
JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 1

Evaluating Scalable Distributed Erlang for
Scalability and Reliability

Natalia Chechina, Kenneth MacKenzie, Simon Thompson, Phil Trinder,
Olivier Boudeville, Viktória Fördős, Csaba Hoch, Amir Ghaffari, Mario Moro Hernandez.

Abstract—Large scale servers with hundreds of hosts and tens of thousands of cores are becoming common. To exploit these
platforms software must be both scalable and reliable, and distributed actor languages like Erlang are a proven technology in this area.
While distributed Erlang conceptually supports the engineering of large scale reliable systems, in practice it has some scalability limits
that force developers to depart from the standard language mechanisms at scale. In earlier work we have explored these scalability
limitations, and addressed them by providing a Scalable Distributed (SD) Erlang library that partitions the network of Erlang Virtual
Machines (VMs) into scalable groups (s groups).
This paper presents the first systematic evaluation of SD Erlang s groups and associated tools, and how they can be used. We
present a comprehensive evaluation of the scalability and reliability of SD Erlang using three typical benchmarks and a case study. We
demonstrate that s groups improve the scalability of reliable and unreliable Erlang applications on up to 256 hosts (6144 cores). We
show that SD Erlang preserves the class-leading distributed Erlang reliability model, but scales far better than the standard model. We
present a novel, systematic, and tool-supported approach for refactoring distributed Erlang applications into SD Erlang. We outline the
new and improved monitoring, debugging and deployment tools for large scale SD Erlang applications. We demonstrate the scaling
characteristics of key tools on systems comprising up to 10K Erlang VMs.

Index Terms—Scalability, Reliability, Actors, Erlang.

F

1 INTRODUCTION

CHANGES in hardware manufacturing technologies are
driving systems to include ever more cores. Servers

comprising hundreds of commodity hosts with tens of thou-
sands of cores in total are becoming commonplace. Expe-
rience with high performance and data centre computing
shows that reliability is critical at these scales, e.g. host
failures alone account for around one failure per hour on
commodity servers with approximately 105 cores [BCH13].

Distributed actor languages and frameworks like Er-
lang [Arm13], [CT09] or Scala/Akka [O+12] are proven
technologies for reliable scalable computing. The key inno-
vation in actor languages and frameworks is to isolate state:
that is, actors do not share state with each other but rather
exchange information using asynchronous messages.

In Erlang actors are called processes, and their isolated
state means that they may fail with minimal disruption
to concurrent processes. Moreover one process may super-
vise other processes, detecting failures and taking remedial
action, e.g. restarting the failed process. Distributed Erlang
deploys processes across multiple Erlang Virtual Machines
(VMs or nodes) potentially on different hosts. In distributed
Erlang fault tolerance is provided by global process registra-
tion, where the name of a server process is registered, and if
the process fails a new server process can be spawned and

• N. Chechina and K. MacKenzie, University of Glasgow, UK.
E-mail: see http://www.release-project.eu/

• S. Thompson, University of Kent, UK.
• P. Trinder, University of Glasgow, UK.
• O. Boudeville, EDF R&D, France.
• V. Fördős and C. Hoch, Erlang Solutions AB, Hungary.
• A. Ghaffari and M. Moro Hernandez, University of Glasgow, UK.

Manuscript received April 27, 2016; revised XX XX, 2016.

re-associated with the name. This allows systems to adopt a
“let it crash” philosophy, where a process is written to deal
with the common error-free case, and failure is handled by
the supervising process.

While distributed Erlang conceptually supports the en-
gineering of scalable reliable systems, in practice it has
some scalability limits that force developers to depart from
the standard language mechanisms when programming at
scale [CLG+16]. Scalability is limited by two main factors.
Firstly, maintaining a fully connected mesh of Erlang nodes
means that a system with n nodes must maintain O(n2)
active TCP/IP connections and this induces significant net-
work traffic above 40 nodes. Secondly, maintaining a global
process namespace incurs high synchronisation and com-
munication costs (Section 3).

In prior work we have addressed these scalability issues
by providing a Scalable Distributed (SD) Erlang library
that partitions the network of Erlang nodes into scalability
groups (s groups). An s group reduces the number of con-
nections a node maintains by supporting full mesh connec-
tions only to other nodes within the s group, and pairwise
connections to nodes outside the s group. S groups reduce
the amount of global information, as process names can be
registered only in the nodes of the s group, rather than
globally. We discuss the motivation for, design of, and
implications of s groups further in Section 3.

This paper presents the first comprehensive evaluation
of SD Erlang s groups and associated tool support, together
with guidance about how those constructs and tools can best
be used. We argue that s groups preserve the distributed
Erlang approach to reliability while improving scalability.
We start by outlining the Orbit, ACO and IM benchmarks

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 2

and the substantial (approx. 150K lines of code) Sim-Diasca
case study used to evaluate SD Erlang and demonstrate how
the tools are used (Section 4), before presenting the primary
research contributions as follows.

(1) We present a systematic and comprehensive evalua-
tion of the scalability and reliability of SD Erlang (Section 5).
We measure three benchmarks and the case study on several
platforms, but the primary platform is a cluster with up to
256 hosts and 6144 cores.

The benchmarks evaluate different aspects of SD Er-
lang: Orbit evaluates the scalability impact of transitive
network connections, ACO evaluates the scalability impacts
of both transitive connections and maintaining a global
namespace for reliability, and IM targets reliability. The
experiments cover three application-specific measures of
scalability: speedup for Orbit, weak scaling for ACO, and
throughput for IM.

Crucially we show that s groups improve the scalability
of both reliable and unreliable distributed Erlang applica-
tions (Section 5.2); and use Chaos Monkey [Tse13] to show
that SD Erlang preserves Erlang’s leading reliability model
(Section 5.4). While some scalability and reliability results
for the ACO and Orbit benchmarks have been reported
in a paper that outlines all of the results of the RELEASE
project [TCP+16], this paper focuses on SD Erlang and
describes 9 additional experiments with it, provides a more
detailed analysis, and additional evidence from the IM
benchmark and the Sim-Diasca case study to support the
conclusions.

(2) We present guidance for the construction of SD Er-
lang systems, through a set of questions that identify key
design decisions; these support construction of SD Erlang
systems from scratch as well as for refactoring distributed
Erlang applications into SD Erlang. This approach is built
a suite of new or improved tools for monitoring, debug-
ging, deploying and refactoring SD Erlang applications
(Section 6).

(3) We demonstrate the capability of the tools, for exam-
ple showing that WombatOAM is capable of deploying and
monitoring substantial (e.g. 10K Erlang VMs) distributed Er-
lang and SD Erlang applications with negligible overheads
(Section 6.8).

2 RELATED WORK

2.1 Scalable Reliable Programming Models
There is a plethora of shared memory concurrent program-
ming models like PThreads or Java threads, and some
models, like OpenMP [CDK+01], are simple and high level.
However, synchronisation costs mean that these models
generally do not scale well, often struggling to exploit
even 100 cores. Moreover, reliability mechanisms are greatly
hampered by the shared state: for example, a lock becomes
permanently unavailable if the thread holding it fails.

The High Performance Computing (HPC) commu-
nity build large-scale (106 core) distributed memory sys-
tems using the de facto standard MPI communication li-
braries [SOW+95]. Increasingly these are hybrid applica-
tions that combine MPI with OpenMP. Unfortunately MPI
is not suitable for producing general purpose concurrent
software as it is too low level with explicit, synchronous

message passing. Moreover the most widely used MPI
implementations offer no fault recovery: if any part of the
computation fails, the entire computation fails. Currently,
the issue is addressed by using what is hoped to be highly
reliable computational and networking hardware, but there
is intense research interest in introducing reliability into
HPC applications [GC15].

Server farms use commodity computational and net-
working hardware, and often scale to around 105 cores,
where host failures are routine. They typically perform
rather constrained computations, e.g. big data analytics,
using reliable frameworks like Google MapReduce [DG08]
or Hadoop [Whi10]. The idempotent nature of the analyt-
ical queries makes it relatively easy for the frameworks
to provide implicit reliability: queries are monitored and
failed queries are simply re-run. In contrast, actor languages
like Erlang are used to engineer reliable general purpose
computation, often recovering failed stateful computations.

