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Abstract
We consider the problem of adapting distributed Erlang applications
to large or heterogeneous architectures to achieve good performance
in a portable way. In many architectures, and especially large
architectures, the communication latency between pairs of virtual
machines (nodes) is no longer uniform.

We propose two language-level methods that enable programs to
automatically adapt to heterogeneity and non-uniform communica-
tion latencies, and both provide information enabling a program to
identify an appropriate node when spawning a process. We provide
a means of recording node attributes describing the hardware and
software capabilities of nodes, and mechanisms that allow an ap-
plication to examine the attributes of remote nodes. We provide an
abstraction of communication distances that enables an application
to select nodes to facilitate efficient communication.

We have developed open source libraries that implement these
ideas. We show that the use of attributes for node selection can lead
to significant performance improvements if different components of
the application have different processing requirements. We report
a detailed empirical investigation of non-uniform communication
times in several representative architectures, and show that our
abstract model provides a good description of the hierarchy of
communication times.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming

Keywords Erlang, distributed computation, placement, attribute,
metric space.

1. Introduction
Applications on large distributed systems encounter issues that do
not arise in smaller systems, including the following.

• The individual machines comprising the system may not all be
the same: they may have differing amounts of RAM, different
software installed, and so on.
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• Communication times may be non-uniform: it may take consid-
erably longer to send a message from machine A to machine B
than it does to send a message from machine C to machine D.
This is particularly important in large distributed applications,
where communication times may begin to exceed the time re-
quired for individual processes to carry out their computations,
and may dominate execution time.

These factors will make it difficult to deploy applications, especially
in a portable manner. A programmer may be able to use system-
specific knowledge to decide where to spawn processes so as to
enable an application to run efficiently, but if the application is then
deployed on a different system, or if the structure of the system
changes as virtual machines (nodes) fail or new nodes are added,
this knowledge could become useless. This problem could become
especially pernicious if the deployment strategy is built into the code
of the application.

To address these difficulties, we propose a notion of semi-explicit
placement, where the programmer selects nodes on which to spawn
processes based on run-time information about the properties of
the nodes and of the overall system rather than selecting nodes
explicitly based on system-specific knowledge. For example, if a
process performs a lot of computation one would like to spawn it
on a node with a lot of computation power, or if two processes are
likely to communicate a lot then it would be desirable to spawn
them on a pair of nodes which communicate quickly.

We have implemented two Erlang libraries which address the
problems outlined above. The first deals with node attributes, which
describe the properties of individual Erlang nodes and the phys-
ical machines on which they run. The second deals with a no-
tion of communication distances which models the communica-
tion times between nodes in a distributed system. Our libraries
are open source, and are available from https://github.com/
release-project/portability-libs/.

We describe the theory, implementation, and validation of these
ideas in Sections 2 and 3. Some issues which our initial experiences
have brought to light we discuss in Section 4. Related work is
discussed in Section 5, and then we conclude with a summary and
some possibilities for further work in Section 6.

The work described here was carried out as part of the RE-
LEASE project, whose overall aim was to improve scalability for
distributed Erlang: see http://www.release-project.eu/ for
more information.

2. Node Attributes
This section describes an implementation of a library for managing
attributes for Erlang nodes, and also a choose_nodes/2 function
which makes use of these attributes to select nodes with certain
properties. The implementation is contained in a library called attr.
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2.1 Design and Implementation
2.1.1 Attributes
There are a large number of properties which may be of interest
when selecting an Erlang node on which to spawn a process. We
divide these into static and dynamic attributes.

Static attributes describe properties of a node which are not
expected to change during the lifetime of an Erlang application.
Some possibilities are

• The operating system type and version.
• The amount of RAM available.
• The number of cores used by the virtual machine (VM).
• Availability of other hardware features such as specialised

floating point units or GPUs.
• Availability of software features, such as particular libraries.

A specific example of this is that the Erlang crypto library
requires a C library from OpenSSL versions later than 0.9.8.
We have used a number of platforms where sufficiently recent
OpenSSL versions have not been installed, and this leads to run-
time failures of Erlang applications which use functions from
crypto.

• Access to shared filesystems. One reason for this might be that
an application may wish to use Erlang’s DETS tables (which are
stored on disk), and thus if a number of VMs all wish to access
the same table then they must all be able to access the same
filesystem. This may be possible if all of the VMs are running
in machines in the same cluster, but not if they are running on
different clusters.

On the other hand dynamic attributes describe properties which are
expected to vary during program execution; for example:

• The load on the physical machine as a whole including other
users’ processes.

• The number of Erlang processes running in the VM.
• The amount of memory which is currently available.
• Whether a particular type of Erlang process is currently running

on the machine. One might want to spawn a process on a VM
which is already running some other type of process, or one
might wish to avoid competing with a CPU-hungry process.

2.1.2 Propagation Strategy
One of the fundamental properties of attributes is that (in our use-
cases at least) they should be available to other VMs, so that a
suitable machine can be selected to spawn a process which has
special requirements. The question then arises of how attributes
should be propagated through a network. The technique adopted in
the present (prototype) implementation is to equip each Erlang node
with a small server which maintains a database of attributes. When
a process wishes to select another node to spawn a process on, it
queries the nodes it is interested in and asks for the values of the
attributes involved in the selection criterion. The servers on these
nodes return the attribute values to the original node, which then
makes a choice according to the information which it has received.
We discuss the merits and demerits of this approach in Section 2.3.1,
and suggest extensions and alternatives.

