
Probabilistic Model Checking of DTMC Models
of User Activity Patterns

Oana Andrei1, Muffy Calder1, Matthew Higgs1, and Mark Girolami2

1 School of Computing Science, University of Glasgow, G12 8RZ, UK
2 Department of Statistics, University of Warwick, CV4 7AL, UK

Abstract. Software developers cannot always anticipate how users will
actually use their software as it may vary from user to user, and even
from use to use for an individual user. In order to address questions raised
by system developers and evaluators about software usage, we define new
probabilistic models that characterise user behaviour, based on activity
patterns inferred from actual logged user traces. We encode these new
models in a probabilistic model checker and use probabilistic temporal
logics to gain insight into software usage. We motivate and illustrate our
approach by application to the logged user traces of an iOS app.

1 Introduction

Software developers cannot always anticipate how users will actually use their
software, which is sometimes surprising and varies from user to user, and even
from use to use, for an individual user. We propose that temporal logic reasoning
over formal, probabilistic models of actual logged user traces can aid software
developers, evaluators, and users by: providing insights into application usage,
including differences and similarities between different users, predicting user be-
haviours, and recommending future application development.

Our approach is based on systematic and automated logging and reasoning
about users of applications. While this paper is focused on mobile applications
(apps), much of our work applies to any software system. A logged user trace
is a chronological sequence of in-app actions representing how the user explores
the app. From logged user traces of a population of users we infer activity pa-
tterns, represented each by a Discrete-Time Markov Chain (DTMC), and for
each user we infer a user strategy over the activity patterns. For each user we
deduce a meta model based on the set of all activity patterns inferred from the
population of users and the user strategy, and we call it the user metamodel.
We reason about the user metamodel using probabilistic temporal logic proper-
ties to express hypotheses about user behaviours and relationships within and
between the activity patterns, and to formulate app-specific questions posed by
developers and evaluators.

We motivate and illustrate our approach by application to the mobile, mul-
tiplayer game Hungry Yoshi [1], which was deployed in 2009 for iPhone devices
and has involved thousands of users worldwide. We collaborate with the Hun-
gry Yoshi developers on several mobile apps and we have access to all logged

2 Andrei et al.

user data. We have chosen the Hungry Yoshi app because its functionality is
relatively simple, yet adequate to illustrate how formal analysis can inform app
evaluation and development.

The main contributions of the paper are:

– a formal and systematic approach to formal user activity analysis in a pro-
babilistic setting,

– inference of user activity patterns represented as DTMCs,
– definition of the DTMC user metamodel and guidelines for inferring user

metamodels from logged user data,
– encoding of the user metamodel in the PRISM model checker and temporal

logic properties defined over both states and activity patterns as atomic
propositions,

– illustration with a case study of a deployed app with thousands of users and
analysis results that reveal insights into real-life app usage.

The paper is organised as follows. In the next section we give an overview
of the Hungry Yoshi app, which we use to motivate and illustrate our work.
We list some example questions that have been posed by the Hungry Yoshi
developers and evaluators; while these are specific to the Hungry Yoshi app,
they are also indicative questions for any app. In Sect. 3 we give background
technical definitions concerning DTMCs and probabilistic temporal logics. In
Sect. 4 we define inference of user activity patterns, giving a small example as
illustration and some example results for Hungry Yoshi. In Sect. 5 we define
the user metamodel, we illustrate it for Hungry Yoshi and we give an encoding
for the PRISM model checker. In Sect. 6 we consider how to encode some of
the questions posed in Sect. 2.1 in probabilistic temporal logic, and give some
results for an example Hungry Yoshi user metamodel. In Sect. 7 we reflect upon
the results obtained for Hungry Yoshi and some further issues raised by our
approach. In Sect. 8 we review related work and we conclude in Sect. 9.

2 Running Example: Hungry Yoshi

The mobile, multiplayer game Hungry Yoshi [1] is based on picking pieces of
fruit and feeding them to creatures called yoshis. Players’ mobile devices reg-
ularly scan the available WiFi access points and display a password-protected
network as a yoshi and a non-protected network as a fruit plantation. Planta-
tions grow particular types of fruit (possibly from seeds) and yoshis ask players
for particular types of fruit. Players score points if they pick the fruit from the
correct plantations, store them in a basket, and give them to yoshis as requested.
There is further functionality, but here we concentrate on the key user-initiated
events, or button taps, which are: see a yoshi, see a plantation, pick fruit and
feed a yoshi. The external environment (as scanned by device), combined with
user choice, determines when yoshis and plantations can be observed. The game
was instrumented by the developers using the SGLog data logging infrastruc-
ture [2], which streams logs of specific user system operations back to servers on

Probabilistic Model Checking of DTMC Models of User Activity Patterns 3

(a) Main menu (b) Yoshi Zoe (c) Newquay plantation

Fig. 1: Hungry Yoshi screenshots: two plantations (Newquay hill and Zielona valley)
and two yoshis (Zoe and Taner) are observed. The main menu shows the available
plantations and yoshis with their respective content and required types of fruit. The
current basket contains one orange seed, one apricot and one apple.

the developing site as user traces. The developers specify directly in the source
code what method calls or contextual information are to be logged by SGLog.
A sample of screenshots from the game is shown in Fig. 1.

