Talk Outline	Background	Multilevel Network Design	Evaluation of Multilevel Architecture	Conclusion & Future Work
		000	000	
		000		

Autonomous Mobility in Multilevel Networks

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

April 21, 2011

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

▲ 同 ▶ → ミ ⇒ ▶

Talk Outline	Background	Multilevel Network Design	Evaluation of Multilevel Architecture	Conclusion & Future Work
		000	000	
		000		

Background

Autonomous Mobile Programs (AMPs)

Multilevel Network Design

Topology Design Alternatives

Evaluation of Multilevel Architecture

Effectiveness Redundant Movements

Conclusion & Future Work

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks

Autonomous Mobile Programs (AMPs)

AMPs are mobile agents

- aware of their resource needs;
- sensitive to the execution environment;
- periodically seek a better location.
- Been investigated using
 - Mobile languages (e.g. Java Voyager [DTM06])
 - Simulation [CKPT09, CKT10]
 - Theoretical analysis [CKT11]

Natalia Chechina, Peter King, and Phil Trinder

▲ □ ▶ ▲ 三 ▶ ▲

Talk Outline	Background	Multilevel Network Design	Evaluation of Multilevel Architecture	Conclusion & Future Work
		• 00 000	000 00	
Topology				

Hierarchical Tree Architecture

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

▲御 → ▲ 注→

Specific Hierarchical Tree Architecture (HA1)

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

▲ 同 トー ▲ 三 ト

Talk Outline	Multilevel Network Design 00● 000	Evaluation of Multilevel Architecture 000 00	Conclusion & Future Work
Topology			

Simulated HA1 Architecture

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

< ロ > < 回 > < 回 > < 回 > < 回 >

2

Multilevel Network Alternatives

Number of parental gateways to the nearest upper level

Figure: Single

Figure: Multiple

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks Dependable System Group, Heriot-Watt University, Edinburgh, UK

A (1) > (1) > (1)

Talk Outline	Background	Multilevel Network Design	Evaluation of Multilevel Architecture	Conclusion & Future Work
		000		
Design Alterna	atives			

Gateway and Location Alternatives

2	Gateway functions	Collecting in- formation	Executing cNAMPs and collecting information	
3	Type of information a location provides to the gateway	Available speed, com- mitted load, latency of a state message	Expected rel- ative speed, latency of a state message	Total relative speed, total load, latency of a state message
7	A gateway provides in- formation about	one node	multiple nodes	
8	A gateway chooses in- formation to pass on the basis of	maximum ex- pected relative speed	maximum rela- tive speed	minimum number of cNAMPs

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Background	Multilevel Network Design	Evaluation of Multilevel Architecture	Conclusion & Future Work
		000	000	
Design Alterna	atives			

cNAMP and Auxiliary Message Alternatives

No.	Parameters	Alternative 1	Alternative 2	Alternative 3
9	A cNAMP checks possi- bility to move to a re- mote location	every time the cNAMP recalculates parameters	only if there is no opportunity to improve exe- cution time lo- cally	according to a timer, i.e. only after a certain period
10	If a cNAMP awaits a response from a remote location then other cNAMPs from the same location	may consider movements to other locations	may NOT consider move- ments to other locations	may recalculate parameters if the number of requests is less than a certain value
11	A request moves be- tween levels	In any direction	According to some rule	

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

● ▶ ▲ ● ▶

Evaluation of Multilevel Architecture

- Network Parameters: number of levels, topologies, number of locations, speed of locations
- cNAMP Parameters: number of cNAMPs, work of cNAMPs, type of cNAMPs
- Type of Rebalancing: initial distribution, rebalancing after adding cNAMPs, rebalancing after termination cNAMPs

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks

Talk Outline	Multilevel Network Design 000 000	Evaluation of Multilevel Architecture	Conclusion & Future Work
Effectiveness			

Effectiveness: Number of Levels

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks

Dependable System Group, Heriot-Watt University, Edinburgh, UK

3

Effectiveness: Type of cNAMPs

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks

Talk Outline	Multilevel Network Design 000 000	Evaluation of Multilevel Architecture	Conclusion & Future Work
Effectiveness			