2.2 Actor Languages
The actor model of concurrency consists of independent
processes communicating by means of messages sent asyn-
chronously between processes. A process can send a mes-
sage to any other process for which it has the address
(in Erlang the “process identifier” or pid), and the remote
process may reside on a different host. The notion of actors
originated in artificial intelligence [HBS73], and has been
used widely as a general metaphor for concurrency, as well
as being incorporated into a number of niche programming
languages in the 1970s and 80s. More recently it has come
back to prominence through the appearance not only of
multicore chips but also larger-scale distributed program-
ming in data centres and the cloud.

With built-in concurrency and data isolation, actors are a
natural paradigm for engineering reliable scalable general-
purpose systems [Hew10]. The model has two main con-
cepts: actors, which are the unit of computation, and mes-
sages, which are the unit of communication. Each actor has
an address-book that contains the addresses of all the other
actors it is aware of. These addresses can be locations in
memory, or direct physical attachments, or network ad-
dresses. In a pure actor language messages are the only way
for actors to communicate.

After receiving a message an actor can do the following:
(i) send messages to another actor in its address-book, (ii)
create new actors, or (iii) designate a behaviour to handle
the next message it receives. The model does not impose
any restrictions in the order in which these actions must
be taken. Similarly, two messages sent concurrently can be
received in any order. These features enable actor based
systems to support indeterminacy and quasi-commutativity,
while providing locality, modularity, reliability and scalabil-
ity [Hew10].

Erlang [Arm13], [CT09] is widely used to develop re-
liable and scalable production systems, initially with its
developer Ericsson and then more widely through open
source adoption. There are now actor frameworks for
many other languages; these include Akka for C#, F# and
Scala [HS12], CAF [web16a] for C++, Pykka [J+16], Cloud
Haskell [EBPJ11], PARLEY [L+10] for Python and Termite
Scheme [Ger06], and each of these is currently under active

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 3

use and development. Moreover, the recently defined Rust
language [web16b] has a version of the actor model built in,
albeit in an imperative context.

2.3 Reliability in Distributed Erlang Systems

Erlang was designed to solve a particular set of prob-
lems, namely those in building telecommunications sys-
tems, where systems need to be scalable to accommodate
hundreds of thousands of calls concurrently, in soft real-
time. These systems need to be highly-available and reliable:
i.e. to be robust in the case of failure, which can come from
software or hardware faults. Given the unavoidability of
the latter, Erlang also adopts the “let it crash” philosophy
in error situations, and uses the supervision mechanism,
discussed shortly, to handle all kinds of faults.

Scaling in Erlang is provided in two different ways.
It is possible to scale within a single node by means of
the multicore Erlang VM which exploits the concurrency
provided by the multiple cores. It is also possible to scale
across multiple hosts using multiple distributed Erlang nodes.
In this paper we only address the latter.

Reliability in Erlang is multi-faceted. As in all actor lan-
guages each process has private state, preventing a failed or
failing process from corrupting the state of other processes.
Messages enable stateful interaction, and contain a deep
copy of the value to be shared, with no references (e.g.
pointers) to the senders’ internal state. Moreover, Erlang
avoids type errors by enforcing strong typing, albeit dy-
namically [Arm13]. Connected nodes check liveness with
heartbeats, and can be monitored from outside Erlang, e.g.
by an operating system process.

However, the most important way to achieve reliability
is supervision, which allows a process to monitor the status
of a child process and react to any failure, for example by
spawning a substitute process to replace a failed process.
Supervised processes can in turn supervise other processes,
leading to a supervision tree. In a multi-node system the tree
may span multiple nodes.

A global namespace maintained on every node maps
process names to pids to provide reliable distributed service
registration, and this is what we mean when we talk about
a reliable system: it is one in which a named process in a
distributed system can be restarted without requiring the
client processes also to be restarted (because the name can
still be used for communication).

To see global registration in action, consider spawning a
server process on an explicitly identified node (some_node)
and then globally registering it using some_server name

RemotePid = spawn(some_node, fun () ->
some_module:some_fun() end),

global:register_name(some_server,RemotePid).

Clients of the server process can send messages to the
registered name, e.g.

global:whereis_name(some_server) ! ok.

If the server fails the supervisor can spawn a replacement
server process with a new pid and register it with the
same name (some_server). Thereafter client messages ad-
dressed to the some_server name will be delivered to the

new server process. We discuss the scalability limitations of
maintaining a global namespace further in Section 3.1.

3 SCALING DISTRIBUTED ERLANG

In this section we first discuss the scaling limitations of
distributed Erlang (Section 3.1) and currently adopted ad
hoc solutions (Section 3.2). Then we provide an overview of
the SD Erlang approach to scaling distributed systems called
s groups (Section 3.3).

3.1 Scalability Issues
The scalability limitations of distributed Erlang are mainly
due to the two mechanisms that support fault tolerance,
namely transitive connections and global processes registra-
tion [CLG+16], [TCP+16]. Global name registration depends
on the transitivity; therefore, when the latter is disabled with
the -connect_all false flag, global name registration is
not available either.

Transitive connectivity connects all normal (not hidden)
nodes in the system. This happens “under the hood” and
the information about live and lost connections is kept up-
to-date. As a result the system can avoid sending mes-
sages to, or expecting messages from, disconnected nodes
and automatically adjust to the changed number of nodes.
Therefore, apart from fault tolerance, transitivity also pro-
vides elasticity, i.e. seamless growth or contraction of the
number of nodes in the system. However, full connectivity
means that the total number of connections in the system is
n(n−1)/2, and every node supports (n−1) connections. In
addition every connection requires a separate TCP/IP port,
and node monitoring is achieved by periodically sending
heartbeat messages. In small systems maintaining a fully
connected network is not an issue, but when the number of
nodes grows a fully connected network requires significant
resources becoming a burden that worsens the performance.

Global process registration enables one to associate a pro-
cess with a name and replicate this information on all
transitively connected nodes creating a common namespace.
However, as the number of nodes or the failure rate of
registered processes grow, global name registration has a
significant impact on network scalability [CLG+16].

3.2 Ad Hoc Approaches
A straightforward approach to eliminating scalability lim-
itations caused by transitive connections and global pro-
cess registration is to disable transitive connectivity; cur-
rently, this is the main approach used in industrial ap-
plications [Spi14]. However, when adapting this approach,
either applications lose the fault-tolerance that comes with
transitivity and shared namespace, or developers introduce
their own libraries which provide features resembling tran-
sitivity and shared namespace but restricted to a particular
connectivity mechanism. These libraries usually have very
limited reusability due to the mechanisms being specialised
for a particular application.

Another approach is to use Erlang/OTP global groups
that partition a set of nodes. Nodes within the global group
have transitive connections, and non-transitive connections
with nodes outside of the global group. Each global group
has its own namespace. The drawback is that the approach

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 4

is limited to the cases when the network can be parti-
tioned. As a result although global groups are available in
Erlang/OTP they are not widely used.

3.3 SD Erlang and S groups
Scalable Distributed Erlang (SD Erlang) is a conservative
extension of distributed Erlang. It was introduced to pro-
vide a reusable solution that overcomes scalability limita-
tions posed by both transitive connectivity, global names-
pace, and a lack of resource awareness, while preserving
fault tolerance mechanisms of distributed Erlang. This was
achieved by introducing two new libraries: (1) attribute
that provides semi-explicit process placement [MCT15], and
s_group that partitions the node connection graph into
s groups [CLG+16]. SD Erlang has been available with sev-
eral releases of Erlang/OTP, and is likely to remain available
in the medium term as the Erlang/OTP group at Ericsson
indicate no near future plans to change the mechanisms that
the s_group libraries rely on.

To reduce the number of connections and the size of
the namespace, nodes are grouped into s groups. Nodes in
s groups have transitive connections with nodes from the
same s group, non-transitive connections with other nodes,
and each s group has its own namespace. The s groups
do not partition the set of nodes, i.e. a node can belong
to many s groups facilitating the construction of connec-
tion topologies appropriate for different application needs.
For example, nodes can be assembled into hierarchical
s groups, where communication between nodes from dif-
ferent s groups occurs only via gateway nodes. To provide
fault-tolerance s groups may have two or more gateway
nodes.

S group functionality is supported by 15 functions,
8 of which manipulate s groups, including dynamic
creation of new s groups (s_group:new_s_group/1,2)
and getting information about known s groups
(s_group:s_groups/0), and the remainder manipulate
names registered in the groups, like registering a name
(s_group:register_name/2) and getting information
about all names registered in a particular s group
(s_group:registered_names/2). More details can
be found in [CLG+16].

For example, the following function creates an s group
called some_s_group that consists of three nodes:

s_group:new_s_group(some_s_group,
[some_node, some_node_1, some_node_n]).