2.1.3 The Attribute Server
Attributes are stored in an attribute table on each node. Our current
implementation uses an ETS table for this, although Erlang’s
recently-introduced maps might be a more lightweight alternative.
The attribute table contains two types of entry:

• Static attributes are stored as name-value pairs, for example,
{num_cpus, 4} or {kernel_version, {3,11,0,12}}. The
first entry is an Erlang atom, and the second is an arbitrary Erlang
term (typically a number, string, or tuple).

• Dynamic attributes are represented by tuples of the form
{AttrName, {dynamic, {M,F}}}. Here M is the name of a
module and F is the name of a zero-argument function in M .
When a dynamic attribute is looked up, the function M:F() is
evaluated and its result is returned as the value of the attribute.
We also allow dynamic attributes with a list A of arguments:
{AttrName, {dynamic,{M,F,A}}}.

The attribute table is managed by a process which is registered
with the local name attr_server. Remote nodes can request
information about attributes by evaluating a term of the form

{attr_server,Node} !
{self(), {report,Key,AttrNames}}.

Here AttrNames is a list of attribute names and Key is an Erlang
reference (see make_ref/0) which is used to match responses with
requests. When the server receives a request of this form, it looks up
all of the specified attributes and sends back a message containing
the attribute names and their values. If an attribute cannot be found,
or if there is some problem in evaluating a dynamic attribute, the
atom undefined is returned as the value of the attribute.

2.1.4 Populating the Attribute Table
How do the attributes get into the attribute table? The attribute
server can be started by calling attr:start(ConfigFile) where
ConfigFile is a string containing the name of a configuration file,
which in turn contains an Erlang list of attributes. For example, a
configuration file might contain

[{num_cpus, 4},
{hyperthreading, 2},
{cpu_speed, 2994.655},
{mem_total, 3203368},
{os, "Linux"},
{kernel_version, {3,11,0,12}},
{num_erlang_processes, {dynamic,

{erlang, system_info, [process_count]}}].

The final entry here is a dynamic attribute which evaluates erlang:
system_info(process_count): this returns the total number of
processes existing on the node at the current point in time.

We also provide functions insert_attr/2, update_attr/2
and delete_attr/1 which can be used to modify attributes during
program execution; one specific use of these would be for a node to
advertise the fact that it is running a particular type of process, but
see Section 4 below for a discussion of a potential problem with this
strategy.

This scheme is completely extensible. Users can define arbitrary
static and dynamic attributes. For dynamic attributes, they can even
use functions from their own libraries (although caution should be
exercised here since an attribute which takes a long time to calculate
could slow things down; also, an attribute whose evaluation never
terminates would cause the server to become locked up).

Discovering static attributes automatically. Many static proper-
ties of the system can be discovered automatically, for example, by
examining system files. The attr library includes a mechanism for
specifying such attributes in the configuration file by means of terms
of the form {automatic, {M,F}} and {automatic, {M,F,A}},
where the given functions are evaluated once just after the configura-
tion file is read, with the resulting values being stored in the attribute
table in the same way as normal static attributes.
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Non-instantaneous attribute values. When a dynamic attribute
is queried, the related function is called and the result is returned.
This will typically return the value of the attribute at a particular
moment, whereas in some cases it might be desirable to have a value
averaged over some time period. For example, it might be useful to
know the average number of Erlang processes running on a node
during the last five minutes. In some cases, the attribute may in fact
be implemented by calling some system function which already
performs such averaging: for example, the built-in loadavg15
attribute (Table 2). In other cases, a user might want to implement
their own non-instantaneous attributes. This can in fact be done
using the automatic attributes described above: one could specify
a function which would spawn a process which would then run at
regular intervals and use the update_attr/2 function to modify
the current value of the relevant attribute. This is not, however,
how we intend automatic attributes to be used, and it might be
worth extending the attr library to include explicit support for non-
instantaneous attributes. Note that Folsom [2] and Exometer [10]
both support means for collecting information over extended periods
of time.

2.1.5 Built-in Attributes
As mentioned above, many system properties can be discovered au-
tomatically, for example, by examining files in the proc filesystem
on Linux, or by using functions such as erlang:system_info/1,
erlang:statistics/1, or functions in the os Erlang kernel li-
brary.

As an experiment, we have implemented a small number of use-
ful attributes of this form which are automatically loaded when the
attribute server is started. Most of these are kept in a library called
dynattr. The built-in attributes are loaded before the contents of the
configuration file, and will be overridden by user-defined versions.
The attribute server can also be started without a configuration file,
by calling attr:start(); in this case, only the built-in attributes
will be loaded. One can also call attr:start(nobuiltins) or
attr:start(nobuiltins, ConfigFile) to omit the built-in at-
tributes.

The current built-in attributes are described in Tables 1 and 2.
This is just a sample implementation for experimental purposes.

However, it does show that quite a large range of properties can be
expressed by attributes. Note however that many of the attributes
(in particular system load) are found by consulting files in the Linux
proc filesystem. This definitely will not work on Windows (the
atom undefined will be returned), and perhaps not on other Unix
implementations where the precise format of the files may differ.

2.1.6 Querying Attributes
The attr library also contains a function called request_attrs/2
which can be used to query a list of nodes for the values of specified
attributes. This is done by a call of the form

request_attrs (Nodes, AttrNames)

where Nodes is a list of node names and AttrNames is a list of
attribute names, for example:

request_attrs([vm1@osiris, vm1@bwlf01, vm2@bwlf02],
[loadavg1, cpu_speed])

The function returns a list of the form {[NodeName, [{AttrName,
AttrValue}]}].

2.1.7 Choosing Nodes
We have used the request_attrs/2 function to implement a
simple choose_nodes/2 function. This takes a list of nodes and a
list of predicates which those nodes must satisfy. For example:

choose_nodes(Nodes, [{cpu_speed, ge, 2000},
{loadavg5, le, 0.6},
{vm_num_processors, ge, 4}])

The function calls request_attrs/2 to get the values of the re-
quired attributes on the specified VMs, then evaluates the predicates
(discarding attributes whose values are undefined) and returns the
subset of the nodes for which all of the predicates are satisfied.

