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Abstract. The multicore revolution means that the number of cores in
commodity machines is growing exponentially. Many expect 100,000 core
clouds/platforms to become commonplace, and the best predictions are
that core failures on such an architecture will become relatively com-
mon, perhaps one hour mean time between core failures. The RELEASE
project aims to scale Erlang to build reliable general-purpose software,
such as server-based systems, on massively parallel machines.
In this paper we present a design of Scalable Distributed (SD) Erlang
– an extension of Distributed Erlang functional programming language
for reliable scalability. The design focuses on three aspects of Erlang
scalability: 1) scaling the number of Erlang nodes by eliminating transi-
tive connections and introducing scalable groups (s groups), 2) managing
process placement in the scaled networks by introducing semi-explicit
process placement, and 3) preserving Erlang reliability model.

Keywords: Erlang, functional programming, scalability, multi-core sys-
tems, massive parallelism

1 Introduction

General-purpose software is predominately written in mainstream programming
languages, firmly planted in legacy software concepts, and the software indus-
try is struggling for better ways to parallelise these languages. Current shared-
memory technologies like OpenMP often work well for small scale problems, but
applications are rapidly experiencing the inherent limitations of these technolo-
gies. MPI works well for large scale computations with a regular process structure
and independent computations, for example classical High-Performance Com-
puting (HPC) problems like computational fluid dynamics. However many gen-
eral purpose applications have significant data dependencies, or irregular process
structures. Simultaneously, increasing the number of cores increases the likeli-
hood of failures: a system with 105 cores might experience a core failure every
50 minutes in addition to any other failures [31]. Handling partial failures in
massively-parallel applications inevitably introduces dependencies between com-
ponents and calls for coordination logic that cannot easily be expressed using
current programming language technologies.
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Erlang [11] is a functional programming language. Its concurrency-oriented
programming paradigm is novel in being very high level, predominantly state-
less, and having both parallelism and reliability built-in rather than added-on.
Building on this success, the user uptake of Erlang is exploding around the world
and shifting from its telecom base into other sectors. Currently Erlang/OTP has
inherently scalable computation and reliability models, but in practice scalabil-
ity is constrained by the transitive sharing of connections between all nodes
and by explicit process placement. The former implies that the virtual machine
maintains data structures quadratic in the number of nodes and the latter makes
constructing large dynamic or irregular process structures challenging. Moreover
programmers need support to engineer applications at this scale and existing pro-
filing and debugging tools do not scale, primarily due to the volumes of trace
data generated.

We target reliable scalable general purpose computing on stock heterogeneous
platforms. Our application area is that of general server-side computation, e.g. a
web or messaging server. This form of computation is ubiquitous, in contrast to
more specialised forms such as traditional high-performance computing. More-
over, this is computation on stock platforms, with standard hardware, operating
systems and middleware, rather than on more specialised software stacks on
specific hardware.

To extend the Erlang concurrency-oriented paradigm to large-scale reliable
parallelism (105 cores) we propose an extension to the Erlang language, Scalable
Distributed Erlang (SD Erlang), for reliable scalability. Key goals in scaling the
computation model are to provide mechanisms for controlling locality and re-
ducing connectivity, and to provide performance portability. The goal in scaling
the reliability model is to preserve Erlang’s sophisticated and effective reliability
mechanisms of first class processes and supervision behaviours in the presence of
locality and connectivity controls. The SD Erlang name is used only as a conve-
nient means of identifying the extensions we propose: we expect the extensions
to become standard Erlang in the future.

The rest of the paper is organised as follows. We start with an overview of
related work and background information (Section 2). For a language to scale
in-memory and persistent data structures, together with computation must scale
(Section 3). The primary Erlang in-memory data structure Erlang Term Storage
(ETS) is implemented inside Erlang Virtual Machine (VM), so any scalability
issues will be addressed by the VM team of the RELEASE project. In terms of
persistent data structures we believe that such databases as Riak [3] and Cassan-
dra [15] will be able to meet the target scalability requirements. The computation
scalability is a language level issue and we address it by eliminating transitive
connections of Erlang nodes and introducing a semi-explicit process placement
(Sections 4). Finally, we discuss the design validation exemplars (Section 5) and
provide conclusion together with the future work (Section 6).
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2 Related Work

This section covers related work and provides background information. First,
we discuss typical hardware architectures we might expect in the next 4-5 years
in Section 2.1. Actor languages and Erlang functional programming language
are covered in Sections 2.2 and 2.3 respectively. Finally, the RELEASE project
overview is provided in Section 2.4.