2.1 Example Questions from Developers and Evaluators

Key to our formal analysis is suitable hypotheses, or questions, about user be-
haviour. For Hungry Yoshi, we interviewed the developers and evaluators of the
game to obtain questions that would provide useful insights for them. Interest-
ingly most of their hypotheses were app-specific, and so we focus on these here,
and then indicate how each could be generalised. We note that to date, tools
available to the developers and evaluators for analysis include only SQL and
iPython stats scripts.

1. When a yoshi has been fed n pieces of fruit (which results in extra points
when done without interruption for n equal 5), did the user interleave pick
fruit and feed a yoshi n times or did the user perform n pick fruit events
followed by n feed a yoshi events? And afterwards, did he/she continue with
that pick-feed strategy or change to another one? Which strategy is more
likely in which activity pattern? More generally, when there are several ways
to reach a goal state, does the user always take a particular route and is this
dependent on the activity pattern?

2. If a user in one activity pattern does not feed a yoshi within n button taps,
but then changes to another activity pattern, is the user then likely to feed
a yoshi within m button taps? More generally, which events cause a change
of activity pattern, and which events follow that change of activity pattern?

4 Andrei et al.

3. What kind of user tries to pick fruit 6 times in a row (a basket can only hold
5 pieces of fruit)? More generally, in which activity pattern is a user more
likely to perform an inappropriate event?

4. If a user reads the instructions once, then does that user reach a goal state
in fewer steps than a user who does not read the instructions at all? (Thus
indicating the instructions are of some utility.) More generally, if a user
performs a given event, then it is more likely that he/she will perform another
given event, within n button taps, than users that have not performed the
first event? Is this affected by the activity pattern?

3 Technical Background

We assume familiarity with Discrete-Time Markov Chains, probabilistic logics
PCTL and PCTL*, and model checking [3, 4]; basic definitions are below.

A discrete-time Markov chain (DTMC) is a tuple D = (S, s̄,P, L) where:
S is a set of states; s̄ ∈ S is the initial state; P : S × S → [0, 1] is the tran-
sition probability function (or matrix) such that for all states s ∈ S we have∑

s′∈S P(s, s′) = 1; and L : S → 2AP is a labelling function associating to each
state s in S a set of valid atomic propositions from a set AP . A path (or execution)
of a DTMC is a non-empty sequence s0s1 . . . where si ∈ S and P(si, si+1) > 0
for all i ≥ 0. A path can be finite or infinite. Let PathD(s) denote the set of all
infinite paths of D starting in state s.

Probabilistic Computation Tree Logic (PCTL) [3] and its extension PCTL*
allow one to express a probability measure of the satisfaction of a temporal
property. Their syntax is the following:

State formulae Φ ::= true | a | ¬Φ | Φ ∧ Φ | P./ p[Ψ]
PCTL Path formulae Ψ ::= XΦ | ΦU≤n Φ

PCTL* Path formulae Ψ ::= Φ | Ψ ∧ Ψ | ¬Ψ | XΨ | ΨU≤n Ψ

where a ranges over a set of atomic propositions AP , ./∈ {≤, <,≥, >}, p ∈ [0, 1],
and n ∈ N ∪ {∞}.

A state s in a DTMC D satisfies an atomic proposition a if a ∈ L(s). A
state s satisfies a state formula P./ p[Ψ], written s |= P./ p[Ψ], if the probability
of taking a path starting from s and satisfying Ψ meets the bound ./ p, i.e.,
Prs{ω ∈ PathD(s) | ω |= Ψ} ./ p, where Prs is the probability measure defined
over paths from state s. The path formula XΦ is true on a path starting with
s if Φ is satisfied in the state following s; Φ1 U≤n Φ2 is true on a path if Φ2

holds in the state at some time step i ≤ n and at all preceding states Φ1 holds.
This is a minimal set of operators, the propositional operators false, disjunction
and implication can be derived using basic logical equivalences and a common
derived path operators is the eventually operator F where F≤n Φ ≡ true U≤n Φ.
If n = ∞ then superscripts omitted. We assume the following two additional
notations. Let ϕ denote the state formulae from the propositional logic fragment
of PCTL, i.e., ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ, where a ∈ AP . Let D|ϕ denote the
DTMC obtained from D by restricting the set of states to those satisfying ϕ.