We currently provide two types of predicates. The first carries
out comparisons of attribute values against constants: {AttrName,
op, Const}. We currently have the usual six comparison oper-
ators: eq, ne, lt, le, gt, and ge. These correspond to the
Erlang operators ==, /=, <, =<, >, and >=, respectively. These
operators can compare any two Erlang terms, although you some-
times have to be careful; for example, [1,2,3,4] < [1,2,4] but
{1,2,3,4} > {1,2,4}. Note also that we have used == and /=
instead of =:= and =/= so that we get the expected results when
comparing floats and integers.

The second type of predicate checks boolean values: we can
say {AttrName, true} and {AttrName, false} (or {AttrName,
yes} and {AttrName, no}).

This is a fairly minimal predicate grammar, implemented here
as a proof of concept. It should suffice for many purposes, but it
would not be hard to extend it if necessary by adding disjunction,
for example.

2.2 Experimental Validation
As a simple validation experiment, we ran a modified version of one
of our benchmark programs: multilevel Ant Colony Optimisation
(ML-ACO) [11]. We hope to perform more extensive validation on
more complex programs at a later date.

Ant Colony Optimisation (ACO) [7] is a metaheuristic inspired
by the foraging behaviour of real ant colonies which is used for
solving combinatorial optimisation problems. Our implementation
is specialised to solve a scheduling problem called the Single
Machine Total Weighted Tardiness Problem [18]. In the basic single-
colony ACO algorithm, a number of artificial ants independently
construct candidate schedules guided by problem-specific heuristics
with occasional random deviations influenced by a structure called
the pheromone matrix which contains information about choices
of paths through the solution space which have previously led
to good solutions. After all of the ants have produced solutions,
the best solution is selected and used to update the pheromone
matrix. A new generation of ants is then created which constructs
new solutions guided by the improved pheromone matrix, and the
process is repeated until some halting criterion is satisfied. In our
implementation, the criterion is that some predetermined number
of generations have been completed. The algorithm is naturally
parallelisable, with one process for each ant in the colony. Increasing
the amount of parallelism (i.e., the number of ants) does not lead to
any speedup, but does lead to an improvement in the quality of the
solution.

In the distributed setting, even more concurrency can be exploited
by having several colonies which occasionally share pheromone
information. In addition to increasing the number of ants exploring
the solution space, distribution also gives the possibility of having
colonies with different parameters: for example, some colonies
might have more randomness in their search, making it easier
to escape from locally-optimal solutions which are not globally
optimal.

In the context of Erlang, one can have a number of nodes with
one colony per node. Furthermore, we can connect colonies together
in various different topologies [20], providing us with a variety of
communication patterns.

As a specific example, our multilevel ACO application is struc-
tured as a tree: see Figure 1. There is a single master node M , and
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Table 1: Built-in static attributes

Attribute name Value
os_type This calls os:type(), which returns a pair such as {unix, linux} giving the family (either unix or win32)

and type of the operating system.
os_version This calls os:version() which will return a tuple or string containing the OS version.
otp_release This calls erlang:system_info(otp_release) to get the OTP version.
vm_num_processors This calls erlang:system_info(logical_processors_available) to get the number of processors avail-

able to the VM. This may be less than the total number of processors on the physical machine if the VM is restricted
to use some subset of the processors.

mem_total Total memory on the system (in kB), found in /proc/meminfo.

Table 2: Built-in dynamic attributes

Attribute name Value
cpu_speed Current speed (in GHz) of the first CPU , as found in /proc/cpuinfo.
mem_free Current free memory (kB) , from /proc/meminfo.
loadavg1 System load average over last minute, from /proc/loadavg. The value is a float between 0 and 1: see

man proc and man uptime for details.
loadavg5 Load average over last 5 minutes.
loadavg15 Load average over last 15 minutes.
kernel_entities Numbers of Linux scheduling entities (processes/threads), from /proc/loadavg. This returns a pair {R,E},

where R is the number of currently runnable entities and E is the total number of entities on the system.
num_erlang_processes Number of Erlang processes currently existing on the VM, from erlang:system_info(process_count).

a number of submaster nodes S and colony nodes C. The colony
nodes independently construct solutions to the input problem, and
after a certain number of iterations report their solutions to a sub-
master node on the level above. Each submaster chooses the best
solution from its children and passes that to the level above, and so
on. Eventually, the master node selects the best solution from its chil-
dren, which is the best solution from among all of the colony nodes.
This solution is then sent back down the tree to the colony nodes,
which use it to update their pheromone matrices for future searches.
This process is repeated a number of times, after which the master
reports its current best solution and the application terminates.

M

S S S

S S S

C C C C C C C C C

Figure 1: Multilevel ACO

The colony nodes perform a considerable amount of mathematical
computation (and themselves have many ant processes constructing
solutions concurrently), but the master and submaster nodes do not
do much work. It would therefore seem reasonable to run colonies
on VMs with lots of processors and master and submaster nodes on
colonies with fewer processors.

2.2.1 Attribute-aware ML-ACO
We modified ML-ACO so that it used attributes to spawn submasters
on small Erlang nodes (at most 4 processors) and colonies on large
ones (more than 4 processors). This was run on 256 compute nodes
in EDF’s Athos cluster; three machines each had 24 small VMs
running (one pinned to each core) and the other 253 had a single
large VM. We ran the modified ML-ACO version with the VMs
presented in random order, gradually increasing the load on the
VMs by increasing the number of ants in each colony from 1 to

80. For each number of ants, we recorded the mean execution time
over 5 runs, firstly using attributes for placement and then without
attributes. In the latter case, processes were just spawned on nodes
in the random order in which they were presented to the application.

