However, if the errorrate for this task is high, this would indicate the utility of a selection tool in a HOL interface.5.2 ResultsAll subjects were asked to prove the following induction theorem:` 8P:(P [ ]^ (8x:P [x] ^ 8l1 l2: (P l1 ^ P l2) � P (APPEND l1 l2)) � 8l: P lThis states that if P holds of the empty list and all singleton lists, and if P holds for theappend of any two lists for which P holds, then P holds of all lists. Figure 4 shows the tacticproof of this theorem discovered by subject 1. This �gure illustrates the relationship betweenproof steps, tactics and contexts. The �rst two of the six proof steps contain multiple tactics(connected by THEN). The four contexts of the proof are indicated by boxes. The �rst context,A, contains one proof step, made up of four tactics. This context includes the preparationfor list induction, the induction step itself and the solution of the base case. Other subjectsdiscovered this part of the proof in several proof steps. They also indicated more contexts;for example, the solution of the base case was often distinguished from the earlier steps.Each subject estimated their total experience, in months, with the HOL system andquanti�ed their current usage. Current usage was estimated over the past six months andcategorised as very frequent (VF), frequent (F), occasional (O) or nil (NIL). The tables ofresults are ordered according to current usage and total HOL experience. Consequently,subject 1 is a very frequent user with the greatest total experience with HOL and subject 7is the least frequent user. The data is presented in Table 1. It should be noted that subject7 did not complete the proof and hence the �gure of 8 in the In Proof column means that 8proof steps remained in the proof script at the end of the trial. It is also notable that threeproof steps executed by subject 4 were carried out as forwards proof.15



Table 1: Basic parametersSubject HOL Current Number of Proof Steps TimeExperience HOL Usage Interactions (mins.sec)(months) Explored In Proof1 54 VF 13 6 6 7.362 12 VF 37 14 7 10.443 7 VF 50 16 10 19.254 120 F 30 12 10 10.325 108 F 38 13 6 33.156 96 F 40 14 9 30.327 24 NIL 72 20 8* 61.25The total number of interactions with the HOL system, the number of proof steps exploredand the number of proof steps in �nal proof are also given in Table 1. These �gures show thee�ciency of the interactive proof, both in terms of the steps explored which were unsuccessful,and the number of interactions required for each proof step. The time taken for each proofattempt is also listed in Table 1.The traces of the interaction with HOL were analysed to yield the data in Table 2. Thedata was obtained from an assessment of the entire proof attempt. The number of timesthe backup command was used is indicated in column 2 of Table 2. This table also showsthe numbers of steps inserted into a proof script. The number of repeated expressions isthe number of proof steps which occur multiple times. These �gures indicate whether asubject has backed up and edited the proof script (as opposed to backing up and exploringan alternative proof) and how many expressions were repeatedly entered into HOL.Table 2 also shows the number of errors in decomposing the goal, i.e. in eliminating logicalconnectives and in instantiating universally quanti�ed variables. Whether a decompositionstep was judged to be unsuccessful was determined by the subjects' response to the question-naire.Table 3 contrasts the number of proof steps (the number of lines of inputs to HOL) withthe number of tactics and the number of contexts. A proof step may be composed of severaltactics and a number of proof steps may be grouped together as performing a speci�c task.The number of proof steps and tactics were read from the log of the proof session, while thegrouping of tactics was obtained from the questionnaire. Each column of Table 3 lists theTable 2: Data on backing up and re�nementSubject Backing- Inserted Repeated DecompositionUp Steps Proof Steps Expressions Errors1 0/6 0 0 0/42 5/14 1 5 1/103 2/16 1 2 1/84 0/12 0 1 0/45 0/13 1 2 0/56 2/14 0 1 1/67 2/20 0 1 0/316