Probabilistic Model Checking of DTMC Models of User Activity Patterns 5

Many of the properties we will examine require PCTL*, because we want
to examine sequences of events: this requires multiple occurrences of a bounded
until operator. This is not fully implemented in the current version of PRISM
(only a single bounded U is permitted3) and so we combine probabilities obtained
from PRISM filtered properties to achieve the same result. Filtered probabilities
check for properties that hold from sets of states satisfying given propositions.
For a DTMC D, we define the filtered probability of taking all paths that start
from any state satisfying ϕ and satisfy (PCTL) ψ by:

ProbDfilter(ϕ)(ψ)
def
= filters∈D,s|=ϕPrs{ω ∈ PathD(s) | ω |= ψ}

where filter is an operator on the probabilities of ψ for all the states satisfying
ϕ. In the examples illustrated in this paper we always use state as the filter
operator since ϕ uniquely identifies a state.

4 Inferring User Activity Patterns

The role of inference is to construct a representation of the data that is amenable
to checking probabilistic temporal logic properties. Developers want to be able
to select a user and explore that user’s model. While this could be achieved by
constructing an independent DTMC for each user, there is much to be gained
from sharing information between users. One way to do this is to construct
a set of user classes based on attribute information, and to learn a DTMC
for each class. This is the approach taken in [5] for users interacting with web
applications, and is a natural way to aggregate information over users and to
condition user-models on attribute values. One issue with this approach is that
it assumes within-class use to be homogeneous. For example, all users in the
same city using the same browser are modelled using the same DTMC.

In this work we take a different approach to inference. We have found the
common representations of context - such as location, operating system, or time
of day - to be poor predictors of mobile application use. For this reason we
construct user models based on the log information alone, without any ad-hoc
specification of user classes. By letting the data speak for itself, we hope to un-
cover interesting activity patterns and meaningful representations of users.

4.1 Statistical Model and Inference

We extend the standard DTMC model by introducing a strategy for each user
over activity patterns. More formally, we assume there exists a finite K number
of activity patterns, each modelled by a DTMC denoted αk = (S, ιinit,Pk, L),
for k = 1, . . . ,K. Note only the transition probability Pk varies over the set of
DTMCs, all the other parameters are the same. For some enumeration of users
m = 1, . . . ,M , we represent a user’s strategy by a vector θm such that θm(k)
denotes the probability that user m transitions according to αk.
3 Because currently the LTL-to-automata translator that PRISM uses does not support

bounded properties.

6 Andrei et al.

Statistical model. The data for each user is assumed to be generated in the
following way. We assume all users to be independent and all DTMCs to be
available to all users at all points in time. A user chooses an initial state according
to ιinit . When in state s ∈ S, user m selects the kth DTMC with probability
θm(k). If the user chooses the kth DTMC, then they transition from state s
to s′ ∈ S with probability Pk(s, s′). This simple description specifies all the
probabilistic dependencies required to compute the likelihood of the data given
the parameters of the model. While it is possible to extend the model so θ is
state-dependent, this will require us to either lose the distributed representation
of the user population, or to increase the number of parameters in a way that
leads to a high combinatorial degree of complexity.

Inference. Inference is performed by maximising the log-likelihood of the data
over the parameters of the model. This cannot be done analytically and we use
a numerical method: the expectation-maximisation (EM) algorithm of [6]. For
K > 1, the log-likelihood has multiple maxima and we restart the algorithm
multiple times and select the output parameters with the highest log-likelihood
over all runs. For the data considered here, restarting the algorithm 1000 times
was sufficient to reproduce the same output parameters.

4.2 Example Activity Patterns from Hungry Yoshi

In Fig. 2 we give the activity patterns inferred from a dataset of user traces
for 164 users randomly selected from the user population, for K = 2. A more
detailed overview is given in the work-in-progress paper [7]. For brevity, we
do not include the exact values of P1 and P2, but thicker arcs correspond to
transition probabilities greater than 0.1, thinner ones to transition probabilities
in [0.01, 0.1], and dashed ones to transition probabilities smaller than 10−12.
Intuitively, we can see that given the game is essentially about seeing yoshis and
feeding them, α1 looks like a better way for playing the game. For example in
α2 it is quite rare to reach feed from seeY and seeP, and also rare to move from
seeP to pick. Hungry Yoshi is a simple app with only two distinctive activity
patterns, in a more complex setting we might not be able to have any intuition
about the activity patterns.

