Outline of Talk	Aim of the Research	Simulation Model 000 00 00	Conclusion & Future Work

Simulating Autonomous Mobile Programs on Networks

Natalia Chechina

Dependable System Group, Heriot-Watt University

June 22, 2009

Natalia Chechina

Dependable System Group, Heriot-Watt University

A ►

Outline of Talk	Aim of the Research	Simulation Model 000 00 00	Conclusion & Future Work

Aim of the Research

Background

Load Balancing Autonomous Mobile Programs

Simulation Model

Homogeneous Network Heterogeneous Network Summary

Conclusion & Future Work

Dependable System Group, Heriot-Watt University

Natalia Chechina

Outline of Talk	Aim of the Research	Simulation Model 000 00 00	Conclusion & Future Work

Aim of the Research

- Obtaining a detailed map of AMP behaviour;
- Estimation AMP capabilities;
- Investigation AMP behaviour on wide area networks (WANs).

A (10) > (10) > (10)

Outline of Talk	Aim of the Research	Background ○	Simulation Model 000 00 00	Conclusion & Future Work
Load Balancing				

Taxonomy of Load Balancing Methods

Outline of Talk	Aim of the Research	Background	Simulation Model	Conclusion & Future Work
		•	00	
Autonomous Mobile	Programs			

Cost Model for AMPs

$$T_h > T_n + T_{comm} \tag{1}$$

$$T_{total} = T_{Comp} + T_{Coord} + T_{Comm}$$
 (2)

$$gran > \frac{T_{coord} \cdot S_h}{O}$$
(3)

 T_h - execution time on the current location; T_n - execution time on new location: T_{Comm} - total time for communication: T_{total} - total execution time; T_{Comp} - time for computation; T_{Coord} - total time for coordination: gran - part of work that must be executed between searches of better location;

O - overhead.

Dependable System Group, Heriot-Watt University

(ロ) (部) (E) (E)

Natalia Chechina

Outline of Talk	Aim of the Research	Simulation Model	Conclusion & Future Work

Simulation Model

- AMPs have previously been measured using mobile Java Voyager on LANs;
- A network is a fully connected graph of locations;
- At initial time all AMPs start on the first location;
- The simulation model is implemented on the OMNeT++ network simulator;
- Experiments:
 - Homogeneous network: 4 sets of experiments;
 - Heterogeneous network: 2 sets of experiments.

Simulating Autonomous Mobile Programs on Networks

Outline of Talk	Aim of the Research	Simulation Model ●00 ○○ ○○	Conclusion & Future Work
Homogeneous Networ	k		

	5 AMPs	7 AMPs	9 AMPs	10 AMPs	13 AMPs
3 Locations					
real	1/2/2	1/3/3	1/4/4	-	-
simulation	1/2/2	1/3/3	2/3/4	-	-
4 Locations					
real	-	1/2/2/2	-	1/3/3/3	1/4/4/4
simulation	-	1/2/2/2	-	1/3/3/3	2/4/4/3
5 Locations					
real	-	-	1/2/2/2/2	-	-
simulation	-	-	1/2/2/2/2	-	-

Table: Optimal Balance

	6 AMPs	5 AMPs
3 Locations		
real	1/2/3	-
simulation	1/2/3	-
2 Locs		
real	-	2/3
simulation	-	2/3

Table: Near-Optimal Balance

Natalia Chechina

Dependable System Group, Heriot-Watt University

3 x 3

A (10) > (10)

Outline of Talk	Aim of the Research	Simulation Model ○●○ ○○	Conclusion & Future Work
Homogeneous Network	<		

Adding More AMPs

Figure: Real experiments

Figure: Simulation experiments

Dependable System Group, Heriot-Watt University

Natalia Chechina

Outline of Talk	Aim of the Research	Simulation Model ○○ ○○	Conclusion & Future Work
Homogeneous Network	< c		

Removing AMPs

Figure: Real experiments

Figure: Simulation experiments

Dependable System Group, Heriot-Watt University

Simulating Autonomous Mobile Programs on Networks

Outline of Talk	Aim of the Research	Simulation Model ○○○ ○○ ○○	Conclusion & Future Work
Heterogeneous Network	<		

Heterogeneous Network

25 AMPs on 15 locations

Figure: Real experiments

Figure: Simulation experiments

Dependable System Group, Heriot-Watt University

Simulating Autonomous Mobile Programs on Networks

Outline of Talk	Aim of the Research		Simulation Model ○○○ ○● ○○	Conclusion & Future Work			
Heterogeneous Network							

Greedy effect

7% of simulation experiments show the case, when two AMPs move after each removal.

Figure: Real experiments

Figure: Simulation experiments

Dependable System Group, Heriot-Watt University

Natalia Chechina

Outline of Talk	Aim of the Research	Simulation Model	Conclusion & Future Work
Summary			

- Optimal balance. 72% of simulation and real distributions are matched.
- Near-optimal balance. Real and simulation experiments enter identical states.
- Adding AMPs. Simulation and real experiments obtain the same distribution.
- Removing AMPs:
 - all simulation experiments reach 3 of 4 balanced states;
 - ▶ 18% of simulation AMPs enter all states of real experiments.

Dependable System Group, Heriot-Watt University

Natalia Chechina

Outline of Talk	Aim of the Research	Simulation Model ○○○ ○●	Conclusion & Future Work
Summary			
_			

Heterogeneous Network

- 41% of simulation experiments states enter exactly the same set of states as real experiments;
- the greedy effect that can be observed in the real experiments, can also be seen in the simulation experiments.

Outline of Talk	Aim of the Research	Simulation Model 000 00 00	Conclusion & Future Work

Conclusion & Future Work

Conclusion: other than a small number of explainable deviations our current simulation is an effective model of AMPs on LANs. Hence, we are confident about using the model as the basis for further experiments, e.g. on simulated wide area networks.

Future work:

- Analysing the greedy effect.
- Investigation larger networks with different costs of reacting remote locations.

Outline of Talk	Aim of the Research	Simulation Model 000 00 00	Conclusion & Future Work

Questions?

Natalia Chechina

- ・ロト・日ト・モト・モト モー めん(

Dependable System Group, Heriot-Watt University

Outline of Talk	Aim of the Research	Background	Simulation Model	Conclusion & Future Work

T. L. Casavant and J. G. Kuhl.

A taxonomy of scheduling in general-purpose distributed computing systems.

IEEE Trans. Softw. Eng., 14(2):141-154, 1988.

🔋 H. G. Rotithor.

Taxonomy of dynamic task scheduling schemes in distributed computing systems. IEE Proceedings Computers & Digital Techniques,

141(1):1–10, January 1994.

Natalia Chechina