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Abstract. Erlang is a functional language with a much-emulated model
for building reliable distributed systems. This paper outlines the RE-
LEASE project, and describes the progress in the first six months. The
project aim is to scale the Erlang’s radical concurrency-oriented pro-
gramming paradigm to build reliable general-purpose software, such as
server-based systems, on massively parallel machines.
Currently Erlang has inherently scalable computation and reliability
models, but in practice scalability is constrained by aspects of the lan-
guage and virtual machine. We are working at three levels to address
these challenges: evolving the Erlang virtual machine so that it can work
effectively on large scale multicore systems; evolving the language to
Scalable Distributed (SD) Erlang; developing a scalable Erlang infras-
tructure to integrate multiple, heterogeneous clusters. We are also devel-
oping state of the art tools that allow programmers to understand the
behaviour of massively parallel SD Erlang programs. We will demon-
strate the effectiveness of the RELEASE approach using demonstrators
and two large case studies on a Blue Gene.
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1 Introduction

There is a widening gap between state of the art in hardware and software. Ar-
chitectures are inexorably becoming manycore, with the numbers of cores per
chip following Moore’s Law. Software written using conventional programming
languages, on the other hand, is still essentially sequential: with a substantial ef-
fort, some degree of concurrency may be possible, but this approach just doesn’t
scale to 100s or 1000s of cores. However, manycore programming is not only
about concurrency. We expect 100,000 core platforms to become commonplace,
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and the predictions are that core failures on such an architecture will become
relatively common, perhaps one hour mean time between core failures [1]. So
manycore systems need to be both scalable and robust.

The RELEASE project aim is to scale the radical concurrency-oriented pro-
gramming paradigm to build reliable general-purpose software, such as server-
based systems, on massively parallel machines. The trend-setting concurrency-
oriented programming model we will use is Erlang/OTP (Open Telecom Plat-
form) – designed in the telecoms sector, is based on highly-scalable lightweight
processes which share nothing, and used in strategic Ericsson products such as
the AXD301 telecoms switch [2]. Erlang/OTP provides high-level coordination
with concurrency and robustness built-in: it can readily support 10,000 processes
per core, and transparent distribution of processes across multiple machines,
using message passing for communication. The robustness of the Erlang distri-
bution model is provided by hierarchies of supervision processes which manage
recovery from software or hardware errors. Erlang is an Actor-based program-
ming language where actions are performed by concurrent processes named ac-
tors [3]. Actors communicate with each other via asynchronous message passing,
and each actor has an address and a mailbox. An actor also has a behaviour
that may change in a response to a received message. Actors may create and kill
other actors [4].

The Erlang/OTP has inherently scalable computation and reliability models,
but in practice scalability is constrained by the transitive sharing of connections
between all nodes and by explicit process placement. Moreover programmers
need support to engineer applications at this scale and existing profiling and de-
bugging tools do not scale, primarily due to the volumes of trace data generated.
In the RELEASE we tackle these challenges working at three levels (Figure 1):

1. evolving the Erlang Virtual Machine (VM) so that it can work effectively on
large scale multicore systems (Section 3.1);

2. evolving the language to Scalable Distributed (SD) Erlang, and adapting
the OTP framework to provide both constructs like locality control, and
reusable coordination patterns to allow SD Erlang to effectively describe
computations on large platforms, while preserving performance portability
(Section 3.2);

3. developing a scalable Erlang infrastructure to integrate multiple, heteroge-
neous clusters (Section 3.3).

These developments will be supported by state of the art tools to allow
programmers to understand the behaviour of large scale SD Erlang programs,
and to refactor standard Erlang programs into SD Erlang (Section 3.4). We will
demonstrate the effectiveness of the RELEASE approach through building two
significant demonstrators: a simulation based on a port of SD Erlang to the Blue
Gene architecture [5] and a large-scale continuous integration service – and by
investigating how to apply the model to an Actor framework [6] for a mainstream
language (Section 4).