2.1 Architecture Trends

To make predictions in computer science even for the next 4-5 years is a hard
job as the field is very young and moves forward much faster than any other
branch of science. However, to understand limitations of today Erlang we need
to get an idea of typical hardware architectures that will use SD Erlang in
the next few years. Currently the main factors that shape trends in computer
architectures are as follows: memory size/bandwidth, energy consumption, and
cooling. Below we provide a brief analysis of these factors and discuss their
impact on the development of the hardware architectures.

Memory size/bandwidth. As the number of cores goes up the memory band-
width goes down, and the larger number of cores shares the same memory the
larger memory is required. DRAM-based main memory systems are about to
reach the power and cost limit. Currently, the main two candidates to replace
DRAM are Flash memory and Phase Change Memory (PCM). Both types are
much slower than DRAM, i.e. 211 and 217 processor cycles respectively for a
4GHz processor in comparison with 29 processor cycles of DRAM, but the new
technologies provide a higher density in comparison with DRAM [26].

Energy consumption and cooling are the main constrains for the high core
density. Moreover, the cooling is also a limitation of the silicon technology scal-

Fig. 1. A Typical Server Architecture
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ing [37]. To save energy and maximize compute performance supercomputers
exploit small and simple cores apposed to large cores. Many architectures, es-
pecially HPC architectures, exploit GPUs [10]. GPUs accelerate regular floating
point matrix/vector operations. The high throughput servers that RELEASE
targets do not match this pattern of computation, and GPUs are not exploited
in the server architectures we target. The air cooling might be replaced by one of
the following technologies: 2D and 3D micro-channel cooling [17], phase-change
cooling [22], spot cooling [36], or thermal-electric couple cooling [29].

From the above we anticipate the following typical server hardware architec-
ture. A host will contain ∼4–6 SMP core modules where each module will have
∼32–64 cores. Analysis of the Top 500 supercomputers that always lead the
computer industry illuminating the next 4–5 year computer architecture trends
allows us to assume that ∼100 hosts will be grouped in a cluster, and ∼1–5 clus-
ters will form a cloud. Therefore, the trends are towards a NUMA architecture.
The anticipated typical server architecture is presented in Figure 1.

2.2 Actor Languages and Frameworks

An actor model was introduced in 1973. Actors are independent entities that
asynchronously exchange messages, and perform actions depending on these
messages. There is a number of actor-based languages and frameworks such as
Akka [2], Axum [20], E [28], Erlang [11], Kilim [30], Ptolemy [27], SALSA [34],
Scala [4], and Smalltalk [16]. In this section we cover only Scala and Akka. Erlang
is discussed in Section 2.3.

Scala is a statically typed programming language that combines features of
both object-oriented and functional programming languages [4]. Scala has been
designed to interact with mainstream platforms such as Java and C#. Currently,
Scala is implemented on Java and .NET platforms. Scala has a pure oriented
model similar to Smalltalk [16] where values are objects, and operations are
messages. Operator names are treated as identifies, and identifies between two
expressions are treated as method calls. Scala is also a functional language due
to treating functions as values. The language supports such functions as nested,
anonymous, curried, and higher order functions. Scala supports parameterisa-
tion, abstract members, and classes to model Erlang type actors [24].

Akka is an event driven middleware framework to build reliable distributed
applications [2]. Akka is implemented in Scala. A fault tolerance in Akka is
implemented using similar to Erlang ‘Let it crash’ philosophy and supervisor
hierarchies [33]. An actor can only have one supervisor which is the parent su-
pervisor but similar to Erlang actors can monitor each other. Due to possibility
to create an actor within a different JVM two paths can be used to reach an ac-
tor: logical and physical. Logical path follows parental supervision links toward
the root. Physical actor path starts at the root of the system where the actual
actor object resides, and never spreads over multiple JVMs. Akka uses remote to
local approach via optimisation [35]. In Akka multiple shreds can execute actions
on shared memory. Like Erlang Akka does not support guaranteed delivery. A
cluster support is planned to be introduced in Akka.
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2.3 Erlang

Erlang is a functional general purpose concurrent programming language de-
signed in 1986 at Ericsson computer science laboratory [11]. Erlang was influ-
enced by a number of languages such as ML [21], Miranda [32], ADA [19], and
Prolog [38]. Erlang was designed to meet requirements of distributed, fault-
tolerant, massively concurrent, and soft-real time systems. Erlang is a dynam-
ically typed language. Distributed Erlang was introduced to allow autonomous
Erlang Virtual Machines (VMs) to work together when they are situated either
on the same or different computers. In Erlang a collection of processes work
together to solve a particular problem. The processes are lightweight and com-
municate with each other by exchanging asynchronous messages [39].