To register a name, we provide both a pid and also the name
of the s group in which we want to register that name;

s_group:register_name(some_s_group,
some_server, RemotePid).

The s group name is also required when sending a message
to a process using its name:

s_group:whereis_name(some_s_group,
some_server) ! ok.

4 BENCHMARKS AND A CASE STUDY

To evaluate the performance of SD Erlang we use three
benchmarks, named Orbit (Section 4.1), Ant Colony Opti-
misation (ACO, Section 4.2), and Instant Messenger (IM,

Fig. 1. Communication Model in SD Erlang Orbit

Section 4.3), and a case study (Sim-Diasca, Section 4.4).
The benchmark code is open source at https://github.com/
release-project/benchmarks.

Each benchmark corresponds to a typical class of Erlang
applications as follows. Orbit employs a Distributed Hash
Table (DHT) of the type used in replicated form in No-SQL
DBMS like Riak [Bas14], implemented in Erlang. ACO is
a large search, similar to the Erlang Sim-Diasca simulation
framework [EDF10]. IM is a simplified version of a very typ-
ical internet-scale Erlang application, namely a chat service
like WhatsApp [Wha15].

4.1 Orbit

Orbit is a generalization of a transitive closure computation,
and is a common pattern in algebraic computations [LN01].
To compute the Orbit of an element x0 in a given space
[0..X], a number of generator functions g1, g2, ..., gn are ap-
plied to x0, obtaining new elements x1, . . . , xn ∈ [0..X]. The
generator functions are applied to the new elements until no
new element is generated.

The computation is initiated on the master node. Then
processes are spawned to worker nodes to explore the space
and populate the DHT maintained by the worker nodes. In
the distributed Erlang version of Orbit the master node is
directly connected to the worker nodes, so it is enough to
hash xn once to determine the target node that keeps the
corresponding part of the DHT. In the SD Erlang version
of Orbit the worker nodes are partitioned (Figure 1) and
the master node functionality is shared with the submaster
nodes which also perform the routing between the s groups;
therefore, to define the target node, xn is hashed twice – the
first hash defines the s group, and the second hash defines
the worker node in that s group.

4.2 Ant Colony Optimisation (ACO)

Ant Colony Optimisation (ACO) [DS04] is a metaheuristic
which is used for solving combinatorial optimisation prob-
lems. Our implementation is specialised to solve a schedul-
ing problem called the Single Machine Total Weighted Tar-
diness Problem [McN59]. In the basic single-colony ACO
algorithm, a number of agents called ants independently
construct candidate solutions guided by problem-specific
heuristics with occasional random deviations influenced
by a structure called the pheromone matrix which contains

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 5

Fig. 2. Two-Level Distributed ACO

information about choices of paths through the solution
space which have previously led to good solutions. After
all of the ants have produced solutions, the best solution
is selected and used to update the pheromone matrix. A
new generation of ants is then created which constructs
new solutions guided by the improved pheromone matrix,
and the process is repeated until some halting criterion is
satisfied: in our implementation, the criterion is that some
fixed number of generations have been completed. The
algorithm is naturally parallelisable, with one process for
each ant in the colony. Increasing the amount of parallelism
(i.e. the number of ants) does not lead to any speedup, but
does lead to an improvement in the quality of the solution.

In the distributed setting, one can have several colonies
(in our implementation, one colony per Erlang node) which
occasionally share pheromone information. In addition to
increasing the number of ants exploring the solution space,
distribution also gives the possibility of having colonies
with different parameters: for example, some colonies might
have more randomness in their search, making it easier to
escape from locally-optimal solutions which are not globally
optimal.

We have implemented four variations on the multi-
colony ACO algorithm. In each of these, the individual
colonies perform some number of local iterations (i.e. gen-
erations of ants) and then report their best solutions; the
globally-best solution is then selected and is reported to the
colonies, which use it to update their pheromone matrices.
This process is repeated for some number of global iterations.
Our four versions are as follows.

Two-level ACO (TL-ACO). There is a single master
node which collects the best solutions from the individual
colonies and distributes the overall best solution back to
the colonies. Figure 2 depicts the process and node place-
ments of the TL-ACO in a cluster with NC nodes. The
master process spawns NC colony processes on available
nodes. In the next step, each colony process spawns NA ant
processes on the local node. In the figure, the objects and
their corresponding captions have the same colour. As the
arrows show, communications between the master process
and colonies are bidirectional.

Multi-level ACO (ML-ACO). In TL-ACO, the master node
receives messages from all of the colonies, and thus could
become a bottleneck. ML-ACO addresses this by having a
tree of submasters (Figure 3), with each node in the bottom
level collecting results from a small number of colonies.
These are then fed up through the tree, with nodes at higher

Fig. 3. Multi Level Distributed ACO

levels selecting the best solutions from among a number of
their children.

Globally Reliable ACO (GR-ACO). This adds fault-
tolerance using functions from Erlang’s global module. In
ML-ACO, if a single colony fails to report back the whole
system will wait indefinitely. GR-ACO adds supervision so
that faulty colonies can be detected and restarted, allowing
the system to continue its execution.

Scalable Reliable ACO (SR-ACO). This also adds fault-
tolerance, but using SD Erlang’s s groups instead of the
global methods. In addition, in SR-ACO nodes are only
connected to the nodes in their own s group.

4.3 Instant Messenger (IM)

An Instant Messenger (IM) is a server application
where clients exchange messages via servers like What-
sApp [Wha15]. The IM requirements include both non-
functional aspects such as scalability, reliability, network topol-
ogy or security and functional aspects on how the service
must be delivered and how the different entities interact
with each other [DRS00], [AVMD00]. In general, an IM
server application provides two services: presence and in-
stant messaging. The first allows the clients to be aware
of their contacts’ status, whereas the second enables the
exchange of messages with other clients. Although we have
implemented the IM benchmark only to evaluate scalability
of a typical distributed Erlang application, the server part
meets all of the requirements above apart from security and
encryption [HCT15]. We have implemented the following
two versions.

Reliable Distributed IM (RD-IM) is implemented in dis-
tributed Erlang where reliability is supported by supervi-
sion, global name registration of all processes that maintain
databases, and replication of these databases. Therefore,
when a database process fails it is restarted by a corre-
sponding supervising process (Figure 5). The table is then
populated from a copy kept on a different node. In the
meantime the data can be obtained from a replica. After
the recovery process finishes the table can be accessed using
the same globally registered name.

Reliable Scalable Distributed IM (RSD-IM) is implemented
in SD Erlang with the same reliability mechanism as in RD-
IM. The only difference is that in RSD-IM the names are
registered in corresponding s groups rather than globally.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 6

(a) Distributed Erlang (b) SD Erlang

Fig. 4. Connections in IM Server

Figure 4 compares the node connection in RD-IM and
RSD-IM. Connections to the client nodes in both versions
are hidden and non-transitive to facilitate comparison of the
distributed and SD Erlang servers. Unlike the previous two
case studies the IM benchmark was specifically designed
to evaluate SD Erlang fault tolerance in comparison with
the distributed Erlang one. For that, we have implemented
the rhesus module to terminate various processes, and
performed minimal refactoring such that the two versions
even have identical supervision trees (Figure 5).

The rhesus module (named after the rhesus macaque) is
a modification of Chaos Monkey [Tse13] that we designed
specifically to accommodate requirements of the IM ap-
plication. For example, the Erlang/OTP version of Chaos
Monkey [Lun16] does not differentiate between the types of
process which means that all processes have equal chances
to be terminated. Since the most frequent processes in the
IM are client monitors and chat sessions the rest of
the processes have very low chances of termination, which is
not suitable for the current study. To overcome that we have
introduced weighted termination probability for all types of
IM processes and user-defined termination time.

The traffic for client communication is provided by
traffic generators that simulate real-life conversations and
associated parameters, such as time to type messages and
lengths of conversations [XGT07]. A traffic generator ran-
domly picks two clients A and B, and sends client A a
request to start a conversation with client B. Then client A
generates a random string and sends the message to client
B. When client B receives the message, it generates a reply
message (again a random string), simulates the typing time,
and sends the message to client A. The number of messages
in the conversation is random, and defined at the beginning
of the conversation.

Fig. 5. IM Supervision Hierarchy. The Arrows Indicate Supervision

4.4 Sim-Diasca

Sim-Diasca (Simulation of Discrete Systems of All Scales)
is a discrete simulation engine developed by EDF R&D
in Erlang. Sim-Diasca has been available as free software
since 2010 under the GNU LGPL licence [EDF10]. Its ob-
jectives are to evaluate correctly the models involved in a
simulation, and preserve key properties like causality, total
reproducibility and some kind of “ergodicity”, i.e. a fair
exploration of the possible outcomes of the simulation.