Effectiveness: Number of Locations

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks Dependable System Group, Heriot-Watt University, Edinburgh, UK

3

Talk Outline		Multilevel Network Design 000 000	Evaluation of Multilevel Architecture	Conclusion & Future Work	
Redundant Movements					

Redundant Movements: Work of cNAMPs

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Redundant Movements: *Number of Levels and Type of Distribution*

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Multilevel Network Design 000 000	Evaluation of Multilevel Architecture 000 00	Conclusion & Future Work

- Designed and implemented an architecture that supports multilevel networks
- Evaluated effectiveness of the fusion-based multilevel architecture

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Multilevel Network Design 000 000	Evaluation of Multilevel Architecture 000 00	Conclusion & Future Work

Future Work

- Design AMPs for Infrastructure-as-a-Service based Clouds
- Investigation cNAMP alternatives on multilevel networks
- Implementation cNAMPs on Wide Area Networks

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks

Talk Outline	Multilevel Network Design 000 000	Evaluation of Multilevel Architecture	Conclusion & Future Work

Questions?

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

Talk Outline	Multilevel Network Design 000 000	Evaluation of Multilevel Architecture	Conclusion & Future Work

Transfer Delay

$$T_{tr,i} = (224h + 5L + 155) \cdot 15 \cdot 10^{-6} + L_{prog} \left(\frac{1}{R_{tr}} + \frac{R_{tr}}{X \cdot 10^{13}} + \frac{\sum_{j=1}^{h} D_{rp; j} + D_{T}}{X} \right)$$
(1)

 $\begin{array}{ll} h & \text{number of hops} \\ L & a physical distance between two nodes} \\ L_{prog} & a program size in bytes \\ R_{tr} & \text{transmission rate} \\ X & a size of a packet (i.e. 1500 bytes) \\ D_{rp:j} & a router processing delay \\ D_T & \text{the time required to push all packets into the wire} \end{array}$

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK

□ > < □ >

Talk Outline	Multilevel Network Design 000 000	Evaluation of Multilevel Architecture	Conclusion & Future Work

Transfer Delay

$$T_{tr} = \sum_{i=0}^{N_{PG-1}} (2T_{tr,i}) - T_{tr,N_{PG}-1}$$
(2)

 N_{PG} is the number of the level of the nearest common parental gateway for both the initial and the target locations

Level	Distance between	Number of Hops	Total Distance
	nodes, <i>L</i> (km)	h	between locations (km)
0	1	1	1
1	1 – 15	1 – 2	3 - 17
2	10 - 65	1 – 2	14 - 96
3	55 – 200	1 – 2	79 - 362
4	160 - 440	1 – 2	294 - 1002

Table: Number of Levels vs. Distance and Hops

Natalia Chechina, Peter King, and Phil Trinder

- In *PGNet '09*, pages 201–206, Liverpool, UK, 2009.
- Natalia Chechina, Peter King, and Phil Trinder. Using negotiation to reduce redundant autonomous mobile program movements.

In IAT '10: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages 343-346, Toronto, Canada, September 2010. IEEE Computer Society.

Natalia Chechina, Peter King, and Phil Trinder. Redundant movements in autonomous mobility: Experimental and theoretical analysis.

(Submitted) Parallel and Distributed Computing, 2011.

Natalia Chechina, Peter King, and Phil Trinder Autonomous Mobility in Multilevel Networks

Talk Outline	Background	Multilevel Network Design	Evaluation of Multilevel Architecture	Conclusion & Future Work
		000	000 00	

Autonomous mobile programs.

In *IAT '06*, pages 177–186, Washington, DC, USA, 2006. IEEE Computer Society.

<ロ> < 団> < 団> < 国> < 国> < 国> < 国</p>

Natalia Chechina, Peter King, and Phil Trinder

Dependable System Group, Heriot-Watt University, Edinburgh, UK