The Erlang community is growing exponentially, moreover it has defined a
widely accepted concurrency-oriented programming and become a beacon lan-
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Fig. 1. RELEASE Project Research Areas

guage for reliable distributed computing. As such it influences the design and
implementation of numerous Actor programming languages, libraries and frame-
works like Cloud Haskell [7], Scala and it’s Akka framework [8], F# [9], and
Kilim [10]. Hence, we expect that RELEASE will have a similar impact on the
design and implementation of a range of languages, libraries and frameworks,
and thus deliver significant results beyond the Erlang community.

2 Progress Beyond the State-of-the-art

The RELEASE project targets reliable scalable general purpose computing on
heterogeneous platforms. Our application area is that of general server-side com-
putation, e.g. a web or messaging server. This form of computation is ubiquitous,
in contrast to more specialised forms such as traditional High Performance Com-
puting (HPC). Moreover, this is computation on stock platforms, with standard
hardware, operating systems and middleware. We aim for 105 cores, for exam-
ple, the Blue Gene/Q that will be exploited during the project has 65,000 cores.
Our focus on commodity hardware implies that we do not aim to exploit the
experimental many-core architectures like the Intel Tera-scale [11].

The project makes advances in a number of areas, primarily in Virtual Ma-
chine (VM) support for high-level concurrency (Section 2.1), in scalable high-
level distributed languages (Section 2.2), in tools for concurrent software en-
gineering (Section 2.3), in cloud hosting infrastructure (Section 2.4), and in
massive scale simulation (Section 2.5).

2.1 VM Support for High-level Concurrency

Due to the development of multicore architectures and the distributed nature
of modern computer systems, the quantity and variance of processors on which
software is executed has increased by orders of magnitude in recent years and is
expected to increase even further. In this setting the role of high-level concurrent
programming models is very important. Such models must abstract from vari-
ations introduced by differences between multicore architectures and uniformly
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treat different hardware architectures, number of cores and memory access char-
acteristics. Currently, the implementation of such models in the form of high-level
languages and libraries is not sufficient; these two must be complemented with
efficient and reliable VMs that provide inherent support for high-level concur-
rency [12].

Historically the efficient implementation of VMs for single core processor sys-
tems has presented a number of challenges, largely unrelated to concurrency. For
example, in order to optimally use the hardware, a VM has to exploit deep hier-
archies of cache memory by reorganizing data layouts, and to support e.g. out-of-
order execution, the hardware’s prefetching heuristics, branch prediction. With
multicore processors, concurrency and the inherent shared memory model in-
troduce new challenges for VMs, as it is not only arbitrary thread interleavings
but parallel execution on limited shared resources which has to be taken into
account. On top of the implementation considerations mentioned before, cache
coherence becomes a critical issue, memory barriers become a necessity and com-
piler optimisations, e.g. instruction reordering, must often be more conservative
to be semantics-preserving. Furthermore, multicore machines currently rely on
Non-Uniform Memory Access (NUMA) architectures, where the cost of accessing
a specific memory location can be different from core to core and data locality
plays a crucial role for achieving good performance.

In the past few years, there has been sustained research on the develop-
ment of VMs for software distributed shared memory. Some recent research
aims to effectively employ powerful dedicated and specialized co-processors like
graphic cards. Notable VM designs in this direction are the CellVM [13] for the
Cell Broadband Engine, a VM with a distributed Java heap on a homogeneous
TILE-64 system [14]; an extension of the JikesVM to detect and offload loops
on CUDA devices [15]; and VMs for Intel’s Larrabee GPGPU architecture [16].
Most of these designs are specific to VMs for Java-like languages which are based
on a shared-memory concurrent programming model. Despite much research, the
implementation of shared memory concurrency still requires extensive synchro-
nisation and for this reason is inherently non-scalable. For example, in languages
with automatic memory management, the presence of a garbage collector for a
heap which is shared among all processes/threads imposes a point of synchroni-
sation between processes and thus becomes a major bottleneck.