Figure 2 shows the resulting execution times. We see that the
program performs substantially better when attributes are used for
placement. This is unsurprising, since when attributes are not used,
colony nodes will often be placed on Erlang VMs which are only
using one core instead of 24. These colonies will take much longer
to execute than ones on VMs using lots of cores, and this slows the
entire program down. This is confirmed by Figure 3, which shows
the ratio of execution times without attributes to those with attributes.
For small numbers of ants, the performance of the attribute-unaware
version is similar to the attribute-aware version, but the ratio become
progressively worse as the number of ants (and hence the number of
concurrent processes) in the VM increases. We expect that the ratio
would asymptotically approach 24 with very large numbers of ants.

This is admittedly a rather artificial example, since the effect
of introducing small VMs is quite predictable. However, it does
demonstrate that the use of node attributes can improve performance
in a heterogeneous network, and that this can be done without any
information about the network being coded into the program. We
plan to test the use of attributes with a large and complex program
such as Sim-Diasca [8] (one of the RELEASE project’s use-cases)
but we have not yet done this at the time of writing.

2.3 Discussion
2.3.1 Attribute Propagation Strategy
We have adopted a very simple strategy here: when a node wants
to know the value of an attribute on another node, it just asks for it.
Another approach would be to have nodes broadcast their attributes
to all the other nodes which they are connected to. We argue that
our present approach has several advantages:

• Information is only transmitted when it is required, and only to
nodes that require it. It is possible that in a real system, only a
limited number of nodes would actually be spawning remote
processes, and they would be the only ones which would need
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Figure 3: Ratio of execution times

to receive attribute information. Perhaps one could have a model
where nodes have to register to receive attribute information

• Only those attributes which are required are computed and
transmitted. We presumably don’t want thousands of nodes

broadcasting their load average across an entire system once
a minute if it is seldom required.

• In this scheme, information about dynamic attributes is always
fresh. If attribute information has to be broadcast then it will
sometimes be out of date unless it is broadcast regularly, which
might lead to too much network activity. Also, some overhead
is incurred in finding the value of dynamic attributes, and this
would be adding extra load to machines if we had to calculate
dynamic attributes at frequent intervals.

On the other hand, there are some disadvantages to requesting
attributes at the time when a process is spawned:

• If many processes are being created, there will be a lot of requests
to the attribute servers, adding load to the target machines. There
is a tension between this factor and the danger of flooding
the network with too many broadcast attributes. Like other
functions that require communication between multiple nodes,
the choose_nodes/2 and request_attributes/2 functions
must be used with care.

• If there is a lot of latency in the network or just between the
machine which is making the request and a single member of
the list of machines it is querying, then request_attrs/2 and
hence choose_nodes/2 will take a long time every time it is
called. This could slow things down considerably in comparison
to the case where information is broadcast regularly.

It may be possible to find some middle ground by caching responses
to the request_attrs/2 function, e.g. in an ETS table. After
retrieving a static attribute once, it would never be necessary to ask
for it again (although one could end up with attribute information
belonging to defunct nodes, so it might be worth invalidating all of
the static attributes once every few hours). Dynamic attributes could
be saved with a timestamp, and if they have been in the cache too
long then we could ask for their value again. The time for which
an attribute is valid could vary with the attribute: we would wish to
discard the 1-minute load average quite quickly, but could keep the
15-minute load average for longer.

Given more time, we would have liked to implement a system
where attributes are broadcast across the network as well, and
to see how this method compares with the one we have already
implemented. It is possible that the second approach would be
more effective in certain situations, but this would depend on the
properties of the application.

2.3.2 Reliability
The present implementation is fairly simplistic, and makes no
pretence to reliability. If a node’s attribute server crashes for some
reason then there is no attempt to restart it. There are also problems
in querying such nodes. At the moment, request_attrs/2 times
out if it has to wait too long: if nothing happens for 5 seconds
after receiving its most recent message, it just times out and returns
whatever attributes it has already received. If an attribute server
has gone down then request_attrs/2 will take at least 5 seconds
every time it requests information from a list of nodes which contains
a bad one. On the other hand, timing out runs the risk of missing a
response from a live node which is taking a long time to respond.

See Section 4 below for some related points.

2.3.3 Attributes and s_groups
In earlier publications [5, 26] we have described and implemented
s_groups, which partition the address space of distributed Erlang
applications and help to improve scalability by by avoiding the
default behaviour of having connections between every pair of
nodes.
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In this paper we have not considered the interaction of node
attributes and s_groups; however it should not be too difficult to
integrate the two. The current choose_nodes/2 function takes
a list of Erlang nodes as its first argument, so one can easily
supply it with the members of an s_group, obtained using the
s_group:own_nodes/0 function for example. One could modify
attr:choose_nodes/2 to take an s_group name as a parameter,
but this would make it quite tightly coupled to the s_group library,
which is not part of the standard Erlang/OTP distribution; our current
attr library can be used with any Erlang version.

3. Communication Distances
In many modern distributed computer installations, the inter-node
communication infrastructure has some kind of hierarchical struc-
ture. Within a particular organisation, machines in a cluster may
be connected together by a high-speed network, and this network
may in turn be connected to other machines within the organisation
via a network with slower communication. If the network spans
several sites in different geographical locations, then communica-
tion between sites may be slower still. Connecting to machines in a
different organisation may introduce further delays.

On a smaller scale, communication between processing units
within an SMP machine may be similarly hierarchical: inter-
processor communication rates may depend on the level of cache
which two processors share, or whether the processors are located
on the same socket.