Using the requested simulation frequency, Sim-Diasca
splits the simulated time into a series of time steps, au-
tomatically skipping those that can be omitted, and re-
ordering the inter-model messages so that properties like
reproducibility are met. Causality resolution requires time
steps to be further divided into as many logical moments
(called diascas) as needed. During a given diasca, all model
instances that must be scheduled are evaluated concurrently.
However, this massive parallelism can only occur between
two (lightweight) distributed synchronisations.

The City simulation example (approx. 10K lines of Er-
lang code) has been designed to provide an open, share-
able, tractable yet representative use case of Sim-Diasca
for benchmarking purposes. As Sim-Diasca is a simulation
engine we need to define a simulation instance to create
a benchmark. The simulation attempts to represent a few
traits of a city, such as a waste management and the weather
system.

The City example is potentially arbitrarily scalable in
terms of both duration and size: there are bounds neither
to the duration in virtual time during which the target
city can be evaluated, nor to its size. Therefore, the City
example can be used to benchmark arbitrarily long and
large simulations, reflecting the typical issues that many
real-world simulations exhibit, such as sequential phases
and new bottlenecks as the scale increases.

5 PERFORMANCE EVALUATION

In this section we first provide a brief overview of the
clusters we used in the experiments (Section 5.1), and then
address the following research questions by measuring the
performance of the benchmarks discussed in Section 4. RQ1
Does SD Erlang scale better than distributed Erlang for
applications with no reliability requirement (Section 5.2),
and if so why (Section 5.3)? RQ2 Can SD Erlang preserve
the Erlang supervision-based reliability model despite par-
titioning the set of nodes (Section 5.4)? RQ3 Does SD Erlang

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 7

TABLE 1
Cluster Specifications

Name Hosts Cores
per
host

Max
hosts
(cores)
avail.

Hardware RAM
per
host,
GB

Inter-
connect.

GPG 20 16 20
(320)

Intel Xeon
E5-2640v2
8C, 2GHz

64 10GB
Ethernet

Kalkyl 384 8 176
(1,408)

Intel Xeon
5520v2 4C,
2.26GHz

24–
72

InfiniBand
20 Gb/s

TinTin 160 16 140
(2,240)

AMD
Opteron
6220v2
Bulldozer
8C, 3.0 GHz

64–
128

2:1 over-
subscribed
QDR In-
finiBand

Athos 776 24 256
(6,144)

Intel Xeon
E5-2697v2
12C, 2.7GHz

64 InfiniBand
FDR14

scale better than distributed Erlang for reliable applications
(Section 5.2), and if so why (Section 5.3)?

The benchmarks evaluate different aspects of s groups:
Orbit evaluates the scalability impacts of network connec-
tions, ACO evaluates the impact of both network connec-
tions and the global namespace required for reliability, and
IM targets reliability.

Moreover the experiments cover three measures of scal-
ability. As Orbit does a fixed size computation, the scaling
measure is relative speedup (or strong scaling), i.e. speedup
relative to execution time on a single core. As the work in
ACO increases with the compute resources, weak scaling
is the appropriate measure. As IM is a messaging system,
scalability is measured as maximum throughput (messages
per minute).

The experiments are conducted using Erlang/OTP 17.4
and its SD Erlang modification. Complete descriptions of all
experiments on the benchmarks and case study are available
in [REL15b], [CMHT16].

5.1 Cluster Specifications
The primary experiments presented in this paper were con-
ducted on the following two clusters: Athos (EDF, France)
and GPG (Glasgow University, UK). Additional experiments
on Kalkyl and TinTin clusters (Uppsala University, Sweden)
presented elsewhere [REL15b] confirm the results presented
here. The configuration of the clusters is provided in Table 1.

5.2 Scalability
The scalability evaluation is conducted on the Athos cluster
(Table 1). To run the experiments we had simultaneous
access to up to 256 nodes (6144 cores) for up to 8 hours
at a time.

5.2.1 Orbit
In the implementation of Orbit no global operations were
used which means the main difference between distributed
Erlang (D-Orbit) and SD Erlang (SD-Orbit) versions of Orbit
is due to the number of connections maintained by nodes.
Assume the total number of nodes is N . Then D-Orbit has
1 master node and N − 1 worker nodes; therefore, every
node maintains N − 1 connections. SD-Orbit also has 1
master node but in addition it has S submaster nodes.

 0

 100

 200

 300

 400

 0 50(1200) 100(2400) 150(3600) 200(4800) 256(6144)

R
el

at
iv

e
sp

ee
d
u
p

Number of nodes (cores)

2M elements 3M elements 4M elements 5M elements

(a) D-Orbit

 0

 100

 200

 300

 400

 0 50(1200) 100(2400) 150(3600) 200(4800) 256(6144)

R
el

at
iv

e
sp

ee
d
u
p

Number of nodes (cores)

2M elements 3M elements 4M elements 5M elements

(b) SD-Orbit

Fig. 6. Orbit Relative Speedups in SDErl-17.4

If we assume that all s groups have the same number of
worker nodes (Figure 1), then the number of worker nodes
per s group is k = (N − 1)/S − 1, where N and S are
such that k ∈ N>0. Therefore, the number of connections
maintained by the nodes is as follows: the master node
maintains S connections, every submaster node maintains
(N − 1)/S + S − 1 connections, and every worker node
maintains (N − 1)/S − 1 connections.

Figure 6 shows D-Orbit and SD-Orbit speedup depend-
ing on the number of orbit elements, which vary between
2 · 106 and 5 · 106. The speedup is a ratio between execution
time on one node with one core and the execution time on
the given number of nodes and cores. The execution time
does not include the time required to start the nodes but
only the time taken by the Orbit calculation. For each of
the experiments we plot standard deviation. The speedup
results show that as we increase the number of nodes the
performance of D-Orbit first grows but then starts degrad-
ing (Figure 6(a)). This trend is not observed in the corre-
sponding SD-Orbit experiments (Figure 6(b)). In addition
when we increase the number of orbit elements beyond
5 · 106, D-Orbit fails due to the fact that some VMs exceed
the available RAM of 64GB. However, we did not experience
this problem when running SD-Orbit experiments even with
60 · 106 orbit elements.

5.2.2 ACO
The ACO community commonly evaluates the quality of
ACO implementations using a set of benchmarks whose
optimal solutions are known, and then runs a program on

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 256

M
e
a
n
 e

rr
o
r

(%
)

Number of colonies

Fig. 7. ACO Mean Error

 1.5

 1.7

 1.9

 2.1

 2.3

 0 50 100 150 200 256

M
e
a
n
 e

x
e
c
u
ti

o
n
 t

im
e
 (

s)

Number of colonies

Fig. 8. ACO Weak Scaling to 256 Hosts, 6144 Cores

them for some fixed number of iterations and observes how
close the program’s solutions are to the optimal ones. We
apply the strategy used in [dBSD00], [MM00] to our TL-
ACO (two-level ACO).

We ran the TL-ACO application on 25 hard SMTWTP
instances of size 100 described in [Gei10, 3.2], gradually
increasing the number of colonies, each on a different node,
from 1 to 256. Figure 7 shows the mean difference in cost
between our solutions and the optimal solutions: it is clear
that increasing the number of colonies increases the quality
of solutions, although the trend is not strictly downwards
because the random nature of the ACO algorithm means
that repeated runs with the same input may produce differ-
ent solutions.

Weak scaling is the appropriate performance measure for
ACO where the amount of work increases with the compute
resources to gain improved solutions. Figure 8 shows the
weak scaling of ACO, plotting mean execution time against
the number of colonies, and hence hosts. We see an upward
trend due to increasing amounts of communication and the
increasing time required to compare incoming results. This
is typical of the scaling graphs for the ACO application.