Table 3: Data on proof steps, tactics and contextsSubject Proof Steps Tactics Contexts1 6 (6) 10 (10) 4 (4)2 7 (14) 8 (18) 3 (5)3 10 (16) 13 (19) 6 (6)4 10 (12) 9 (10) 3 (3)5 6 (13) 10 (19) 3 (7)6 9 (14) 9 (14) 3 (7)7 8* (20) 10* (24) 3* (7)number of proof steps (tactics and contexts respectively) in the �nal proof and also lists thenumber of proof steps explored during the entire proof attempt. The latter is the �gure inbrackets.Table 4 shows the frequency with which subjects stated that their cues for selecting aproof step included the current goal, the current assumptions or a past subgoal. This datais simply that obtained from the questionnaire and refers to the entire proof attempt. The�gures for the percentage of proof steps where the current assumptions were stated to be acue are expressed as a percentage of all proof steps where there were assumptions, as opposedto a percentage of all explored proof steps.5.3 AnalysisThere was a large variation in the time taken to prove the goal, from 7 minutes 36 secondsto over 33 minutes|a factor of 4.4. There is no simple relationship between the time takento �nd the proof and the number of interactions or the number of proof steps explored.More frequent users can interact with the theorem prover more rapidly, both in terms ofrecalling and entering tactics and theorems and interpreting the results. This implies thatmore frequent users do not, in general, try to minimise the number of interactions with theprover but use the prover as a means to formally check their conjectures. This conclusion issupported by the results of Table 1 which shows that subjects 2 and 3 explored more proofsteps than subjects 4, 5 and 6 and interacted more with the HOL prover, but took less timeto solve the problem (on average).Less frequent users used the HOL prover less 
uently. They did not explore proof steps inTable 4: Data on cuesSubject Current Current PastGoal (%) Assumptions (%) Subgoals (%)1 83 40 02 71 82 03 88 82 04 92 90 05 85 64 86 36 50 507 100 69 23Average 79 68 1217



proportion to the time they took to �nd the proof. Instead, they spent time discovering howto construct syntactically correct tactics and discovering if a particular theorem was loadedinto the system or whether it existed at all.5.3.1 Evidence for backwards proofAll proof attempts were developed backwards from the goal. Three of the seven proof attemptscontain no backing up steps (Table 2). This means that the subject simply applied proof stepafter proof step. Three subjects backed up twice. Two of these proof attempts (subjects6 and 7) did not include an inserted proof step which indicates that backing up was doneto explore a new proof. Consequently, in �ve out of the seven proof attempts studied theactivity can best be described as backwards proof. It should be noted that subject 4 actuallyperformed a short forwards proof in the midst of the backwards proof.In the case of subject 3, backing up was connected with inserting a new proof step. Thisindicates that the proof script was re�ned once. In the case of subject 2, the proof scriptwas re�ned once and the number of backing up steps was more than twice that of any othersubject. The number of repeated expressions was also more than twice that of any othersubject and this indicates that commands were also being re�ned during this proof attempt.In common with all other subjects, subject 2 developed a backwards proof; but the mannerin which this was done was signi�cantly di�erent.The current goal was stated to be a cue for 79% of proof step selections, averaged overthe seven trials (Table 4). The current assumptions were stated to be cues for 68% of proofstep selections, while past subgoals were stated to be cues on an average of 12% of proof stepselections (averaged over the seven trials).4 These results indicate that for the majority ofsubjects the local proof context was the main visual cue in choosing the next tactic. Thisresult is in line with the proof as programming view. It is notable that subjects 2 and 3 statedthat past subgoals were never a cue and, in this regard, their approach to proof discoverycorresponds to the proof as programming view.The dominant method of applying proof steps in six out of seven trials was the depth-�rst approach. This was not the exclusive mode of interaction as there is evidence that thisapproach was combined with proof script re�nement to a greater extent than predicted.5.3.2 Evidence on granularity and visual cuesOn average a proof step was composed of 1.2 tactics and there were 2.44 proof steps in eachcontext. Correspondingly, there were 2.92 tactics in each context (averages derived fromTable 3). These results clearly show that the granularity of the user interaction with HOL isgreater than the level of single tactics. Subjects made use of the command line interface toenter proof steps composed of several tactics on a signi�cant number of occasions.The data of Table 4 provide evidence for the utility of continuous display of the currentgoal and assumptions. There is much less evidence for the usefulness of the past subgoals ofthe current proof tree as a cue. In some cases, the subjects who stated that past subgoalswere a cue were referring to the subgoal states reached by the failure of past proof steps andthese states do not remain on the proof tree once a backup command has been given.4Subjects were permitted to name any number of cues, hence the percentages for each subject do not addup to one hundred. 18