5 User Metamodel

We define the formal model of the behaviour of a user m with respect to the
population of users, which we call the user metamodel (UMM). The UMM for
user m is a DTMC obtained by “flattening” the transition model over states
and strategies. The resulting DTMC describes how the user transitions between
composite states of the form (s, k) where s is an observable state and k indicates
the activity pattern at that time. The UMM can be defined formally in the
following way.

Probabilistic Model Checking of DTMC Models of User Activity Patterns 7

seeY seeP

feed pick

α1

seeY seeP

feed pick

α2

Fig. 2: Two user activity patterns α1 and α2 inferred from Hungry Yoshi usage.

Definition 5.1 (User Metamodel). Given K activity patterns α1, . . . , αK

and θm the strategy of user m for choosing activity patterns, the user metamodel
for m is a DTMC M = (SM, ιinit

M ,PM,LM) where:

– SM = S × {1, . . . ,K},
– ιinit
M (s, k) = θm(k) · ιinit(s),

– PM((s, k), (s′, k′)) = θm(k′) ·Pk′(s, s′),
– LM(s, k) = L(s) ∪ {α = k}.

We label each state (s, k) with the atomic proposition α = k to denote that the
state belongs to the activity pattern αk.

5.1 Example UMM from Hungry Yoshi

An intuitive graphical description of the UMM for the Hungry Yoshi game for
K = 2 is illustrated in Fig. 3. For example, θm(1) is the probability that user
m continues with activity pattern α1, i.e. takes a transition between states in
α1. The probability that the user changes the activity pattern and makes a
transition according to α2 is proportional to θm(2). Figure 3 is not a direct
representation of the transition probability matrix of the UMM DTMC, but it
illustrates how that matrix is derived from the matrices of the individual user
activity patterns. Note that the activity patterns have the same sets of states.
For instance, in the Hungry Yoshi example, consider we are in state seeY with
α1; we can move to state feed following the same pattern α1 with the probability
θm(1) · P1(seeY , feed), or we can change the activity pattern and move to state
feed following α2 with the probability θm(2) · P2(seeY , feed).

5.2 Encoding a UMM in PRISM

We use the probabilistic model checker PRISM [8]. We assume some familiarity
with the modelling language (based on the language of reactive modules), which
includes global variables, modules with local variables, labelled-commands cor-
responding to transitions and multiway synchronisation of modules. Below we

8 Andrei et al.

θm(1) θm(2)

θm(1)

θm(2)seeY seeP

feed pick

α1

seeY seeP

feed pick

α2

Fig. 3: An intuitive view of computing the transition probability matrix of the user
metamodel for the Hungry Yoshi app.

illustrate the PRISM encoding of the UMM for user m, where K is the number
of activity patterns, n is the number of states in each activity pattern αk.

module UserMetamodel m
s : [0 .. n] init 0;
k : [0 ..K] init 0;

[] (s = 0) −→ θm(1) ∗ ιinit(1) : (s′ = 1) & (k′ = 1) + . . .+
θm(K) ∗ ιinit(n) : (s′ = n) & (k′ = K);

[] (s = 1) −→ θm(1) ∗P1(1, 1) : (s′ = 1) & (k′ = 1) + . . .+
θm(K) ∗PK(1, n) : (s′ = n) & (k′ = K);

...
[] (s = n) −→ θm(1) ∗P1(n, 1) : (s′ = 1) & (k′ = 1) + . . .+

θm(K) ∗PK(n, n) : (s′ = n) & (k′ = K);
endmodule

The representation is straightforward, consisting of one module with (n + 1)
commands for all n states of any activity pattern and for one initial state. The
initial state (s = 0, k = 0) is a dummy that encodes the global initial distribution
ιinit for the user activity patterns. All activity patterns have the same set of
states and we enumerate them from 1 to n; we can label them conveniently
with atomic propositions. For instance, in a Hungry Yoshi UMM the states
(0, k) to (4, k) are labelled by the atomic proposition init , seeY , feed , seeP , pick
respectively. For each state (s, ·), with s > 0, we have a command defining all
possible n ·K probabilistic transitions. Pk(i, j) is the transition probability from
state i to state j in αk, and θm(k) is the probability of user m to choose the
activity patterns αk, for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,K}. If the probability
of an update is null, then the corresponding transition does not take place.

Probabilistic Model Checking of DTMC Models of User Activity Patterns 9

Fig. 4: Question 1: the probability of feeding a yoshi for the first time within N button
taps for the activity pattern α1 on the left and for α2 on the right.

6 Analysing the Hungry Yoshi UMM

In this section, we give some example analysis for a UMM. Namely, we encode
and evaluate quantitatively several example questions from Sect. 2.1 for the
UMM with the user strategy for transitioning between activity patterns defined
by θ = (0.7, 0.3). The PRISM models and property files are freely available4.