Although a language based on the Actor concurrency model is in principle
better in this respect, its VM implementation on top of on shared memory
hardware in an efficient and scalable way presents many challenges [17]. In the
case of the implementation of Erlang, various runtime system architectures have
been explored by the High Performance Erlang (HiPE) group in Uppsala, based
either on process-local memory areas, on a communal heap which is shared
among all threads, or following some hybrid scheme. However, the performance
evaluation [18] was conducted on relatively small multiprocessor machines (up
to 4 CPUs) in 2006 and cannot be considered conclusive as far as scalability
on the machines that the RELEASE project is aiming at. More generally, the
technology required to reach the scalability target of the current project requires



A High-level Paradigm for Reliable Large-scale Server Software 5

significant extensions to the state of the art in the design of VMs for message
passing concurrency and will stretch the limits of data structures and algorithms
for distributed memory management.

2.2 Scalable Reliable Programming Models

Shared memory concurrent programming models like OpenMP [19] or Java
Threads are generally simple and high level, but do not scale well beyond 102

cores. Moreover reliability mechanisms are greatly hampered by the shared state,
for example, a lock becomes permanently unavailable if the thread holding it
fails. In the HPC environment the distributed memory model provided by the
MPI communication library [20] dominates. Unfortunately MPI is not suitable
for producing general purpose concurrent software as it is too low level with
explicit, synchronous message passing. Moreover the most widely used MPI im-
plementations offer no fault recovery8: if any part of the computation fails, the
entire computation fails.

For scalable high-level general purpose concurrent programming a more flex-
ible model is required. Actors [6] are a widely used model and are built into
languages like Scala [22], Ptolemy [23], and Erlang [3]. There are also Actor
frameworks and libraries for many languages, for example, Termite Scheme [24],
PARLEY for Python [25], and Kilim [10] for Java. The Erlang style concurrency
has the following key aspects [26]: fast process creation/destruction; scalability
to support more than 104 concurrent processes; fast asynchronous message pass-
ing; copying message-passing semantics, i.e. share-nothing concurrency; process
monitoring; selective message reception.

Figure 2 illustrates Erlang’s support for concurrency, multicores and distri-
bution. A rectangle represents a host with an IP address, and an arc represents
a connection between nodes. Multiple Erlang processes may execute in a node,
and a node can exploit multiple processors, each having multiple cores. Erlang

8 Some fault tolerance is provided in less widely used MPI implementations like [21].

Fig. 2. Conceptual View of Erlang’s Concurrency, Multicore Support and Distribution
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supports single core concurrency where a core may support as many as 108

lightweight processes [2]. In the Erlang distribution model a node may be on a
remote host, and this is almost entirely transparent to the processes. Hosts need
not be identical, nor do they need to run the same operating system.

Erlang currently delivers reliable medium scale distribution, supporting up
to 102 cores, or 102 distributed memory processors. However, the scalability
of a distributed system in Erlang is constrained by the transitive sharing of
connections between all nodes and by explicit process placement. The transitive
sharing of connections between nodes means that the underlying implementation
needs to maintain data structures that are quadratic in the number of processes,
rather than considering the communication locality of the processes. While it
is possible to explicitly place large numbers of processes in a regular, static
way, explicitly placing the irregular or dynamic processes required by many
servers and other applications is far more challenging. The project addresses
these limitations.

2.3 Tools for Concurrency and Erlang

From the inception of parallel programming, the availability of tools that ease the
effective deployment of programs on parallel platforms has been a crucial crite-
rion for success. The Intel Trace Analyzer and Collector [27] is a typical modern
tool, which supports the analysis, optimisation and deployment of applications
on Intel-based clusters with MPI communication.

The Erlang VM is equipped with a comprehensive, low-level tracing infras-
tructure provided by the trace built-in functions [3]. There is a number of higher-
level facilities built upon this, including the debugger and the Trace-Tool Builder
(TTB) [28]. The later provides facilities for managing tracing across a set of dis-
tributed Erlang nodes. TTB is designed to be extensible to provide different
types of tracing tuned to different applications and environments. While these
tools support monitoring Erlang programs across distributed nodes, there is a
problem in dealing with the volume of data generated; on a multicore chip, or
highly parallel system, it will be impossible to ship all the data off the chip
without swamping communication entirely [29]. So, we will ensure that local
monitoring and analysis can be performed within the system, leveraging the
locality supported by SD Erlang to support a hierarchical ’tracing architecture’.