Figure 9 compares the scalability of the TL-ACO, ML-
ACO (multi-level ACO), GR-ACO (globally reliable ACO)
and SR-ACO (scalable reliable ACO) versions, executing
each version with 1, 10, 20, ..., 250 compute nodes; for each
number of nodes we recorded the execution time for seven
runs, and plotted the mean times for these runs. There
is some variation in execution time, but this is typically
only about 2–3% around the mean, so we have reduced

 0

 4

 8

 12

 16

 0 50(1200) 100(2400) 150(3600) 200(4800) 250(6000)

E
x
e
c
u
ti

o
n
 t

im
e
 (

s)

Number of nodes (cores)

TL-ACO ML-ACO GR-ACO SR-ACO

Fig. 9. Weak Scaling of ACO Versions

 0

2e+05

4e+05

6e+05

8e+05

10e+05

12e+05

14e+05

16e+05

 0 10 17 26 37 50 65 82 101 122 145

N
u
m

b
er

 o
f

re
ce

iv
ed

 p
ac

k
et

s

Number of nodes

ML-ACO GR-ACO SR-ACO

Fig. 10. Number of Received Packets in ML-ACO, GR-ACO, and SR-
ACO (GPG cluster)

clutter in the plots by omitting it. The execution times here
were measured by the ACO program itself, using Erlang’s
timer:tc function, and they omit some overhead for argu-
ment processing at the start of execution.

We see that ML-ACO performs slightly better than TL-
ACO and the performance of GR-ACO is significantly worse
than both of these. The performance of SR-ACO is consider-
ably better than all the other versions.

These results are as we would expect. GR-ACO uses
global name registration, which is known to limit scalability.
TL-ACO uses a single master node which collects messages
from all of the worker nodes, and this can cause a bottle-
neck. ML-ACO eliminates this bottleneck by introducing a
hierarchy of submasters to collect results. Both TL-ACO,
ML-ACO, and GR-ACO use Erlang’s default distribution
mechanism, where every node is connected to every other
one even if there is no communication between the nodes. In
SR-ACO we use SD-Erlang’s s groups to reduce the number
of connections and the namespace, and we attribute SR-
ACO’s superior performance to this fact.

5.3 Network Traffic
To investigate the reason for the improved scalability we
measure the impact of s groups on network traffic. We
measure the number of sent and received packets on the
GPG cluster for three versions of ACO: ML-ACO, GR-ACO,
and SR-ACO. Figure 10 shows the total number of received
packets. The highest traffic (the blue line) belongs to GR-
ACO and the lowest traffic belongs to SR-ACO (green line).

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 9

 0

200,000

600,000

1,000,000

1,400,000

1,800,000

 0 1 3 5 7 9 11 13 15

T
h
ro

u
g
h
p
u
t

(n
u
m

 o
f

d
el

iv
 m

es
sa

g
es

 p
er

 m
in

)

Time (min)

RD-IM 4 Nodes
RSD-IM 4 Nodes

RD-IM 5 Nodes
RSD-IM 5 Nodes

RD-IM 7 Nodes
RSD-IM 7 Nodes

RD-IM 9 Nodes
RSD-IM 9 Nodes

RD-IM 13 Nodes
RSD-IM 13 Nodes

RD-IM 17 Nodes
RSD-IM 17 Nodes

Fig. 11. RD-IM and RSD-IM Throughput Without Failures (GPG cluster)

This shows that SD Erlang significantly reduces the net-
work traffic between Erlang nodes. Even with the s group
name registration SR-ACO has less network traffic than ML-
ACO, which has no global name registration. This difference
becomes more significant as the number of nodes grows.
For example, on 145 nodes, in SR-ACO there were 500,000
packets received whereas in ML-ACO and GR-ACO the
number of received packets is two and three times larger
respectively.

5.4 Reliability
In this section we evaluate an impact of failures on per-
formance of distributed Erlang and SD Erlang applications
using the IM (Section 5.4.1) and ACO (Section 5.4.2) bench-
marks on the GPG cluster.

5.4.1 IM
To analyse an impact of failures in SD Erlang applications
we first analyse whether there is a difference in throughput
between the reliable versions of IM implemented in dis-
tributed Erlang (RD-IM) and SD Erlang (RSD-IM) when no
failures occur. For that we vary the number of server nodes
(3, 4, 6, 8, 12, 16) while maintaining just a single router node.
Since RSD-IM has only one s group, this setup results in
identical architectures for both IM versions. The throughput
measures the number of delivered messages per minute. The
throughput results presented in Figure 11 show that RD-IM
and RSD-IM scale identically.

We then investigate the impact of failures and their rate
on the performance of the RD-IM and RSD-IM applica-
tions. In the experiments we use 2 router nodes and 12
server nodes, making 14 nodes in total. In case of RSD-
IM this results in three s groups: one router s group that
consists of only two router nodes, and two server s groups
that consist of one router and six server nodes each. We
first run experiments with no failures, then we terminate
random processes, gradually reducing the rate from 15 and
5 seconds; finally we randomly terminate only globally reg-
istered database processes reducing the rate from 5 seconds
to 1 second. The processes start failing five minutes into
the benchmark execution once the applications are stable,
i.e. failures occur only between minutes 5 and 15. The
throughput results in Figure 12 show that the IM fault
tolerance is robust and the introduced failure rate has no
impact on either of the of the IM versions in the given scale
(number of nodes).

1,050,000

1,100,000

1,150,000

 5 7 9 11 13 15T
h
ro

u
g
h
p
u
t

(n
u
m

 o
f

d
el

iv
 m

es
sa

g
es

 p
er

 m
in

)

Time (min)

RD-IM No failures
RD-IM 15s failures
RD-IM 10s failures
RD-IM 5s failures

RD-IM 5s DB only failures
RD-IM 1s DB only failures

RSD-IM No failures
RSD-IM 15s failures
RSD-IM 10s failures
RSD-IM 5s failures

RSD-IM 5s DB only failures
RSD-IM 1s DB only failures

Fig. 12. RD-IM and RSD-IM Throughput With and Without Failures (13
GPG cluster nodes)

5.4.2 ACO
To evaluate an impact of failures in the ACO benchmark we
ran Chaos Monkey against GR-ACO and SR-ACO. The fault
tolerance here is mainly supported by globally registering
master and submaster processes. Recall that in SR-ACO
the processes are global only in their s groups whereas
in GR-ACO the processes are global to the whole system.
The Chaos Monkey processes ran on every Erlang node
(i.e. master, submasters, and colony nodes), periodically
killing random Erlang processes. As in the IM experiments,
the failures had no measurable impact on the runtime of
either GR-ACO or SR-ACO. From the IM and ACO results
we conclude that SD Erlang preserves the distributed Erlang
reliability model.

6 TOOLS AND SYSTEM DEVELOPMENT

How are scalable SD Erlang systems developed? This sec-
tion outlines a general development strategy, from incep-
tion, though refactoring, performance tuning and operation.
Here is not the place to rehearse the Erlang philosophy of
concurrency-oriented programming, and the way that fault
tolerance, robustness and distribution are integrated into the
language and the OTP middleware layer: for more about
this see [CV16], [Arm03]. Instead, we look here at the twin
issues of how to build systems in SD Erlang, and how to
tune and operate those systems once built.

Figure 13 gives a schematic view of an SD Erlang system,
and the tools that are used in building and tuning it. Each
node is an Erlang runtime, running on a multicore host
machine; these nodes are grouped into (overlapping, gen-
erally) s-groups, each of which forms a fully interconnected
network. In this section we first look at how tools support
development of SD Erlang programs, and then cover tools
for performance tuning and operation. Some of the tools
are independent of SD Erlang, others were enhanced by us
to support SD Erlang, and the rest were developed from
scratch to support it.

6.1 Development strategy

In designing an SD Erlang system the most important
decision we need to make is how to group nodes together:
nodes in a single s group are all connected to each other,
but connections between nodes can be added in an ad hoc

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 10

Percept2

Wrangler
Devo

Devo

SD-Mon

WombatOAM
Wrangler

S-g
roup

Node

Fig. 13. Tool usage in development and performance optimisation

way, and overlapping groups can also provide an implicit
“routing” capability. This leads to three specific questions:

How should s groups be structured? Depending on the
reason the nodes are grouped – reducing the number of
connections, or reducing the namespace, or both – s groups
can be freely structured as a tree, ring, or some other
topology. One might also wish to have some free nodes that
belong to no s group (free nodes follow distributed Erlang
rules), or to replicate nodes to improve fault-tolerance.

How do nodes from different s groups communicate?
S groups do not impose any restrictions on the nodes in
terms of establishing new connections. Therefore any node
can communicate directly with any other node. However, to
keep the number of connections minimal the communica-
tion between nodes from different s groups can be routed
via gateway nodes, i.e. nodes that belong to more than one
s group. S groups do not provide any automatic routing
mechanism, but we discuss in Section 6.2.2 how a particular
generic mechanism can be identified and introduced.