Erlang concurrency differs from the most other programming languages in
that concurrency is handled by the language and not by the operating system [8].
Some of the principles of the Erlang philosophy are as follows. Share nothing im-
plies that isolated processes do not share memory and variables are not reusable,
i.e. once a value is assigned it cannot be changed. Let it crush is a non-defensive
approach that lets failing processes to crash, and then other processes detect
and fix the problem. The approach also provides clear and compact code [7].

2.4 RELEASE Project

The RELEASE project aims to scale the radical concurrency-oriented program-
ming paradigm to build reliable general-purpose software, such as server-based
systems, on massively parallel machines. Concurrency-oriented programming is
distinctive as it is based on highly-scalable lightweight processes that share noth-
ing. The trend-setting concurrency-oriented programming model we use is Er-
lang/OTP. Erlang/OTP provides high-level coordination with concurrency and
robustness built-in: it can readily support 10,000 processes per core, and trans-
parent distribution of processes across multiple machines, using message passing
for communication. Moreover, the robustness of the Erlang distribution model
is provided by hierarchies of supervision processes which manage recovery from
software or hardware errors.

Currently Erlang/OTP has inherently scalable computation and reliability
models, but in practice scalability is constrained by the transitive sharing of
connections between all nodes and by explicit process placement. Moreover pro-
grammers need support to engineer applications at this scale and existing profil-
ing and debugging tools do not scale, primarily due to the volumes of trace data
generated. In the RELEASE project we tackle these challenges working at three
levels: evolving the Erlang virtual machine, evolving the language to Scalable
Distributed (SD) Erlang, developing a scalable Erlang infrastructure.

3 SD Erlang Design Overview

In this section we provide our vision of requirements for Erlang scalability and
principles behind design decisions taken in Section 4. We believe that for SD
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Erlang to scale in-memory and persistent data structures together with compu-
tation must be taken into account.

Scalable in-memory and persistent data structures.When an application scales
it requires support from in-memory and persistent data storages to handle a large
number of processes and data. Therefore, in-memory and persistent data struc-
tures need to be able to scale to the same magnitude as the application that
implores them (Section 3.1).

Scalable computation. From the analysis of the typical Erlang exemplars in
Section 5 we have identified two main scalability issues. These are a fully con-
nected network together with transitive connections and explicit placement. A
fully connected network and transitive connections prevent a network of Erlang
nodes to scale because it becomes not feasible to maintain a good performance
in a network of more than a hundred of nodes. Whereas an explicit placement
requires a programmer to be aware of all Erlang nodes in the network for every
process which is again not feasible (Section 4).

To design SD Erlang we came up with two types of principles: general and
reliable scalability. The general principles include our view on the aspects of the
language that we want to preserve and implementation level of the modifications.
The general principles are as follows.

– Preserving the Erlang philosophy and programming idioms.
– Minimal language changes, i.e. minimizing the number of new constructs but

rather reusing of existing constructs.
– Working at Erlang level rather than VM level as far as possible.

The reliable scalability principles include concepts that we want to either
preserve or avoid when scaling Erlang. They are as follows.

– Avoiding global sharing, i.e. global names, bottlenecks, and using groups
instead of fully connected networks.

– Introducing an abstract notion of communication architecture, e.g. local-
ity/affinity and sending disjoint work to remote hosts.

– Avoiding explicit prescription, e.g. replacing spawning on named node with
spawning on group of nodes, and automating load management.

– Keeping the Erlang reliability model unchanged as far as possible, i.e. linking,
monitoring, supervision.