In this section we describe an implementation of an abstract
model of communication times which can be used for process
placement in systems with this type of hierarchical communication
structure. We use an idea originating in [17].

Suppose we have a collection of Erlang nodes. A useful way to
think about inter-node communication times is to think of the nodes
as points in a space and to regard communication times as distances
between these points. An appropriate mathematical model is the
notion of a metric space (see [12, 6.12] or [28, 2.15], for example).

3.1 Metric and Ultrametric Spaces
Definition. A metric space is a set X together with a function

d : X ×X → R+ = {x ∈ R : x ≥ 0}

such that, for all x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z)

The inequality (iii) is called the triangle inequality. If we replace
(iii) with

(iii′) d(x, z) ≤ max{d(x, y), d(y, z)}

then we obtain the definition of an ultrametric space [15] (and (iii′)
is called the ultrametric inequality). It is not hard to see that every
ultrametric space is a metric space.

Metric spaces give a very general model of distances, and admit
generalisations of many concepts from standard geometry. One
specific concept we will make use of is the closed disc.

Definition. Let X be a metric space. For x ∈ X and r ∈ R+, the
closed disc of radius r with centre x is

D(x, r) = {y ∈ X : d(x, y) ≤ r}.

3.2 Trees and Ultrametric Spaces
Given a tree with an arbitrary amount of branching, we can define a
metric (in fact, an ultrametric) on its set of leaves by

d(x, y) =

{
0 if x = y

2−`(x,y) if x 6= y.

where `(x, y) is the length of the longest subpath which is shared
by the paths from the root to x and y. We leave it as an exercise to
show that d is in fact an ultrametric.

Referring to the tree in Figure 4 we have

d(b, c) = 2−2 =
1

4

d(b, f) = 2−1 =
1

2

d(b, k) = 2−0 = 1

and so on.

h i j

e f ga b c d k l m

Figure 4

Similarly, some closed discs around b are

D(b, 0.3) = {a, b, c, d}
D(b, 0.8) = {a, b, c, d, e, f, g}
D(b, 1) = {a, b, c, d, e, f, g, h, i, j, k, l,m}

(see Figure 5, for example).

h i j

e f ga b c d k l m

Figure 5: D(b, 0.8)

This suggests why this particular metric might be useful for
studying communication distances: given a (computing) node in
some hierarchical communication system, the various closed discs
contain nodes which are in the same subclusters at various levels,
and hence which might be expected to have similar inter-node
communication times.

3.2.1 Implementation
We have implemented a simple Erlang library which carries out
calculations using ultrametric distances. It takes as input a tree
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(represented as an Erlang term) which describes the structure of
a network of Erlang VMs, and then uses closed discs to describe
VMs at various distances. The library includes a choose_nodes/2
function similar to that in the attribute library: one can select
machines by making calls of the type

choose_nodes (Nodes, {dist, le, 0.2})

or

choose_nodes (Nodes, {dist, gt, 0.8})

to get machines which are close or far away, respectively. Eventually
we intend to merge this library with the attribute library.

3.3 Comparing the Model with Reality
Our model is very abstract, and we claim that this is in fact an advan-
tage. Given a computer network with a hierarchical communication
structure, we can draw a tree which reflects the gross structure of
the communication hierarchy and use its abstract metric properties
to reason about communication times, without having to know de-
tails about the physical structure of the network, including actual
communication times.

The question arises of whether our model might be too abstract. If
we make decisions based on the abstract hierarchical structure of the
network, can we be sure that they bear a reasonable correspondence
to real communication times?

In an attempt to answer this question, we have carried out
some empirical studies of Erlang communication times on real-
life systems. Our technique has been to look at the time taken
for messages to pass between pairs of nodes in distributed Erlang
systems and then to use statistical techniques to study how nodes
cluster together as determined by communication times. We can
then compare the outcome of the clustering process with our abstract
view of the system to see how they correspond.

We do not expect actual communication times to satisfy the
metric space axioms precisely. For example, messages sent from a
node to itself may not be sent absolutely instantaneously (see axiom
(i)); however, it it will certainly be the case that such messages
will be significantly faster than messages between different nodes.
Similarly, communication times will probably not be precisely
symmetric (axiom (ii)), but we would expect messages times from
node A to node B to be very similar to those from B to A.
These expectations are confirmed by the data from the experiments
described below.

3.3.1 Empirical Validation
We have implemented a small Erlang application with two compo-
nents:

• A server which waits for messages and then replies immediately
to the sender.

• A client which sends a large number of messages to the server
and then calculates the average time between sending a message
and receiving a reply, using the functions in the Erlang timer
module.

Given a network of machines, we run the client and server on every
pair of machines to determine average communication times. We
then apply statistical methods to detect clusters within the network.

We view the machines in the network as points in a space and
the communication times as a measure of distance between the
points. This view is distinct from our earlier abstract view involving
metric spaces. Here we simply have empirical data and we have no
guarantee that it will satisfy any of the axioms of metric spaces. The
point of our experiments is to see how closely our empirical data in
fact conforms (or fails to conform) to our abstract model.

3.3.2 Cluster Analysis
To study the hierarchical structure of our results we use a technique
known as hierarchical agglomerative clustering [9, Chapter 4], [14].
This collects data points into clusters according to how close together
they are. Furthermore, the clusters are arranged hierarchically, with
small clusters grouped together to form larger ones, and so on.

The basic technique is as follows:

• Start off by placing every point in a cluster of its own.
• Look for the two clusters which are closest together and merge

them to form a large cluster.
• Repeat the previous step until we have only a single cluster.