How can one avoid the single point of failure of root/master
nodes? To avoid overloading root (or master) nodes in hier-
archically structured s groups, it is advisable to introduce
submaster nodes and processes that replicate some of these
nodes’ responsibilities.

A common development technique is refactoring, and
Wrangler [Wra16] is a mature refactoring tool for Erlang.
Some existing features are very useful here and it has also
been extended to support refactoring distributed Erlang
programs into SD Erlang.

6.2 Refactoring with Wrangler
The process of refactoring distributed Erlang applications
into SD Erlang applications is very much application spe-
cific. However, we identify and support two mechanisms:
replacing global groups with s groups, and introducing
and using a generic communication pattern.

6.2.1 From global groups to s groups
SD Erlang extends distributed Erlang by extending Er-
lang’s original communication mechanism and replacing
the global_group library with a new s_group library. As
a result, Erlang programs using global_groupwill have to
be refactored to use s_group. This kind of API migration
problem is common as software evolves. To support such
changes we extended Wrangler to migrate client code from
using an old API to using a new one, with group migration,
explained above, as a special case.

Our approach works this way: when an API function’s
interface is changed, the author of this API function im-
plements an adaptor function, defining calls to the old API
in terms of the new. From this definition we automatically
generate the refactoring, that transforms the client code to
use the new API. This refactoring can be supplied by the
API writer to clients on library upgrade, allowing users to
upgrade their code automatically.

As a design principle, we try to limit the scope of
changes as much as possible, so that only the places where
the ‘old’ API function is called are affected, and the remain-
ing part of the code is unaffected. One could argue that the
migration can be done by unfolding the function applications
of the old API function using the adaptor function once it
is defined; however, the code produced by this approach
would be a far cry from what a user would have written. In-
stead, we aim to produce code that meets users’ expectation.
More details about Wrangler’s support for API migration
are reported in [LT12], which also presents a more complex
API migration for a regular expression library.

6.2.2 Introducing a generic communication pattern

In the first SD-Orbit implementation, described in Sec-
tion 5.2.1, there is strong coupling of s group manipulation
and the application logic, making it difficult to separate the
specific (application) from the generic (groups and com-
munications). Using a general refactoring tool to support
operations such as function renaming, function extraction
and moving functions between modules, it was possible to
separate out the generic portion, a reusable s group pattern.

This reusable pattern provides (i) functions for setting
up the s group structure according to the pattern specified,
(ii) functions for spawning gateway processes which are in
charge of relaying messages from one s group to another,
and (iii) s group-specific send and spawn functions.

With this generic component in place, it was possi-
ble to revisit the original D-Orbit code and transform
it into SD Erlang with a simple set of refactorings,
which set up the group structure and modify a num-
ber of functions: for instance, message send of the form
Pid!{vertex,X,Slot,K} is transformed to a call to
central_grouping:s_group_send/2 with arguments
Pid and {vertex,X,Slot,K}. These refactorings can
themselves be automated using Wrangler’s extension API.

The advantage extracting a generic component like this
is that it allows developers more easily to use s groups, and
also to evolve the architecture of their systems more easily.
More details of this process are explained in Deliverable 5.3
of the Release project [REL15a].

6.3 Performance methodology

To tune performance we are able to use conventional tools,
such as unix top and htop (Section 6.4), as well as others that
are specific to Erlang. These include Percept2 (Section 6.7)
which can be used to optimise concurrent performance of
systems on a single (multicore) node, SD-Mon and Devo
(Sections 6.5 and 6.6), which are used to monitor and visu-
alise the performance of a multinode system, and Wombat-
OAM operations and maintenance framework (Section 6.8),
that can be used to monitor, tune and adapt live systems.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 11

Which nodes should be grouped together? Nodes in the
same s group maintain all-to-all connections and a com-
mon namespace. So we might want to put nodes in the
same group because of, e.g., communication distances or
frequency of communication between the nodes, or common
node attribute, such as available hardware [MCT15]. To
assist this decision, it is possible to use Devo, which shows
nodes’ affinity (Section 6.6), and Percept2, which shows the
communication between nodes (Section 6.7).

How should the size of s groups be determined? The size
of an s group depends on the intensity of the inter- and
intra-s group communication, and the number of global
to s group operations. The larger these parameters the
smaller the number of nodes in the s group should be.
To analyse intra- and inter-s group communications and
determine these parameters the Devo (Section 6.6) and SD-
mon (Section 6.5) tools can be used.

6.4 Existing system tools

Here we discuss conventional tools using the example of
the City instance of the Sim-Diasca case study. We run the
newsmall scale of the City example that has two phases:
initialisation and execution, but we exclude the former from
our measurements. We employ standard Linux tools such
as top and netstat to analyse core, memory, and network
usage,and perform measurements on the GPG and Athos
clusters described in Table 1.

To analyse scalability we compare the runtime of the
Sim-Diasca City example at different GPG cluster sizes: 1,
2, 4, 8, 12, and 16 nodes, with 16 cores per node. Figure 14
reports the runtime of the Sim-Diasca City example on up
to 16 nodes (256 cores). The results show that the case study
takes around 1,000 minutes on a single node, and below 300
minutes on 16 nodes. While the runtime of the Sim-Diasca
instance continues to fall up to 16 nodes, the available
resources are not utilised efficiently: we get a reasonable
speedup of 1.5 on 2 nodes (32 cores), but it is only 2.2 on 4
nodes (64 cores), and degrades to a maximum of 3.45 on 16
nodes (256 cores).

The Linux top command is used to investigate core
and memory usage. The maximum core and memory usage
are 69% and 14% (8.96GB out of 64GB) respectively for a
single 16-core node. The memory usage on a single host
may become a bottleneck when running larger Sim-Diasca
instances. As expected in a distributed system, both core

 200

 400

 600

 800

 1000

1(16) 2(32) 4(64) 8(128) 12(192) 16(256)

R
u

n
ti

m
e
 (

m
in

u
te

s)

Number of nodes (cores)

Fig. 14. Runtime. Sim-Diasca City Example (GPG cluster)

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

1(16) 2(32) 4(64) 8(128) 12(192) 16(256)

N
u

m
b

er
 o

f
p

ac
k

et
s

Number of nodes (cores)

Fig. 15. Network Traffic. Sim-Diasca City Example (GPG cluster)

and memory usage decrease as the number of nodes grow.
Figure 15 shows the network traffic, i.e. the number of sent
and received packets between nodes in the cluster during
the case study execution. The network traffic increases as the
cluster size grows, while the number of sent and received
packets are almost the same.

The results above also illustrate the common practice
of tuning an application on a small cluster before moving
to a larger and more expensive cluster. The range of tools
available on small clusters is often greater than can be used
through the batch queue interfaces on large clusters. Despite
the issues revealed even at this modest scale we have, for
completeness, repeated the experiments on the large Athos
cluster and obtained similar results [REL15b].

6.5 SD-Mon
The SD-Mon tool provides the scalable infrastructure to
support off- and online monitoring of SD Erlang systems
through a “shadow network” of nodes designed to collect,

Fig. 16. Monitoring for (2 s group) SD-Orbit within SD-Mon

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 12

Fig. 17. S groups in SD-Orbit using a 3D Force-directed Graph (Devo)

analyse and transmit monitoring data from active nodes and
s groups. SD-Mon can be used to understand the correct
allocation of nodes in groups. At an initial stage, just by
looking at the inter-node message flow, it can drive the
initial grouping itself. After that it can be used to trim the
network architecture and to monitor the system, revealing
anomalies like intergroup messages bypassing the gateway
nodes, i.e. nodes that belong to two or more s groups.

The tracing to be performed is specified within a configu-
ration file. An agent is started by a master SD-Mon node for
each s group and for each free node, as shown in Figure 16.
Configured tracing is applied on every monitored node, and
traces are stored in a binary format in the agent file system.

SD-Mon is dynamic: each network change in the s group
structure is cached by agents and notified to the master,
which is the only one having a global network view. It takes
care to restructure the shadow network accordingly: if a new
s group is created then a new agent is started; if an s group
is deleted then the related agent is stopped, the tracing files
are gathered from its host, and new agents are started for its
nodes not controlled by any other agent. This is of particular
value for deployed systems running in production mode;
online monitoring allows devops tuning and anticipation
of changed future deployment configurations.

6.6 Devo
Devo is an online visualisation tool for SD Erlang pro-
grams1. There are two visualization options available to a
user: “Low” and “High” level visualizations. The low level
visualization shows process migrations and the run queue
lengths of a single Erlang node, whereas the high level
visualization shows nodes in s groups using D3’s force-
directed graph functionality (Figure 17)2.