Recall that to score highly, a user must feed one or more yoshis (the appro-
priate fruit) often. An informal inspection of α1 and α2 indicates that α2 is a
less effective strategy for playing the game, since paths from seeP and seeY to
feed are unlikely. Now, by formal inspection of the UMM (encoded in PRISM),
we can investigate this hypothesis more rigorously. We consider properties that
are parametrised by a number of button taps (e.g. N , N1, N2) and by activity
pattern (e.g. α1, α2), so we use the PRISM experiment facility that allows us to
evaluate and then plot graphically results for a range of formulae.

Question 1. How many button taps N does it take to feed a yoshi for the first
time? We encode this by the probabilistic until formula:

p1(i) = ProbMinit((¬feed) U≤N ((α = i) ∧ feed))

and equivalently in PRISM: P=?[(!"feed") U<=N (alpha=i)&("feed")].
For activity pattern α1, Figure 4 shows that within 2 button taps the prob-

ability increases rapidly, and after 5 button taps the probability is more than
70%. Contrast this with the results for α2: the probability increases rapidly after
3 button taps but soon it reaches the upper bound of 0.003. Comparing the two
results, α1 is clearly more effective.

Now we consider more complex questions concerning sequences of feeding
and picking; recall that a basket can hold at most 5 fruits and extra points are
gained by feeding a yoshi its required 5 fruits without any other interruption. In

4 Available from http://dcs.gla.ac.uk/~oandrei/yoshi .

10 Andrei et al.

Question 2 we consider feeding a full basket to a yoshi, without any interruptions;
in Question 3 we consider picking a full basket, without being interrupted by a
feed , followed by feeding the full basket to a yoshi, which is again defined by five
consecutive feeds, without any interruptions. Note that when considering feeding
the full basket to a yoshi, we exclude all interruptions, i.e. any interleavings with
pick, seeY, and seeP.

Question 2. What is the probability of feeding the same yoshi a full basket? We
calculate the probability of reaching the state feed within N button taps and
then visiting it (with the same activity pattern i ∈ {1, 2}) for another four times
without visiting any other state:

p2(i) = ProbMinit(F
≤N (α = i ∧ feed)) · (ProbM|α=i

feed (X feed))4

We calculate this probability in PRISM using the property:

P=?[F<=N((alpha=i)&"feed")] *

pow(filter(state,P=?[X(alpha=i&"feed")],(alpha=i&"feed")),4)

The results are shown in Fig. 5 for both activity patterns and a range of number
of button taps. While the results for α1 (converging to 0.018) are higher than for
α2 (effectively 0); they are both small. There could be several causes for this. For
example, players are only made aware of the possibility of extra points at the end
of the instructions pages, or available fruit depends on the external environment.
If designers/evaluators want this investigated further, then we would require to
record and extract more detail from the logs, for example to log numbers of
available WiFi access points and scrolls through instruction pages.

Question 3. What is the probability of filling up a basket of fruit without feeding
a yoshi, and only after the basket is full feeding the same yoshi the whole basket?
We calculate the probability of reaching the state feed only after visiting the state
pick five times (without feeding) and then visiting the state feed four more times
without visiting any other state, for each activity pattern i ∈ {1, 2}:

p3(i) = ProbMinit [(¬pick) U≤N ((α = i) ∧ pick)]·
(ProbM|α=i

pick [X((¬feed ∧ ¬pick) U (pick))])4·
ProbM|α=i

pick [(¬feed) U feed] · (ProbM|α=i

feed [X feed])4

The corresponding PRISM property is:

P=?[!("pick") U<=N ((alpha=i)&"pick")] * pow(filter(state,

P=?[X ((alpha=i)&(!"feed")&(!"pick") U ((alpha=i)&"pick"))],

((alpha=i)&"pick")),4) * filter(state,

P=?[(alpha=i)&(!"feed")U((alpha=i)&"feed")],((alpha)=i&"pick")) *

pow(filter(state,P=?[X((alpha=i)&"feed")],((alpha=i)&"feed")),4)

The results are presented in Fig. 6. Again, while the probabilities are low
(presumably for the reasons outlined above for Question 2) the user that picks

Probabilistic Model Checking of DTMC Models of User Activity Patterns 11

Fig. 5: Question 2: the probability of
feeding one yoshi the whole fruit basket
without interruptions.

Fig. 6: Question 3: the probability of
picking five pieces of fruit and then
feeding one yoshi the whole basket.

a full basket and feeds it to a yoshi by following activity pattern α1 does it with
around 0.00019 probability within 20 steps into the game, whereas if they follow
α2 from the beginning, they almost never empty the basket. So again, α1 proves
to be more effective.