3.1 Scalable Data Structures

Scalable In-Memory Data Structures. The primary Erlang in-memory data
structure is Erlang Term Storage (ETS). ETS is a data structure to associate
keys with values, and is a collection of Erlang tuples, i.e. tuples are inserted
and extracted from an ETS table based on the key. An ETS is memory resident
and provides large key-value lookup tables. Data stored in the tables is transient.
ETS tables are implemented in the underline runtime system as a BIF inside the
Erlang VM, and are not garbage collected. ETS tables are stored in a separate
storage area not associated with normal Erlang process memory. The size of ETS



The Design of Scalable Distributed Erlang 7

tables depends on the size of a RAM. An ETS table is owned by the process
that has created it and is deleted when a process terminates. The process can
transfer the table ownership to another local process. The table can have the
following read/write access [12]: 1) private, i.e. only the owner can read and write
the table, 2) public, i.e. any process can read and write the table, 3) protected,
i.e. any process can read the table but only the owner can write it.

ETS tables provide limited support for concurrent updates [11]. That is in-
serting a new element may cause a rehash of elements within the table; when
a number of processes write or delete elements concurrently from the table the
following outcomes are possible: a runtime error, bad arg error, or undefined
behaviour, i.e. any element may be returned. As the number of SMP cores in-
creases the number of Erlang nodes and processes also increase. This can lead
to either a bottleneck if the table is private/protected or undefined outcomes
if the table is public. ETS tables are implemented inside the Erlang VM, and
hence any scalability issues will be addressed by the VM team of the RELEASE
project.

Scalable Persistent Data Structures. We have analysed a number of
DataBase Mangament Systems (DBMSs) for Erlang such as Mnesia [23], Riak [3],
CoachDB [5], and Cassandra [15]. Below we have summarised the main principles
and desirable features required for highly available and scalable databases. We
believe that such DBMSs as Riak and Cassandra will be able to meet the target
scalability requirements [25].

Fragmenting data across distributed nodes. 1) Decentralized approaches are
preferable as they show a better throughput by spreading the load over a large
number of servers and increase availability by removing a single point of failure;
2) The placement of replicas should be handled systematically and automatically,
i.e. location transparency. 3) A node departure or arrival should only affect the
node immediate neighbours whereas other nodes remain unaffected.

Replicating data across distributed nodes. 1) A decentralized model such as
P2P is desirable. 2) An asynchronous replication where consistency is sacrificed
to achieve higher availability, i.e. from the CAP theorem [18] a database cannot
simultaneously guarantee consistency, availability, and partition-tolerance.

Partition tolerance, i.e. a system continues to operate despite of connection
loss between some nodes. We anticipate the target architecture to be loosely
coupled; therefore, partition failures are highly expected. Again from the CAP
theorem by putting stress on availability we must sacrifice strong consistency to
achieve partition-tolerance and availability.

4 Scalable Actor Computation

We have identified two main Distributed Erlang issues that prevent scalability,
these are transitive connections and explicit placement. Transitive connections
are the reason of inability to scale beyond a hundred of nodes, whereas explicit
placement is a restriction that prevents a programmer to easily manipulate the
available nodes.
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In this section we introduce extension of the Distributed Erlang – Scalable
Distributed (SD) Erlang – to effectively operate when the number of hosts,
cores, nodes, and processes scales. We start with a discussion of scalability limi-
tations of Distributed Erlang in Section 4.1. To scale a network of Erlang nodes
we introduce scalable groups (s groups) in Section 4.2. S groups aim to elim-
inate transitive connections, i.e. nodes have transitive connections with nodes
of the same s group and non-transitive connections with other nodes. To man-
age process placement we introduce semi-explicit placement and choose node/1

function in Section 4.3. So that a process can be spawned, for example, to an
s group or a particular communication distance.

4.1 Distributed Erlang Scalability Limitations

Figure 2 illustrates Erlang’s support for concurrency, multicores and distribu-
tion. A blue rectangle represents a host with an IP address, and a red arc rep-
resents a connection between nodes. Multiple Erlang processes may execute in
a node, and a node can exploit multiple processors, each having multiple cores.
Erlang supports single core concurrency as a core may support as many as 108

lightweight processes [1]. In the Erlang distribution model a node may be on a
remote host, and this is almost entirely transparent to the processes. Hosts need
not be identical, nor do they need to run the same operating system.