The s groups to which a node belongs are indicated
by the colour(s) of the graph node representing the Erlang
node, and the edges connect nodes within the same group.
When a single node is in more than one group the node’s
colour is split between the appropriate colours. When the
nodes communicate with each other the edges change
colour to indicate the level of communication between those
two nodes relative the amount of communication between
other nodes.

6.7 Percept2
Percept2 enhances the Percept tool from the standard Er-
lang distribution, which gives an off-line visualisation of

1. Devo is available online from github.com/RefactoringTools/devo
2. Neatly replicating the system architecture in Figure 1.

the processes making up a concurrent Erlang system on
a single node. Percept2 adds the functionality to support
multicore and distributed systems, and also refactors the
tool to be more scalable [LT13]. It also improves on the
existing functionality in Percept, by, for example, letting
users control the (huge) amount of data that is collected
by the tool, through allowing them to profile particular
aspects of a system execution, or allowing more selectivity
in function profiling within processes.

Percept2 also enhances the kind of information pre-
sented to users. In particular, Percept2 distinguishes be-
tween process states of running and runnable, i.e. the process
is ready to run, but another process is currently running.
Runnable, but not running, processes present an opportu-
nity for further exploitation of concurrency. Other enhance-
ments include an improved dynamic function callgraph and
a graph displaying process communications.

Percept2 particularly allows the tracing of s group ac-
tivities in a distributed system. The trace events collected,
together with the initial s group configuration if there is
any, can be used to generate an off-line replay of the s group
structure evolution, as well as the online visualisation of the
current s group structure, of an Erlang system.

The insight gained from examining running and
runnable processes in Percept2 underpins the parallelization
refactorings in Wrangler [LT15] that improve scalability by
getting the full performance of each multicore node.

6.8 WombatOAM
WombatOAM is a tool that provides a scalable infrastructure
for the deployment of thousands of Erlang nodes. Its broker
layer creates, manages, and dynamically scales heteroge-
neous clusters. For fault tolerance WombatOAM also pro-
vides optional monitoring of deployed nodes, periodically
checking whether nodes are alive, and restarting failed ones
if needed. The deployment phase of WombatOAM com-
prises these steps: (1) registering providers; (2) uploading
the application; (3) defining node families, i.e. nodes in the
same node family have identical initial behaviour and run
the same Erlang release; and (4) node deployment.

Deployment time is the period between arrival of a de-
ployment request and a confirmation from WombatOAM
that all nodes have been deployed. The deployment time
depends on various factors, such as the number of nodes
(NC), usage of monitoring service (on or off), and the

 50

 70

 90

 110

 1000 2000 3000 4000 5000

T
im

e
(s

ec
)

Number of nodes (N)

Monitoring off (experimental)
Best fit: 0.0124506N+83.4547

Monitoring on (experimental)
Best fit: 0.0124506N+83.4547

Fig. 18. Impact of WombatOAM’s Monitoring on Deployment Time

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 13

 93

 95

 97

 99

 101

 10 30 50 70 90 110 130 150

T
im

e
(s

ec
)

Number of nodes (N)

Monitoring off Monitoring on

Fig. 19. Impact of WombatOAM’s Monitoring

number of nodes deployed on the same host (fair or unfair).
Fair deployment means that the number of nodes on each
host is less than, or equal to, the number of cores on that
host.Due to the fact that on the Athos cluster we have an
access to 256 physical hosts with 24 cores each (Table 1), in
the experiments we run up to 6,144 nodes using fair deploy-
ment, and up to 10,000 nodes using unfair deployment.

When running an unfair deployment of up to 10k Erlang
nodes, the monitoring is off and every CPU core is shared
by three Erlang nodes. The results show that deployment
time changes linearly with the best fit equal to (0.0124506 ·
N + 83.4547), and 10,000 Erlang nodes are deployed in less
than 4 minutes (approx. 47 nodes per second).

To analyse the impact of monitoring on the deployment
time we measure the time of fair deployment (one node per
CPU core) against two monitoring states: enabled (on) and
disabled (off). From the performance results in Figure 18 we
conclude that at the target scale WombatOAM monitoring
has no impact on the deployment time.

Finally, we analysed the impact of using WombatOAM
on a running system, the ACO benchmark, comparing its
runtime in two scenarios: monitoring enabled (on) and
disabled (off). Figure 19 shows that the WombatOAM mon-
itoring overhead is not intrusive, at 1.33% maximum.

7 CONCLUSION & FUTURE WORK

Conclusion. In prior work we have investigated the scalabil-
ity limits of distributed Erlang for engineering reliable sys-
tems, identifying network connectivity and the maintenance
of global recovery information as the key bottlenecks. To ad-
dress these issues we have developed a Scalable Distributed
(SD) Erlang library that partitions the network of Erlang
nodes into scalable groups (s groups) to minimise both
network connectivity and global recovery data (Section 3).

This paper presents a systematic evaluation of SD Erlang
for improving the scaling of reliable applications using the
Orbit, Ant Colony Optimisation (ACO), Instant Messenger
(IM) archetypal benchmarks and the Sim-Diasca case study
outlined in Section 4. We report measurements on several
platforms, but the primary platform is a cluster with up to
256 hosts and 6144 cores.

The benchmarks evaluate different aspects of SD Er-
lang: Orbit evaluates the scalability impact of transitive
network connections, ACO evaluates the scalability impacts

of both transitive connections and the shared global names-
pace required for reliability, and IM targets reliability. The
experiments cover three application-specific measures of
scalability: speedup for Orbit, weak scaling for ACO, and
throughput for IM.

We investigate three performance research questions
(Section 5), obtaining the following results that are consis-
tent with other experiments [CLG+16], [TCP+16].

RQ1: For unreliable applications we show that SD
Erlang applications scale better than distributed Erlang
applications. Specifically SD-Orbit scales better than D-
Orbit, and that SR-ACO scales better than ML-ACO. The
SD Erlang applications have far less network traffic. We
conclude that, even when global recovery data is not
maintained, partitioning the fully-connected network into
s groups reduces network traffic and improves performance
on systems with more than 40 hosts on the Athos cluster
(Sections 5.2 and 5.3).

RQ2: ACO has relatively simple reliability mechanisms,
essentially a supervision tree with a single supervised
process type. Reliability in IM is far more elaborate and
realistic with multiple types of process supervised, and the
potential for Chat Session or Client databases to fail, and
hence more elaborate recovery mechanisms. Chaos Monkey
experiments with both ACO and IM show that both are
reliable, and hence we conclude that SD Erlang preserves
the distributed Erlang reliability model (Section 5.4).

RQ3: For reliable applications we show that SD Erlang
scales better than distributed Erlang. Comparing the weak
scaling of the reliable GR-ACO with the unreliable ML-
ACO shows that maintaining global recovery data, i.e. a
process name space, induces a huge amount of network
traffic and dramatically limits scalability above 40 hosts.
Comparing GR-ACO and SR-ACO weak scaling shows that
scalability can be recovered by partitioning the nodes into
appropriately-sized s groups, and hence maintaining the
recovery data only within a relatively small group of nodes
(Section 5.4.2).

We present a new systematic and tool-based approach
for refactoring distributed Erlang applications into SD
Erlang. The approach presents a set of design questions, and
builds on a suite of new or improved tools for monitoring,
debugging, deploying and refactoring SD Erlang applica-
tions (Section 6).

We demonstrate the capability of the tools, for example
showing that WombatOAM is capable of deploying and
monitoring substantial (e.g. 10K Erlang VM) distributed Er-
lang and SD Erlang applications with negligible overheads
(Section 6.8).

Future Work. The SD Erlang libraries would benefit
from enhancements: e.g. to automatically route messages
between s groups. It would be interesting to extend our pre-
liminary evidence that suggests that some SD Erlang tech-
nologies and methodologies could improve the scalability
of other actor languages. For example, the Akka framework
for Scala could benefit from semi-explicit placement, and
Cloud Haskell from partitioning the network [REL15c]. In
the medium term we plan to integrate SD Erlang with other
technologies to create a generic framework for building
performant large scale servers.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2016 14

ACKNOWLEDGMENTS

We thank our RELEASE project colleagues for technical
insights. This work has been supported by the EU grant
’RELEASE: A High-Level Paradigm for Reliable Large-scale
Server Software’ (287510), and by the UK’s EPSRC grant
’Adaptive JIT-based Parallelism (AJITPar)’ (EP/L000687/1).