This gives rise to a system of nested clusters, as illustrated in Figure 6
for a set of points in the plane (with the usual Euclidean metric).

a b
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d

e

f

g

h i

Figure 6: Hierarchical clustering

A question arises here: we know the distance between two points
(that is our basic data), but how do we measure the distance between
two clusters? Various methods can be used. For example, given two
clusters A and B, any of the following could be used:

d(A,B) = max{d(a, b) : a ∈ A, b ∈ B}
d(A,B) = mean{d(a, b) : a ∈ A, b ∈ B}
d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}

All of these methods (and others) are used in the clustering literature
(see [9] or [14], for example), and all are useful in different situations.
We have chosen the first method, which is known as the complete
linkage method: d(A,B) = max{d(a, b) : a ∈ A, b ∈ B}. In
terms of communication times, this tells us what the worst-case
communication time between a node in A and a node in B is; this
is reasonable from our point of view because we wish to have upper
bounds on communication time.

The hierarchical structure of clusters and subclusters can be
displayed in a type of diagram called a dendrogram. This is a
tree which has one node for each cluster, with the children of
a cluster being its subclusters. Figure 7 shows the dendrogram
corresponding to Figure 6. The dendrogram was obtained using
the hclust command in the R system for statistical analysis and
visualisation [23], using distances between points measured directly
from Figure 6. The dendrogram describes the hierarchical nested
structure seen in Figure 6, with the height of the internal nodes of
the dendrogram reflecting the distances between the corresponding
subclusters.

3.4 Measurements
We ran our distance-measuring Erlang application on several sys-
tems. Firstly we used it on a small scale to look at inter-processor
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Figure 7: Dendrogram for Figure 6

communication times within a multicore system, then we used it
on a larger scale to look at inter-node communication times on two
sizeable networks.

Our technique was to run Erlang VMs on each of the components
of the system (processing units within a single SMP machine,
individual physical machines within a network), and measure the
average time taken to send several messages back and forth between
each pair of VMs. More precisely, our basic unit of measurement
was the time taken to send 100 messages back and forth: we chose
this number because the time taken for a single message can be close
to the one-microsecond resolution of Erlang’s timer:tc/1,2,3
function, so it is difficult to get precise times for single messages.

For each pair of VMs, we actually measured the mean time over
100 such 100-message batches, and used that as our final data. This
was an attempt to make sure that our figures were representative:
with a smaller number of datapoints, there was a danger that, for
example, one of the VMs might have been swapped out by the
operating system when the messages arrived, adding an unusual
delay. By sending 100 batches we hoped to mitigate such effects.

We also tried two different strategies. In the first, we ran a single
process on VM number 1 which broadcast messages to all other
VMs in parallel; once this had finished, we ran a similar process on
VM number 2, and then on VM number 3, and so on. In our second
strategy, we ran such processes on all VMs concurrently, so that
all pairs of VMs were communicating simultaneously. We found
that this gave more interesting results, because high traffic densities
made irregularities in communication times more apparent.

It should be pointed out that running multiple VMs on the same
physical machine is not obviously a sensible thing to do: within a
single VM, inter-process messages are transmitted directly within
the VM, by copying data between VM data-structures. This is
something like 40 times faster than TCP/IP communication between
two VMs on the same physical machine, and hence having more than
one VM would appear to lead to inefficiency. However, this is not
necessarily the case. If a VM does not require too many resources,
then pinning it to some subset of the cores (on a single socket, for
example) might enable it to benefit from the same locality effects
that we have seen above, and hence to operate more efficiently than
if it is using all of the cores. Whether or not this is desirable would
depend on the application being run.

3.4.1 Forty-eight Core Machine
We ran our experiment on an AMD Opteron 6348 machine with
48 cores. The structure of the machine is shown in Figure 8 (this
was obtained using the lstopo command included with the hwloc
library [4]) and a dendrogram of our results in Figure 9.

The structure of the dendrogram, and hence the communication
times from which it was derived, reflects the NUMA structure
of the machine very closely. Erlang uses TCP/IP for inter-VM
communications, and when the VMs are on the same host, this
will take place via the Application layer of the TCP/IP protocol [3],
where messages are transmitted within memory by the OS. This
means that there will be very little overhead, so communication
times are strongly affected by the cache structure of the machine.

Figure 8: Forty-eight-core machine (four sockets like this)
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Figure 9: Dendrogram for forty-eight-core machine

We have run similar experiments on other multicore machines and
in each case we obtained dendrograms which corresponded very
closely to the NUMA hierarchy.

3.4.2 Communication Times in Networks
The results in the previous subsection show that hierarchical com-
munication structures do appear in reality, and the dendrograms
which we obtain correspond very closely to the tree which we would
use in our metric space model, based on the physical structure of
the system. However, our experiments involved Erlang VMs pinned
to individual cores of a multicore machine, a situation which is
definitely not typical of distributed Erlang applications.
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We also ran experiments in more realistic settings, measuring
communication times between Erlang VMs running on computa-
tional nodes in distributed networks.

3.4.3 Departmental Network
We ran our tests on some machines in a departmental network
at Heriot-Watt University. We used 39 machines, including a 34-
node Beowulf cluster. The results are shown in Figure 10. Here,
the dendrogram picks out the Beowulf cluster, however, it is less
obvious what is happening with the other machines.
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Figure 10: Dendrogram for departmental network

3.4.4 A 256-node Network
Our final test-case was a 776-node cluster at EDF; the RELEASE
project was allowed simultaneous access to up to 256 nodes (6144
cores in total). Users interact with the cluster via a front-end node
and initially have no access to any of the compute nodes. Access to
the compute nodes is obtained via the SLURM workload manager
(see http://slurm.schedmd.com/), either interactively or via a
batch script which specifies how many nodes are required, and for
how long. Jobs wait in a queue until sufficient resources are available,
and then SLURM allocates a number of compute nodes, which then
become accessible (via ssh, for example). The user has exclusive
access to these machines, and no-one else’s code will be running at
the same time. Fragmentation issues mean that jobs are not usually
allocated a single contiguous block of machines, but rather some
subset scattered through the cluster: for example nodes 127-144,
163-180, 217-288, 487-504, 537-648, 667-684. These will typically
be interspersed with machines allocated to other users. Users can
request specific (and perhaps contiguous) node allocations, but it
may take a long time before the desired nodes are all free at once,
leading to a very long wait in the SLURM queue.