Now we turn our attention to a question that involves a change of activity
pattern, i.e. a change in the playing strategy.

Question 4. What is the probability of starting with an activity pattern and
not feeding a yoshi within N button taps, then changing to the other activity
pattern and eventually first feeding a yoshi within N2 button taps? We compute
this probability as follows, where L0 = {feed , pick , seeY , seeP}:

p4(i) =
∑

`∈L0
ProbMinit((¬(α = i) ∧ ¬feed) U≤N ((α = i) ∧ `))·
ProbM|α=i

` ((¬feed) U≤N2 feed)

The corresponding PRISM property is:

P=?[(!(alpha=i)&!("feed")) U<=N (alpha=i&"feed")] *

filter(state,P=?[(alpha=i)&!("feed") U<=N2 (alpha=i&"feed")],

alpha=i&"feed") + P=?[(!(alpha=i)&!("feed")) U<=N (alpha=i&"pick")] *

filter(state,P=?[(alpha=i)&!("feed") U<=N2 (alpha=i&"feed")],

alpha=i&"pick") + P=?[(!(alpha=i)&!("feed")) U<=N (alpha=i&"seeY")] *

filter(state,P=?[(alpha=i)&!("feed") U<=N2 (alpha=i&"feed")],

alpha=i&"seeY") + P=?[(!(alpha=i)&!("feed")) U<=N (alpha=i&"seeP")] *

filter(state,P=?[(alpha=i&!"feed")U<=N2(alpha=i&"feed")],alpha=i&"seeP")

Figure 7 shows the results for switching from activity patterns α1 to α2 and
vice-versa respectively for less than 10 button taps to feed a yoshi after switching
the activity pattern, while Figure 8 shows the same but for an unbounded number
of button taps (to feed a yoshi). We can see that success is much more likely by
switching from α2 to α1, than switching from α1 to α2, and a user needs about
4-5 button taps to switch from α2 to α1 to maximise their score. This latter

12 Andrei et al.

Fig. 7: Question 4 for N2 ≤ 10 and i = 1 on the left and i = 2 on the right.

Fig. 8: Question 4 for N2 =∞ and i = 1 on the left and i = 2 on the right.

result is not surprising, considering that users might first inspect the game,
which would involve visiting the 4 states.

All analyses were performed on a standard laptop. Note that for brevity, the
mobile app analysed here, and its formal model, are relatively small in size; more
complex applications will yield more meaningful activity patterns and complex
logic properties that can be analysed on the metamodels. While state-space
explosion of the UMM could be an issue, it is important to note that the state-
space does not depend on the number of users, but on the granularity of the
states (logged in-app actions) we distinguish.

7 Discussion

We reflect upon the results obtained for the Hungry Yoshi example and further
issues raised by our approach.

Hungry Yoshi usage. Our analysis has revealed some insight into how users have
actually played the game: α1 corresponds to a more successful game playing
strategy than α2 and a user is much more likely to be effective if they change
from α2 to α1 (rather than vice-versa), thus we conclude that α1 is expert be-
haviour and α2 is ineffective behaviour. (Note that users can, and do, switch

Probabilistic Model Checking of DTMC Models of User Activity Patterns 13

between both behaviours, e.g. a user who exhibits expert behaviour can still
exhibit ineffective behaviour at some later time.) This interpretation of activity
patterns can inform a future redesign that helps users move from ineffective to
expert behaviour, or induces explicitly populations of users to follow selected
computation paths to reach certain goal states. We note that the developers had
very little intuition about how often, or if, users were picking a full basket and
then feeding a yoshi (e.g. Questions 3 and 4 in Sect. 6), and so the results, which
indicate this scenario is quite rare, provided a new and useful insight for them.

Why DTMCs? Our choice of DTMC models is based on the work of of [9] in
modelling web-browsing activity, usage of Microsoft Word commands, and tele-
phone usage across populations of individuals. Girolami et al. used probabilistic
convex combinations of DTMCs and demonstrated empirically that such model
was superior in predictive performance to single DTMCs and mixture (point-
mass) of DTMCs. Future work involves developing algorithms for inference of
Hierarchical Hidden Markov models, where the first abstract level in the hierar-
chy is the activity patterns.

Temporal properties. The properties refer to propositions about user-initiated
events (e.g. seeY, feed) and activity patterns (e.g. α1, α2). A future improve-
ment would be a syntax that parametrises the temporal operators by activity
pattern. We note that PCTL properties alone were insufficient for our analysis
and we have made extensive use of filtered properties. We also note that for some
properties we have used PRISM rewards, e.g. to compare scores between activity
patterns, but these are omitted in this short paper.

