
The Design of
Scalable Distributed (SD)

Erlang

 Natalia Chechina, Phil Trinder,

Amir Ghaffari, Rickard Green, Kenneth Lundin,
and Robert Verding

 September 1, 2012

Outline

• Background

• Motivation & Challenges

• Scalable Distributed (SD) Erlang Design

• Conclusion and Future work

2

RELEASE Project

• Aim - Scaling the radical concurrency-
oriented programming paradigm to build
reliable general-purpose software on
massively parallel machines

• Working at three levels

• Evolving the Erlang VM

• Evolving the language to Scalable
Distributed (SD) Erlang

• Developing a scalable Erlang
infrastructure

3

Erlang
• Erlang is a functional actor-based concurrent

dynamically typed general purpose
programming language

• Erlang was designed in 1986 for

• Distributed

• Fault-tolerant

• Massively concurrent

• Soft-real time systems

• Concurrency is handled by the language and
not by the operating system

4

Erlang Philosophy

• Share nothing

• Processes are isolate

• Processes do not share memory

• Variables are not reusable

• Let it Crash

• Non-defensive approach

• Processes crash

• Other processes detect and fix the
problem

5

Distributed Erlang & Motivation

6

1)Transitive connections

2)Explicit placement

Typical architecture – 105 cores

7

Location Level

Same Host Level 0

Same Cluster Level 1

Same Cloud Level 2

Another Cloud Level 3

• Commodity hardware

• Non-uniform communication

Scaling

• Persistent data structures

• Riak, Casandra – P2P key/value
database systems

• In-memory data structures

• ETS tables

• Computation

8

Challenges

•Provide scalability while preserving Erlang's
reliability mechanisms & supervision behaviours

•SD Erlang to become a part of Erlang
distribution

9

General Design Principles

• Working at Erlang level as far as possible

• Preserving the Erlang philosophy and

programming idioms

• Minimal language changes

10

Reliable Scalability Design
Principles

• Avoiding global sharing

• Avoiding explicit prescription

• Introducing an abstract notion of communication
architecture

• Keeping Erlang reliability model unchanged as
far as possible

11

SD Erlang Design Directions

• Network Scalability

• All to all connections are not scalable onto
1000s of nodes

• Aim: Reduce connectivity

• Semi-explicit Placement

• Becomes not feasible for a programmer to
be aware of all nodes

• Aim: Automatic process placement in
groups of nodes

12

Network Scalability
• Grouping nodes in Scalable groups (s_groups)

• transitive connections with nodes of the same
s_group

• non-transitive connections with other nodes

• Types of s_groups:
• Hierarchical

• Overlapping

• Partition

• Using s_group names instead of global names:
Name@Group

13

Creating an s_group

A: new_s_group(G1, [A, B, C]).

14

Overlapping Groups &
Non-transitive Connections

C: new_s_group(G2, [C, D, E]).

15

Any to Any Connection

B: spawn(E, f).

16

s_group Primitives

• Creating a new s_group
new_s_group(S_GroupName, [Node]) -> true | {error, ErrorMsg}

• Deleting an s_group

• Adding new nodes to an existing s_group

• Removing nodes from an existing s_group

• Monitoring all nodes of an s_group

• Sending a message to all nodes of an s_group

• Listing nodes of a particular s_group

• Listing s_groups that a particular node belongs to

• Connecting to an s_group

• Disconnecting from an s_group

17

s_group Abstractions

• Algorithm skeletons

• Behaviour abstractions

• s_group supervision

• s_group master/slave

• We expect the behaviours to become apparent
during the work on the case studies and
scalable infrastructure.

18

Semi-explicit placement

19

Location Level

Same Host Level 0

Same Cluster Level 1

Same Cloud Level 2

Another Cloud Level 3

1)Random
2)Load Balancing
3)…

chose_node/1

chose_node(Restrictions) -> node()

Restrictions = [Restriction]

Restriction = {s_group, S_Group}

| {min_dist, MinDist :: integer() >= 0}

| {max_dist, MaxDist :: integer() >= 0}

| {ideal_dist, IdealDist :: integer() >= 0}

start() ->
TargetNode = chose_node([{s_group, G1},
{ideal_dist, Level0}]),

spawn(TargetNode, fun() -> loop() end).

20

Conclusion
• We have presented an SD Erlang

design

• S_groups

• Transitive intra group connections

• Non-transitive (short lived) inter
group connections

• Semi-explicit placement

• We are implementing it now

21

Thank you!

Exemplar Summary

23

No Property Sim-
Diasca

Orbit Mandelb
rot

Moebius Riak

S_groups

1 Static/Dynamic Static Static Static Dynamic Dynamic

2 Grouping Locality Hash
table

Locality Multiple Preferenc
e list

3 Custom Types Yes No No Yes No

General

4 Num. of nodes
and s_groups

Ng << Nn Ng << Nn Ng << Nn Ng << Nn Ng >= Nn

5 Short lived
connections

Yes Yes No No Yes

6 Semi-explicit
placement

Yes No Yes No No

	PowerPoint Presentation
	Outline
	RELEASE Project
	Erlang
	Erlang Philosophy
	Distributed Erlang & Motivation
	Typical architecture – 105 cores
	Scaling
	Challenges
	General Design Principles
	Reliable Scalability Design Principles
	SD Erlang Design Directions
	Network Scalability
	Creating an s_group
	Overlapping Groups & Non-transitive Connections
	Any to Any Connection
	s_group Primitives
	s_group Abstractions
	Semi-explicit placement
	chose_node/1
	Conclusion
	Slide 22
	Exemplar Summary