REFERENCES

[Arm03] J. Armstrong. Making reliable distributed systems in the presence
of sodware errors. PhD thesis, KTH, Stockholm, Sweden, 2003.

[Arm13] J. Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, 2nd edition, 2013.

[AVMD00] S. Aggarwal, J. Vincent, G. Mohr, and M. Day. Instant
messaging/presence protocol requirements. Technical Re-
port RFC2779, IETF, 2000.

[Bas14] Basho. Riak, 2014. http://basho.com/riak/.
[BCH13] L. A. Barroso, J. Clidaras, and U. Hölzle. The Datacenter as a

Computer. Morgan and Claypool, 2nd edition, 2013.
[CDK+01] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,

and R. Menon. Parallel Programming in OpenMP. Morgan
Kaufmann Pub. Inc., USA, 2001.

[CLG+16] N. Chechina, H. Li, A. Ghaffari, S. Thompson, and
P. Trinder. Improving the network scalability of Erlang.
JPDC, 90-91:22–34, 2016.

[CMHT16] N. Chechina, M. Moro Hernandez, and P. Trinder. A scal-
able reliable instant messenger using the SD Erlang libraries.
In Erlang’16, pages 33–41, Japan, 2016. ACM.

[CT09] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly
Media, Inc., 1st edition, 2009.

[CV16] F. Cesarini and S. Vinoski. Designing for Scalability with
Erlang/OTP. O’Reilly Media, Inc., 1st edition, 2016.

[dBSD00] M. den Besten, T. Stützle, and M. Dorigo. Ant colony
optimization for the total weighted tardiness problem. In
PPSN, volume 1917 of LNCS, pages 611–620. Springer, 2000.

[DG08] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Com. ACM, 51(1):107–113, 2008.

[DRS00] M. Day, J. Rosenberg, and H. Sugano. A model for presence
and instant messaging. Technical Report RFC2778, IETF,
2000.

[DS04] M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford
Company, Scituate, MA, USA, 2004.

[EBPJ11] J. Epstein, A. P. Black, and S. Peyton-Jones. Towards Haskell
in the cloud. SIGPLAN Not., 46(12):118–129, 2011.

[EDF10] EDF. The Sim-Diasca Simulation Engine, 2010.
http://www.sim-diasca.com.

[GC15] A. Gainaru and F. Cappello. Fault-Tolerance Techniques
for High-Performance Computing, chapter Errors and Faults,
pages 89–144. Springer, Cham, 2015.

[Gei10] M. J. Geiger. New instances for the single machine total
weighted tardiness problem. Technical Report 10-03-01,
Helmut-Schmidt-Universität, Hamburg, 2010.

[Ger06] G. Germain. Concurrency oriented programming in termite
scheme. In Erlang’06, pages 20–20, USA, 2006. ACM.

[HBS73] C. Hewitt, P. Bishop, and R. Steiger. A universal modular
ACTOR formalism for artificial intelligence. In IJCAI’73,
pages 235–245, USA, 1973. Morgan Kaufmann Pub. Inc.

[HCT15] M. Moro Hernandez, N. Chechina, and P. Trinder. A reliable
instant messenger in Erlang: Design and evaluation. Techni-
cal Report TR-2015-002, Glasgow University, 2015.

[Hew10] C. Hewitt. Actor model for discretionary, adaptive concur-
rency. CoRR, abs/1008.1459, 2010.

[HS12] P. Haller and F. Sommers. Actors in Scala. Artima Inc., 2012.
[J+16] S. M. Jodal et al. Pykka, 2016. pykka.readthedocs.org/.
[L+10] J. Lee et al. Python actor runtime library, 2010.

http://osl.cs.uiuc.edu/parley/.
[LN01] F. Lubeck and M. Neunhoffer. Enumerating large orbits and

direct condensation. Experimental Math., 10(2):197–205, 2001.
[LT12] H. Li and S. Thompson. Automated API migration in a user-

extensible refactoring tool for Erlang programs. In ASE’12,
Essen, Germany, 2012.

[LT13] H. Li and S. Thompson. Multicore profiling for Erlang
programs using Percept2. In Erlang’13, Boston, USA, 2013.

[LT15] H. Li and S. Thompson. Safe concurrency introduction
through slicing. In PEPM’15, Mumbai, India, 2015.

[Lun16] D. Luna. Chaos monkey, Available 2016.
https://github.com/dLuna/chaos monkey.

[McN59] R. McNaughton. Scheduling with deadlines and loss func-
tions. Management Science, 6(1):1–12, 1959.

[MCT15] K. MacKenzie, N. Chechina, and P. Trinder. Performance
portability through semi-explicit placement in distributed
Erlang. In Erlang’15, pages 27–38, USA, 2015. ACM.

[MM00] D. Merkle and M. Middendorf. An ant algorithm with a
new pheromone evaluation rule for total tardiness problems.
In EvoWorkshops’00, volume 1803 of LNCS, pages 287–296.
Springer Verlag, 2000.

[O+12] M. Odersky et al. The Scala programming language, 2012.
http://www.scala-lang.org/.

[REL15a] RELEASE D5.3. Systematic Testing and Debugging Tools,
2015. http://www.release-project.eu/documents/D5.3.pdf.

[REL15b] RELEASE D6.2. Scalability Case Studies: Scalable Sim-
Diasca for the Blue Gene, 2015. http://www.release-
project.eu/documents/D6.2.pdf.

[REL15c] RELEASE D6.7. Scalability and Reliability for a
Popular Actor Framework, 2015. http://www.release-
project.eu/documents/D6.7.pdf.

[SOW+95] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-
Lederman. MPI: The Complete Reference. MIT Press, 1995.

[Spi14] SpilGames. Spapi-router: A partially-connected Erlang clus-
tering, 2014. https://github.com/spilgames/spapi-router.

[TCP+16] P. Trinder, N. Chechina, N. Papaspyrou, K. Sagonas,
S. Thompson, et al. Scaling reliably: Improving the scalability
of the Erlang distributed actor platform. (Submitted to) ACM
Trans. Program. Lang. Syst., 2016.

[Tse13] A. Tseitlin. The antifragile organization. Commun. ACM,
56(8):40–44, 2013.

[web16a] CAF: C++ actor framework, 2016. actor-framework.org/.
[web16b] Rust, Available 2016. https://www.rust-lang.org/.
[Wha15] WhatsApp, 2015. https://www.whatsapp.com/.
[Whi10] T. White. Hadoop: The Definitive Guide. Yahoo! Press, 2010.
[Wra16] Wrangler, 2016. https://www.cs.kent.ac.uk/projects/wrangler.
[XGT07] Z. Xiao, L. Guo, and J. Tracey. Understanding instant mes-

saging traffic characteristics. In ICDCS’07, pages 51–51. IEEE,
2007.

Natalia Chechina has a PhD from Heriot-Watt University and is a
Research Fellow at the University of Glasgow. Her main research inter-
ests are distributed and parallel computing, scaling Erlang programming
language, robotics, mathematical and theoretical analysis.

Kenneth MacKenzie is a Research Fellow at the University of St An-
drews. He has a BSc and PhD in mathematics, and an MSc in theoretical
computer science. He is interested in programming language design and
implementation.

Simon Thompson is Professor of Logic and Computation in the School
of Computing at the University of Kent. His research interests include
computational logic, functional programming, testing and diagrammatic
reasoning. He is the author of standard texts on Haskell, Erlang, Miranda
and constructive type theory.

Phil Trinder is a Professor of Computing Science at the University
of Glasgow. For more than 20 years he has researched the design,
implemention, and evaluation of high-level distributed and parallel pro-
gramming models.

Olivier Boudeville is a research engineer in the SINETICS department
at EDF R&D, France. His interests include the simulation of complex
systems, parallel and distributed architectures, and functional program-
ming. He created the Sim-Diasca simulation engine.

Viktória Fördős has 8 years of software development experience at an
insurance broker company and as a researcher at ELTE-Soft belonging
to the Hungarian University of Science (ELTE) and at Erlang Solutions
Hungary.

Csaba Hoch is a senior Erlang developer at Erlang Solutions, where he
has been working on WombatOAM. He spent several years at Ericsson,
where he participated in the development of NETSim, one of the largest
Erlang programs ever written.

Amir Ghaffari is a Senior Software Developer at Fujitsu Consulting
(Canada) Inc. with a PhD in Computing Science from Glasgow Univer-
sity.

Mario Moro Hernandez has a B.A. (Hons) in Psychology and a B.Sc.
(Hons) in Computing Sciences.