Erlang currently delivers reliable medium scale concurrency, supporting up
to 102 cores, or 102 distributed memory processors. However, the scalability
of a distributed system in Erlang is constrained by the transitive sharing of
connections between all nodes and by explicit process placement. The transitive
sharing of connections between nodes means that the underlying implementation
needs to maintain data structures that are quadratic in the number of processes,
rather than considering the communication locality of the processes. While it is
possible to explicitly place large numbers of processes in a regular, static way (as
for conventional HPC computations), explicitly placing the irregular or dynamic
processes required by many servers and other general purpose applications is
far more challenging. Erlang/OTP has a world leading language level reliability.
The challenge is to maintain this reliability at massive scale.

Fig. 2. Connections in s groups
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4.2 Network Scalability

To allow scalability of networks of nodes the existing scheme of transitive con-
nection sharing in Distributed Erlang should be changed as it is not feasible for
a node to maintain connections to tens of thousands of nodes, i.e. the larger the
network of Erlang nodes the more ’expensive’ it becomes on each node to keep
up-to-date replications of global names and global states, and periodic check-
ing of connected nodes. Instead we propose to use overlapping scalable groups
(s groups) where nodes would have transitive connections within their s group
and non-transitive connections with nodes of other s groups. The idea of s groups
is similar to the existing in Distributed Erlang hidden global groups in the fol-
lowing: 1) each s group has its own name space; 2) transitive connections are
only with nodes of the same s group. The differences with hidden global groups
are in that 1) a node can belong to an unlimited number of s groups, and 2)
information about s groups and nodes is not globally collected and shared.

In SD Erlang nodes with no asserted s group membership belong to a notional
group G0 that follows Distributed Erlang rules and allows backward compatibil-
ity with Distributed Erlang. By the backward compatibility we mean that when
nodes run the same VM version they may use or not use s groups and still be
able to communicate with each other. Therefore, s groups are not compulsory
but rather a tool a programmer may use to scale a network of nodes.

Types of s groups. To allow programmers flexibility and provide an assis-
tance in grouping nodes we propose s groups to be of different types, i.e. when
an s group is created a programmer may specify parameters against which a new
s group member candidate can be checked. If a new node satisfies an s group re-
strictions then the node becomes the s group member, otherwise the membership
is refused. The following parameters can be taken into account: communication
distance, security, available code, specific hardware and software requirements.
A programmer may also introduce his/her own s group types on the basis of
some personal preferences. The information about specific resources can be col-
lected by introducing node self awareness, i.e. a node is aware of its execution
environment and publishes this information to other nodes.

We also propose the following features: a) a node can establish a direct
connection with any other node, b) nodes can have short lived connections, and
c) a host can have an unlimited number of nodes. We do not consider any
language constructs to provide programmers control over cores, i.e. the lowest
level a programmer may control in terms of where a process can be spawned is
a node.

s group Functions. We propose a number of functions to support s group
employment, some of them are listed below. The functions may be changed
during the development. The final implementation will be decided during actual
SD Erlang code writing and will depend on the functions that programmers find
useful.

1. Creating a new s group, e.g.
new s group(S GroupName, [Node]) -> ok | {error, ErrorMsg}
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2. Adding new nodes to an existing s group, e.g.
add node s group(S GroupName, [Node]) -> ok | {error, ErrorMsg}

3. Monitoring all nodes of an s group, e.g.
monitor s group(S GroupName) -> ok | {error, ErrorMsg}

4. Listing nodes of a particular s group, e.g.
s group nodes(S GroupName) -> [Node] | {error, ErrorMsg}

5. Connecting to all nodes of a particular s group, e.g.
connect s group(S GroupName) -> [boolean() | ignored]

6. Disconnecting from all nodes of a particular s group, e.g.
disconnect s group(S GroupName) -> boolean() | ignored

Example. Assume we start six nodes A, B, C, D, E, F , and initially the
nodes belong to no s group. Therefore, all these nodes belong to notional group
G0 (Figure 3(a)). Fist, on node A we create a new s group G1 that consists of
nodes A, B, and C, i.e. new s group(G1, [A, B, C]). Note that a node belongs
to group G0 only when this node does not belong to any s group. When nodes
A, B, and C become members of an s group they may still keep connections
with nodes D, E, F but now connections with these nodes are non-transitive. If
connections between nodes of s group G1 and group G0 are time limited then
the non-transitive connections will be lost over some time (Figure 3(b)). Then
on node C we create s group G2 that consists of nodes C, D, and E. Nodes D,
and E that now have non-transitive connections with node F may disconnect
from the node using function disconnect s group(G0). Figure 3(c) shows that
node C does not share information about nodes A and B with nodes D and
E. Similarly, when nodes B and E establish a connection they do not share
connection information with each other (Figure 3(d)).