Athos was somewhat problematic. As we shall see shortly,
communication times were highly non-uniform. We hypothesise
that Athos communication takes place via a hierarchy of routers,
but the precise structure of the cluster is not publicly available.
Furthermore, SLURM tends to allocate a different set of nodes to
each job, so it is difficult to get repeatable results.

Figures 11 and 12 illustrate the complicated communication
structure that we have observed. Figure 11 shows a dendrogram
for communication times in a 256-node SLURM allocation on
the Athos cluster. We can see 9 or 10 distinct subclusters with
fast intra-cluster communication, but with substantially slower
communication between the subclusters. However, it’s difficult to
determine exactly what’s going on due to the denseness of the
diagram.

In an effort to make the data more comprehensible, Figure 12
shows two views of a three-dimensional plot of the communication
times. The x- and y- axes show the source and target nodes (i.e., the
nodes which are sending and receiving messages, respectively), and
there is one point for each pair of machines, whose z-coordinate
represents the mean communication time observed between those
machines. These points are coloured according to the source ma-
chine, in an attempt to make the perspective views easier to interpret.
It is clear that communication times are highly quantised: for some
pairs of machines, the mean time taken to exchange 100 messages
is on the order of 25ms, whereas for others, it is over 800ms. This is
a 32-fold difference.

Remark. It is worth noting that communication times vary with
the amount of network traffic. We also ran our test program (during
the same SLURM job as above) with a different strategy, where one
machine at a time would exchange messages with all of the others,
then the next machine would do the same thing, and so on; this
involves much less network traffic. The distribution of message
times is much smoother: all communication between different
machines takes between about 50ms and 60ms for 100 exchanges.
This contrasts strongly with the situation in Figure 12, where the
mean communication time is much slower (585ms, as opposed to
58ms); Oddly, some of the communication is actually faster in
Figure 12, where about 10% of the exchanges take between 20ms
and 40ms.

Discussion. The earlier figures show that Athos does have a very
hierarchical communication structure (at least when there is a lot of
network traffic), but we have been unable to determine exactly what
that structure is. Information about the construction of the network is
not available to us, but we hypothesise that there is some tree-shaped
hierarchy of routers. When there is a lot of network traffic (as there
was in these experiments, where all nodes were talking to all others
simultaneously) this would mean that some messages would have
to travel up and back down through several layers of routers, and
some of the routers would become congested. There appears to be
an extra complication that node names do not correspond cleanly to
the hierarchical structure of the network; this would explain some
of the off-diagonal areas of fast communication at the bottom of the
plots in Figure 12. The situation is made even worse by the fact that
we cannot observe the whole network at once: we can only look
through the 256-node windows supplied by SLURM.

Despite these difficulties, the dendrogram in Figure 11 (and
similar ones obtained with different SLURM allocations) shows
that the communication times are strongly hierarchical, and fit our
metric-space model well. This is also the case with our earlier results
for communication times between cores on NUMA machines. Our
model abstracts away detailed information about communication
times, but the closed discs which it provides correspond strongly
to the clustering structure in actual communication times, and so
closed discs in the metric space provide a good description of sets of
nodes which can communicate quickly. We have not yet been able
to test our methods with a large application, but the large range of
communication times (differing by a factor of 32 in some cases) seen
in the Athos cluster suggests that careful use of information about
communication distances could improve performance significantly
for applications which perform a large amount of suitably localised
communication.

4. Practical Issues and Future Work
The libraries for attributes and communication distances described
above are prototypes, and our experience so far suggests several
factors which it would be helpful to modify in libraries intended for
general use.
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Figure 11: Dendrogram for Athos cluster

Figure 12: Athos communication times
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Concrete and abstract bounds. In practice it may be somewhat
difficult to know what concrete bounds to use to make a choice
of nodes. For instance, at a particular time there may be no
nodes satisfying {loadavg5, lt, 0.1} but several satisfying
{loadavg5, lt, 0.3}. For practical use it might be worth hav-
ing predicates like {loadavg5, low} and {cpu_speed, high}
which would examine an entire list of candidate nodes and select
the ones whose attributes are relatively “good” in comparison with
the majority.

Similarly, programmers should not have to know about explicit
distances. Note that distances vary with the depth of a network
hierarchy: in a shallow network, the nearest node to a specified node
might be at a distance of 1

4
, whereas in a deeper network it could

be at a distance of 1
32

. In order to avoid this, we should provide the
programmer with some abstractions such as [very_near, near,
far, very_far, anywhere].

Conflicting constraints. Another issue is that a programmer may
supply conflicting constraints. For example, one might ask for a
node which has a large number of cores and has a particular library
installed, but it may not be possible to satisfy both requirements
at once. One could overcome this to some extent by, for example,
giving priority to the earlier constraints in a list. For debugging
purposes, it could be useful to include a mode in which such conflicts
are reported at runtime.