5.3.3 The logical levelThe proof context is interpreted as re
ecting the structure of the proof at the logical level.Each context is explored by more than two interactions and involves expanding almost threetactics on average. This is strong evidence for the idea that users organise the proof attemptat a signi�cantly larger granularity than the tactic level. There is the possibility that aninterface could represent these contexts explicitly and we discuss this further below.5.3.4 Decomposition by selectionWhile all subjects tackled the same problem, the solutions varied in approach as well as inlength and in the proportion of decomposition steps. The highest proportion of decompositionsteps was 66% and the lowest 33%, see Tables 1 and 2 (excluding subject 7 who did notcomplete the proof). Table 2 shows that no subject made more than one error. This indicatesthat the HOL users who took part in this trial did not have signi�cant problems in selectingtactics to eliminate logical connectives or to instantiate variables.There was evidence from informal discussions and from the think-aloud protocols thatsubjects found the identi�cation of assumptions and the specialisation of variables to bedi�cult, or to require signi�cant thought. The results of Table 2 indicate that they could solvesuch problems correctly. However, an aid to decomposition such as a selection mechanismmight decrease the time required to do so.5.4 DiscussionThe dominant mode of interaction with HOL, which we observed, can be described as proofas programming. It was observed that some HOL users have developed a style of interactionwhich di�ers from that which is typically taught to new users and which appears to be equallye�ective in terms of time spent on the proof. The results of the study suggest that our originalview of proof as programming placed insu�cient emphasis on the proof script as an interactionobject. The results show that users �nd it useful to switch between simple backwards proofand proof script re�nement as a means of developing a proof. This possibility did not featureclearly in our original view of the interaction.There is some evidence for the potential utility of a proof by selection mechanism. Thereis less evidence in favour of a proof tree representation of the proof state, at least for problemsof similar complexity to the example proof we studied.The results concerning the logical level structure of proofs suggest a number of ways thatproof context could be incorporated into interface design. Designers might provide displaysof the current context, and hide all other contexts. Contexts could be labelled with notes todocument the proof or the proof may be displayed as a tree of contexts, which would be amore manageable prospect than a tree of subgoal states. We consider that representing theproof structure at the logical level to be an important means by which users abstract from thedetail of the concrete proof and re
ect on proof structure. Consequently, we believe that aninterface should make salient those features which we observed to be central in user planningand proof construction. 19



6 ConclusionsHCI-based studies typically need both to model the phenomena and to collect empiricaldata. Approaches to interactive proof di�er such that they cannot be characterised by asingle model; we need to specialise a rather general framework in order to capture impor-tant distinctions. Specifying models of the activity is an important part of improving ourunderstanding of this particular form of human-computer interaction. However, we have afurther objective: to formulate design principles and guidelines based on the aforementionedtheoretical and empirical results.In this paper we have proposed a three layer model which accounts for interaction witha theorem prover: at the concrete level of keystrokes, at the abstract interaction level oftactic texts and proof states, and at the logical level where the explanation is in terms ofconjectures and legitimate proof steps. We have suggested that the relationship betweenthe abstract and logical levels should be examined more closely, and identi�ed three distinctviews which determine the nature of the relationship and how it is represented: proof asprogramming, proof by pointing, and structure editing. We used these views to propose ananalysis of both the standard, and other interfaces, to the HOL theorem prover.An empirical study of HOL users was carried out and the results were interpreted withrespect to what we argued was the dominant view of interaction, proof as programming. Weconclude that this view is indeed the dominant style of interaction with HOL. We thereforesuggest that interfaces to HOL should make salient those features which are supported by thisview, though there may also be a role for interface features which are derived from other viewsof proof. We currently have no evidence for or against the mixing of views in a single interfaceand believe that this is a question which needs to be addressed. On answering this questionwe shall be in a position to recommend how views should be embodied in interface designand how, if at all, they can be combined. In this way we shall arrive at design principles.We note that the scope of the investigation did not include any substantial developmentor formalization of new mathematical theories. We concentrated on proof development withinthe reasonably familiar theory of lists. Clearly, it is important to see how our models scaleup, and so interaction in the development of larger-scale proofs, including substantial theorydevelopments, will be the subject of future investigations.Our experience in conducting this work con�rms the value of an HCI-oriented investiga-tion of theorem proving. Such an investigation o�ers a source of insights to those interestedin improving the quality of interaction with theorem provers, as well as enlarging our under-standing of the activity of computer-assisted reasoning. Careful analysis of empirical studiessuch as the one reported here provide valuable information about what users of theoremprovers actually do. HCI research can o�er important organizing concepts for thinking aboutinterface design|for example the ideas about views and levels of description explained above.Finally, HCI research can provide the designers of theorem proving interfaces (who are seldomHCI experts themselves) with a specialised vocabulary for discussing the merits of speci�cdesigns and features.Acknowledgements We acknowledge the assistance of the Automated Reasoning group ofthe University of Cambridge Computer Laboratory with the empirical investigation. Thiswork was supported by EPSRC grant number GR/K25038.20
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