Fig. 3. Connections in s groups
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4.3 Semi-Explicit Placement

For some problems, like matrix manipulations, optimal performance can be ob-
tained on a specific architecture by explicitly placing threads within the architec-
ture. However, many problems do not exhibit this regularity. Moreover, explicit
placement prevents performance portability: the program must be rewritten for
a new architecture, a crucial deficiency in the presence of fast-evolving architec-
tures. We propose a dynamic semi-explicit and architecture aware process place-
ment mechanism. The mechanism does not support the migration of processes
between Erlang nodes. The semi-explicit placement is influenced by Sim-Diasca
process placement [14] and architecture aware models [9].

In Sim-Diasca a computing load is induced by a simulation and needs to be
balanced over a set of nodes. By default, model instances employed by Erlang
processes are dispatched to computing nodes using a round-robin policy. The
policy proved to be sufficient for most basic uses, i.e. a large number of instances
allows an even distribution over nodes. However, due to bandwidth and latency
for some specifically coupled groups of instances it is preferable for a message
exchange to occur inside the same VM rather than between distant nodes. In
this case, a developer may specify a placement hint when requesting a creation
of instances. The placement guarantees that all model instances created with the
same placement hint are placed on the same node. This allows the following: a)
to co-allocate groups of model instances that are known to be tightly coupled,
b) to preserve an overall balancing, and c) to avoid model level knowledge of
the computing architecture. In [9] to limit the communication costs for small
computations, or to preserve data locality, the authors proposes to introduce
communication levels and specify the maximum distance in the communication
hierarchy that the computation may be located. Thus, sending a process to level
0 means the computation may not leave the core, level 1 means a process may
be located within the shared memory node, level 2 means that process may be
located to another node in a Beowulf cluster, and level 3 means that a process
may be located freely to any core in the machine.

For the SD Erlang we propose that a process could be spawned either to an
s group, to s groups of a particular type, or to nodes on a given distance. From
a range of nodes the target node can be picked either randomly or on the basis
of load information.

Load Management. When a node is picked on the basis of load an im-
portant design decision is the interaction between two main load management
components, i.e. information collection and decision making. The components
can be either merged together and implemented as one element or implemented
independently from each other. We propose to implement information collection
and decision making as one element, i.e. a load server. Its responsibility will be
collecting information from the connected nodes and deciding where a process
can be spawned when a corresponding request arrives. It seems that one load
server per node is an appropriate number of load servers per node for SD Er-
lang. In this case the decisions are made within the node (in comparison with
one load server per s group, a host, and a group of hosts) and load information
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redundancy level is not too high (in comparison with one per group of processes
and a multiple number of load servers per node).

chose node. We propose to introduce a new function chose node/1. The
function will return a node ID where the process should be spawned. The
node will be picked on the basis of restrictions identified by the programmer,
e.g. s groups, s group types, minimum/maximum/ideal communication distances.
The function can be written in SD Erlang as follows.
chose node(Restrictions) -> node()

Restrictions = [Restriction]

Restriction = {s group name, S GroupName}
| {s group type, S GroupType}
| {min dist, MinDist :: integer() >= 0}
| {max dist, MaxDist :: integer() >= 0}
| {ideal dist, IdealDist :: integer() >= 0}

We deliberately introduce Restrictions as a list of tuples to allow the list
of restrictions to be extended in the future. A process spawning may look as
follows:
start() ->

TargetNode = chose node([{s group, S Group}, {ideal dist, IdealDist}]),
spawn(TargetNode, fun() -> loop() end).

4.4 Summary.

To enable scalability of network of nodes we propose a new s group library for
Erlang. 1) Grouping nodes in s groups where s groups can be of different types,
and nodes can belong to many s groups. 2) Transitive connections between nodes
of the same s group and non-transitive connections with all other nodes. Direct
non-transitive connections are optionally short lived, e.g. time limited.