Avoiding clashes when spawning processes. There may be some
danger in using attributes to select nodes. If a large number of
processes are spawning other processes, there is a possibility that
many of them may select the same node, and then performance
will suffer. This could be mitigated to some extent by making a
random choice from a list of suitable candidates, but there could
be problems if there is a unique node which has some particularly
desirable properties. At some point it may be necessary to spawn
processes on a suboptimal node, but it is not entirely clear how to
do this in a portable manner.

Fault tolerance. Our current implementation of attribute scheme
is highly fault-tolerant as long as no applications dynamically
modify the attributes of a node. Suppose that only static and built-
in attributes are used: in the event of the attribute server crashing,
it can simply be restarted and all of the node attributes will be
restored; similarly, if an application process crashes then it can
be restarted and the node attributes will be the same as they were
before the crash. However, if an application modifies the attributes
(for example, to register the fact that it is running on the node), then
if the attribute server crashes, this information will be lost; if the
application crashes then the attribute server could be left with stale
attributes belonging to a defunct process. More research on allowing
applications to modify node attributes may be needed.

Dynamic changes to network structure. Our current distance
scheme depends on a static description of the network structure. In
a long-running system, it is likely that nodes will leave the system,
or that new ones may join. We have some preliminary ideas as to
how to deal with this problem, but this will require further work.

Using attributes in practice. We have described mechanisms
which allow programmers to select nodes with useful properties, but
have not said anything about how these methods should be used in
practice. Finding optimal solutions to placement problems even with
a fixed number of tasks whose requirements are known in advance
is already difficult (consider the (NP-hard) Quadratic Assignment
Problem [22], for example), and we suspect that it would become
completely intractable when tasks whose requirements may vary
with time are created and destroyed dynamically. Our hope is that
a programmer’s intuition about the behaviour of their program

will will enable them to make reasonable choices about where to
spawn important processes, and that our techniques will facilitate the
construction of applications with good and portable performance.

5. Related Work
Attributes. The Folsom [2] and Exometer [10] libraries provide
facilities for collecting per-node metrics on running Erlang appli-
cations; the built-in and user-defined metrics are similar to our
attributes, but are typically used for monitoring and analysing the
behaviour of the application (usually via external tools).

At the tool, rather than language level, WombatOAM [24, 25, 27]
is a commercial product for deploying and monitoring Erlang
applications on large distributed systems, either physical or cloud-
based. Wombat can collect metrics from the nodes which it is
managing [24, §4.2.2]. WombatOAM metrics are properties such as
sizes of run queues, numbers of processes, numbers of atoms, and
so on. There are about 90 built-in metrics, and users can define their
own, using Folsom or Exometer, for example. Wombat uses metrics
for interactive monitoring the behaviour of Erlang nodes: someone
using Wombat to manage a distributed Erlang application can ask
for information about metrics, plot graphs of them, and so on.

The metrics of Folsom, Exometer, and WombatOAM are closely
related to the attributes described below, but the crucial point about
our attributes is that they are made available to other nodes in order
to assist with process placement; the systems mentioned above all
use metrics for monitoring run-time behaviour.

Basho’s Riak Core – the framework underlying their distributed
Erlang database system, Riak – uses a notion of node capabilities
whereby nodes in a distributed system can publish information
which is then propagated to other nodes [19]. This feature is intended
for use during upgrades, so that, for example, one can determine
which version of a protocol to use to talk to other nodes.

Further afield, information about members of distributed systems
is used in Grid scheduling, where one wishes to execute a job on one
or more remote machines: schedulers need information about the
properties of individual machines, including hardware capabilities,
current load, the amount of work queued for later execution, and
so on. Deciding how to schedule jobs can then involve complex
optimisation problems. This is a large field, and the most we can do
here is to refer the reader to surveys such as [29] and [6].

Communication distances. In a number of systems work distribu-
tion is informed by communication topology, e.g. HotSLAW [21]
and hierarchical load balancing in CHARM++ [16]. Several parallel
functional languages have exploited communication topology, e.g.
parallel Haskells with a two-level topology [13], and a multi-level
topology [1, Chapter 5]. Our model of arbitrary communication dis-
tances is relatively sophisticated in combining multiple levels and a
notion of equidistant discs, i.e. suitable targets for work distribution.
The model is taken directly from Haskell distributed parallel Haskell
(HdpH) [17].

RELEASE technologies. The new attribute and communication
libraries are part of the Scalable Distributed Erlang technologies
developed in the EU RELEASE project, but can be used with any
distributed Erlang program. Moreover our language level adaption
mechanisms can be combined with existing deployment tools such
as WombatOAM, which was also developed in RELEASE.

6. Conclusion
We have designed, implemented, and performed a preliminary
evaluation of semi-explicit work-placement mechanisms combining
host/node attributes and communication distances.

Our attribute library provides a flexible and user-extensible
method for Erlang nodes to advertise their properties to other
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nodes in a distributed system (Section 2). We have performed a
validation of this which suggests that the use of attributes to select
suitable nodes to spawn remote processes on can lead to significant
improvements in performance (Figures 2 and 3). Attributes can be
exploited without the programmer requiring any a priori knowledge
of the configuration of the system, and hence allows one to achieve
good performance in a portable way.

We have also proposed an abstract model of communication
distances, and an empirical investigation of communication times
on representative architectures including NUMA, and both large
and small clusters (Section 3). Our method gives a good description
of hierarchical communication structures without requiring concrete
(and perhaps very complicated) information about communication
times (Section 3.4). This suggests strongly that in distributed
applications with non-trivial communication, our model would
improve performance, again in a portable way.

In future research we hope to apply our techniques to larger and
more realistic Erlang applications in order to provide a more con-
vincing validation. We believe that the concept of communication
distances could profitably be applied to distributed computation in
general, and hope to experiment with other languages in addition to
Erlang.
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