Performance Portability through Semi-explicit Placement in Distributed Erlang

Phil Trinder

Performance Portability through Semi-explicit Placement in Distributed Erlang

Phil Trinder

RELEASE

edf

Scaling

VM

Language

Tools

Language

Small network -- Fine!

Structured network -- Great!

Semi-explicit Placement

A programmer provides some critetia, and the rest is decided during the runtime

- Node attributes
- Communication distances

Node Attributes

Static

- OS type and version
- Available RAM
- · Number of cores per VM
- Hardware features
- Software features
- Access to shared file systems
- ...

Dynamic

- · Load on the machine
- · Number of processes in the VM
- Available memory
- Types of running processes
- ...

Static

- OS type and version
- Available RAM
- Number of cores per VM
- Hardware features
- Software features
- Access to shared file systems

• ...

Dynamic

- Load on the machine
- Number of processes in the VM
- Available memory
- Types of running processes

• ...

Attributes

```
[{num_cpus, 4},
{hyperthreading, 2},
{cpu_speed, 2994.655},
{mem_total, 3203368},
{os, "Linux"},
{kernel_version, {3,11,0,12}},
{num_erlang_processes, {dynamic, {erlang, system_info, [process_count]}}].

{attr_server,Node} ! {self(), {report,Key,AttrNames}}.

attr:request_attrs (Nodes, AttrNames)

attr: choose_nodes(Nodes, [{cpu_speed, ge, 2000},
{loadavg5, le, 0.6},
{vm_num_processors, ge, 4}])

%% usual six comparison operators: eq, ne, lt, le, gt, and ge.
```

ACO

Ant Colony Optimization

Related Problems:

- Traveling Salesman Problem
- Vehicle Routing

Experimental Validation

Attribute Propagation Strategy

- · On request
- Broadcasting

Request info from VM and OS

Types

- Built-in
- Customized

Combining with SD Erlang s_groups

- s_group:own_nodes/0
- s_group:own_s_groups/0
- global:own nodes/0

Communication Distances

$$d: X \times X \to \mathbb{R}^+ = \{x \in \mathbb{R} : x \ge 0\}$$

(i)
$$d(x, y) = 0$$
 if and only if $x = y$

(ii)
$$d(x,y) = d(y,x)$$

(iii)
$$d(x, z) \le d(x, y) + d(y, z)$$

$$[d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 2^{-\ell(x,y)} & \text{if } x \neq y. \end{cases}$$

$$d(b,k) = 2^{-0} = 1$$

Measurements

Heriot-Watt cluster

Athos cluster

Future Work

- Concrete and abstract bounds
- Conflicting constraints
- Avoiding clashes when spawning processes
- Fault tolerance
- Dynamic changes to network structure

Sources

Portability Libraries

https://github.com/release-project/portability-libs

ACO

https://github.com/release-project/benchmarks/tree/master/ACO

RELEASE

http://www.release-project.eu/

SD Erlang

http://www.dcs.gla.ac.uk/research/sd-erlang/

Performance Portability through Semi-explicit Placement in Distributed Erlang

Phil Trinder