Reasoning about users. Model checking is performed on the UMM resulting from
the augmentation of the set of K activity patterns with a strategy θm. It is simple
to select a user by selecting a θm and to analyse the resulting UMM. Metrics on
the set {θm | m = 1, . . . ,M} will be used in future work to characterise how the
results of the analysis change depending on the value of one θm, in the hope that
results of the analysis for one user can be generalised to users close by (under
the given metric).

Formulating hypotheses: domain specific and generic. We have considered do-
main specific hypotheses presented by developers and evaluators, but could a
formal approach help with hypothesis generation? For example, we could frame
questions using the specifications patterns for probabilistic quality properties as
defined in [10] (probabilistic response, probabilistic precedence, etc.). Referring
to our questions in Sect. 2.1, we recognise in the first item the probabilistic prece-
dence pattern, in the second one the probabilistic response pattern, and in the
last two the probabilistic constrained response pattern. However, these patterns
refer only to the top level structure, whereas all our properties consist of mul-
tiple levels of embedded patterns. Perhaps more complex patterns are required
for our domain? The patterns of [10] were abstracted from avionic, defence, and
automotive systems, which are typical reactive systems; does the mobile app

14 Andrei et al.

domain, or domains with strong user interaction exhibit different requirements?
We remark also that analysis of activity patterns is just one dimension to con-
sider: there are many others that are relevant to tailoring software to users, for
example software variability and configuration, and user engagement. These are
all topics of further work.

Choosing K activity patterns. What is the most appropriate value for K, can we
guide its choice? While we could use model selection or non-parametric methods
to infer it, there might be domain-based reasons for fixingK. For example, we can
start with an estimate value of K and then compare analysis activity patterns: if
properties for two different activity patterns give very close quantitative results
then we only need a smaller K.

What to log? This is a key question and depends upon the propositions we exa-
mine in our properties, as well as the overheads of logging (e.g. on system per-
formance, battery, etc.) and ethical considerations (e.g. what have users agreed).
Formal analysis will often lead to new instrumentation requirements, which in
turn will stimulate new analysis. For example, our analysis of Hungry Yoshi has
indicated a need for logged traces to include more information about current
context, e.g. the observable access points (yoshis).

8 Related Work

Our work is a contribution to the new software analytics described in [11], focus-
ing on local methods and models, and user perspectives. It is also resonates with
their prediction that by 2020 there will be more use of analytics for mobile apps
and games. Recent work in analysis of user behaviours in systems, especially
XBox games, is focused on understanding how features are used and how to
drive users to use desirable features. For example, [12] investigates video game
skills development for over 3 million users based on analysis of users’ TrueSkill
rating [13]. Their statistical analysis is based on a single, abstract “skill score”,
whereas our approach is based on reasoning about computation paths relating to
in-app events and temporal property analysis of activity patterns. Our approach
can be considered a form of run-time quantitative verification (by probabilistic
model checking) as advocated by Calinescu et al. in [14]. Whereas they consider
functional behaviour of service-based systems (e.g. power management) and soft-
ware evolution triggered by a violation of correctness criteria because software
does not meet the specification, or environment change, we address evolution
based on behaviours users actually exhibit and how these behaviours relate to
system requirements, which may include subtle aspects such as user goals and
quality of experience. Perhaps of more relevance is the work on off-line runtime
verification of logs in [15] that estimates the probability of a temporal prop-
erty being satisfied by program executions (e.g. user traces). Their approach
and results could help us determine how logging sampling in-app actions and
app configuration affects analysis of user behaviour. The work of [16] employing

Probabilistic Model Checking of DTMC Models of User Activity Patterns 15

Hidden Markov Chains models (HMMs) is related to our approach, however our
focus on capturing behavioural characteristics that are shared across a popula-
tion forces us to consider a model whose distributed representation cannot be
captured by HMMs. Finally we note the very recent work of [5] on a similar ap-
proach and comment the major differences in Sect. 4. In addition they analyse
REST architectures (each log entry corresponds to a web page access), whereas
the mobile apps we are analysing are not RESTful, we can include more fine
grained and contextual data in the logged user data.

9 Conclusions and Future Work

We have outlined our contribution to software analytics for user interactive sys-
tems: a novel approach to probabilistic modelling and reasoning over actual user
behaviours, based on systematic and automated logging and reasoning about
users. Logged user traces are computation paths from which we infer activity
patterns, represented each by a DTMC. A user meta model is deduced for each
user, which represents users as mixtures over DTMCs. We encode the user meta-
models in the probabilistic model checker PRISM and reason about the meta-
model using probabilistic temporal logic properties to express hypotheses about
user behaviours and relationships within and between the activity patterns.