To enable semi-explicit placement and load management we propose the fol-
lowing constructs. 1) Function chose node(Restrictions) -> node() where
the choice of a node can be restricted by a number of parameters, such as
s groups, s group types, and communication distances. 2) The nodes may be
picked randomly or on the basis of load. We assume that when a process is
spawned using semi-explicit placement it is a programmer responsibility to en-
sure that the prospective target node has the required code. If the code is missing
an error is returned.

5 Design Validation Exemplars

To validate SD Erlang design presented in Section 4 we have done a theoretical
validation of five Erlang applications: Sim-Diasca [14], Orbit, Mandelbrot set,
Moebious, and Riak [3]. Here, we only discuss Moebious. The description of the
remaining applications is presented in [25].

Moebius is a continuous integration system recently developed by Erlang
Solutions. Moebius aims to provide users an automated access to various cloud
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Fig. 4. Mandelbrot Set Node Grouping

providers such as Amazon EC2. The system has two types of nodes: master node
and moebius agents. The master node collects global information and makes
decisions to start and stop nodes. The moebius agents are located on the utilised
nodes and periodically send state information to the master node. Currently,
moebius agents are only connected to the master node via HTTP but in the
future there are plans to move Moebius to SD Erlang and build a hierarchical
master structure.

A top level Moebius algorithm is as follows. A user is asked to indicate the
requirements, e.g. hardware configuration, software configuration, and a descrip-
tion on how the initial master node should start the remaining nodes in the cloud
(Figure 4). Thus, a hierarchical organization of nodes can be easily set from top
to bottom. Additional s groups from nodes of different levels can also be formed
if needed. An SD Erlang Moebius may require the following. 1) The s groups
may be grouped on the basis of different factor such as communication locality,
security, and availability of a particular hardware or software; therefore, cus-
tom s groups types are required. 2) Nodes and s groups will dynamically appear
and disappear depending on the user current requirements. 3) Moebius master
nodes most probably will be organised in a hierarchical manner, so nodes will
not need to directly communicate with each other. 4) The number of s groups
most probably will be much less than the number of nodes.

Table 1 provides a summary of the exemplar requirements for scalable imple-
mentations. Thus, s groups may be either static, i.e. once created nodes rarely
leave and join their s groups, or dynamic, i.e. nodes and s groups are constantly
created and deleted from the network. S groups may be formed on the basis
of locality (Sim-Diasca and Mandelbrot set), Hash table (Orbit), Preference
list (Riak), or programmers’ and users’ preferences (Moebius). ‘Yes/No’ indi-
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No Property Sim-Diasca Orbit Mandel-
brot set

Moebius Riak

s groups
1 Static/Dynamic Static Static Static Dynamic Dynamic
2 Grouping Locality Hash table Locality Multiple Preference

list
3 Custom types Yes No No Yes No

General
4 Number of nodes

and s groups
Ng << Nn Ng << Nn Ng << Nn Ng << Nn Ng >= Nn

5 Short lived connec-
tions

Yes Yes No No Yes

6 Semi-explicit place-
ment

Yes No Yes No No

Table 1. Exemplar Summary

cates whether an application requires a particular feature. For instance, some
scalable exemplars require custom s group types, short lived connections, and
semi-explicit placement. Such applications like Riak may have the number of
s groups compatible with the number of nodes.

6 Conclusion and Future Work

This paper presents the design of Scalable Distributed (SD) Erlang: a set of
language-level changes that aims to enable Distributed Erlang to scale for server
applications on commodity hardware with at most 105 cores. The core elements
of the design are to provide scalable in-memory data structures, scalable persis-
tent data structures, and a scalable computation model. The scalable computa-
tion model has two main parts: scaling networks of Erlang nodes and managing
process placement on large numbers of nodes. To tackle the first issue we have
introduced s groups that have transitive connections with nodes of the same
s group and non-transitive connections with nodes of other s groups. To resolve
the second issue we have introduced semi-explicit placement and choose node/1

function. Unlike explicit placement a programmer may spawn a process to a
node from a range of nodes that satisfy predefined parameters, such as s group,
s group type, or communication distance.

Erlang follows a functional programming idiom of having a few primitives
and building powerful abstractions over them. Examples of such abstractions
are algorithm skeletons [13] that abstract common patterns of parallelism, and
behaviour abstractions [6] that abstract common patterns of distribution. We
plan to develop SD Erlang behaviour abstractions over primitives presented in
Sections 4.2 and 4.3. We expect the behaviours to become apparent during the
work on the case studies and scalable infrastructure.
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