We motivated and illustrated our approach by application to the Hungry
Yoshi mobile iPhone game, which has involved several thousands of users world-
wide. We showed how to encode some example questions posed by developers
and evaluators in a probabilistic temporal logic, and obtained quantitative re-
sults for an example user metamodel. After considering our formal analysis of
two activity patterns, we conclude the two activity patterns distinguish expert
behaviour from ineffective behaviour and represent different strategies about
how to play the game. While in this example the individual activity pattern
DTMCs are small in number and size, in more complex settings it will be im-
possible to gain insight into behaviours informally, and in particular to insights
into relationships between the activity patterns, so automated formal analysis
of the user metamodels will be essential.

In this paper we have focused on defining the appropriate statistical and for-
mal models, their encoding, and reasoning using model checking. We have not
explored here the types of insights we can gain into user behaviours from our
approach, nor how we can employ these in system redesign and future system de-
sign, especially for specific subpopulations of users. Further, in this short paper,
we have not considered the role of prediction from analysis and the possibili-
ties afforded by longitudinal analysis. For example, how do the activity patterns
and properties compare between users in 2009 and users in 2013? This is ongo-
ing work within the A Population Approach to Ubicomp System Design project,
where we are working with system developers on the practical application of
our formal analysis in the design and redesign of several new apps. We are also
investigating metrics of user engagement, tool support, and integration of this
work with statistical and visualisation tools.

16 Andrei et al.

Acknowledgments. This research is supported by EPSRC Programme Grant A
Population Approach to Ubicomp System Design (EP/J007617/1). The authors
thank all members of the project, and Gethin Norman for fruitful discussions.

References

1. McMillan, D., Morrison, A., Brown, O., Hall, M., Chalmers, M.: Further into the
Wild: Running Worldwide Trials of Mobile Systems. In Floréen, P., Krüger, A.,
Spasojevic, M., eds.: Proc. of Pervasive’10. Volume 6030 of LNCS., Springer (2010)
210–227

2. Hall, M., Bell, M., Morrison, A., Reeves, S., Sherwood, S., Chalmers, M.: Adapting
ubicomp software and its evaluation. In: Proc. of EICS’09, New York, NY, USA,
ACM (2009) 143–148

3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
4. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic Model Checking. In

Bernardo, M., Hillston, J., eds.: SFM. Volume 4486 of LNCS., Springer (2007)
220–270

5. Ghezzi, C., Pezzè, M., Sama, M., Tamburrelli, G.: Mining Behavior Models from
User-Intensive Web Applications. In Jalote, P., Briand, L.C., van der Hoek, A.,
eds.: Proc. of ICSE’14, ACM (2014) 277–287

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1) (1977) pp. 1–38

7. Higgs, M., Morrison, A., Girolami, M., Chalmers, M.: Analysing User Behaviour
Through Dynamic Population Models. In: Proc. of CHI’13, Extended Abstracts
on Human Factors in Computing Systems. CHI EA’13, ACM (2013) 271–276

8. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabi-
listic Real-Time Systems. In: Proc. of CAV’11. Volume 6806 of LNCS., Springer
(2011) 585–591

9. Girolami, M., Kaban, A.: Simplicial Mixtures of Markov Chains: Distributed Mod-
elling of Dynamic User Profiles. In Thrun, S., Saul, L., Schölkopf, B., eds.: Advances
in Neural Information Processing Systems 16. MIT Press, Cambridge, MA (2004)

10. Grunske, L.: Specification patterns for probabilistic quality properties. In Schäfer,
W., Dwyer, M.B., Gruhn, V., eds.: Proc. of ICSE’08, ACM (2008) 31–40

11. Menzies, T., Zimmermann, T.: Software Analytics: So What? IEEE Software 30(4)
(2013) 31–37

12. Huang, J., Zimmermann, T., Nagappan, N., Harrison, C., Phillips, B.: Mastering
the art of war: how patterns of gameplay influence skill in Halo. In Mackay, W.E.,
Brewster, S.A., Bødker, S., eds.: Proc. of CHI’13, ACM (2013) 695–704

13. Herbrich, R., Minka, T., Graepel, T.: TrueskillTM: A Bayesian skill rating system.
Proc. of NIPS’06 (2006) 569–576

14. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive soft-
ware needs quantitative verification at runtime. Commun. ACM 55(9) (2012)
69–77

15. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime Verification with State Estimation. In: Proc. of RV’11. Volume
7186 of LNCS., Springer (2011) 193–207

16. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J.: Adaptive Runtime Verification. In Qadeer, S., Tasiran, S., eds.: Proc.
of RV’12. Volume 7687 of LNCS., Springer (2012) 168–182