In building analyses we will be able to leverage work coming from the FP7
ProTest project [30] including the on-line monitoring tool Inviso, which has re-
cently been integrated into TTB, and the off-line monitoring tool Exago. Higher-
level analysis can be provided independently [31], and building on this it is also
possible to analyse the process structure of Erlang applications, particularly
those structured to use the OTP standard behaviours [32, Chapter 6]. These
existing systems need to be extended to integrate monitoring with process dis-
covery.

Building on the Erlang syntax tools package and the standard Erlang com-
piler tool chain, Wrangler is a tool for refactoring Erlang programs [33]. In the
RELEASE project we will develop and implement refactorings from Erlang to SD
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Erlang within Wrangler. To give users guidance about which refactorings could
be applied we will develop a refactoring assistant, that will suggest refactorings
of a given system on the basis of the system behaviour.

Traditional breakpoint debuggers are of little use for Reliable Massively Par-
allel (RMP) software; there are too many processes and breakpoints conflict with
the frequent timeouts in Erlang’s communication. The RELEASE project will
build a debugger for massively parallel systems that retains a recent history of
the current computation state, as well as saving fault-related information, so
that this can be retraced and explored for debugging purposes.

2.4 Cloud Hosting

The cloud hosting area is moving rapidly, and progress is driven mainly by
entrepreneurs and competing cloud infrastructure providers. While users can
already choose between many hosting providers offering price/performance al-
ternatives, provisioning is typically manual and time consuming, making it un-
necessarily difficult to switch providers.

With increased competition comes specialisation, which in its turn introduces
an integration challenge for users. This calls for a broker layer between users and
cloud providers [34], but creating such a broker layer, especially a dynamic one, is
no easy task, not least because Cloud Provision APIs currently do not support
ad-hoc, capability-based provisioning and coordination of cloud resources. A
problem is that basic cloud APIs must primarily serve mainstream languages,
not least REST (stateless) clients, where management of dynamic and complex
state is considered extremely difficult [35].

We intend to advance the concept of a capability-based dynamic cloud bro-
ker layer, building on the cloud broker component of Erlang Solutions’ recently
launched Hosted Continuous Integration tool SWARM. SWARM is capable of
allocating a mix of cloud and physical resources on demand and running com-
plex tests in parallel, and draws on the ease with which Erlang can spawn and
coordinate parallel activities, as well as its considerable strengths as a test au-
tomation and load testing environment. We intend to use SWARM itself as a
testbed for the concepts in the RELEASE project, aiming to increase both the
capabilities of SWARM and its cost-effectiveness.

At a basic level, this broker would be useful for any kind of cloud application
(even non-Erlang) making it easier for users to switch provider, and create on-
demand, capability-driven mashups of specialised clusters. For more dynamic
capabilities, we will lead by providing a Cloud Broker API customised for the
Erlang programming model.

2.5 Scalable Simulation

Many business and scientific fields would benefit from larger-scale simulations
as the need for intrinsically risky extrapolation can be removed if we are able
to simulate a complex system as a whole. Moreover, some important behaviours
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only appear in detailed simulations. Distributed memory clusters are cost ef-
fective scalable platforms. However, simulations are typically initially developed
using sequential, imperative technologies and these are ill suited for distributed
execution. Additionally parallelism poses a number of challenges for simulation.
We believe that declarative programming is an appropriate tool to harness par-
allel platforms.

Sim-Diasca is a distributed engine for large scale discrete simulations im-
plemented in Erlang. It is among the most scalable discrete simulation engines
and currently is able to handle more than one million relatively complex model
instances using only hundreds of cores. However, more accurate models are re-
quired – ideally we would like 50-200 million model instances. We would also
like to introduce reliability. The achievement of these goals requires scalable re-
liability improvements across the software stack, i.e. VM, language, and engine.

3 Developing a Scalable Programming Model

This section gives an overview of the technical and research components of the
project covering the following areas: scaling the Erlang VM (Section 3.1), scal-
ing the Erlang programming model (Section 3.2), scalable virtualisation infras-
tructure (Section 3.3), and tool support for the development of RMP software
(Section 3.4).

3.1 Scaling the Erlang VM

The Erlang VM was initially designed as a machine to support cooperative con-
current execution of processes (“green threads”) on physical machines with a
single CPU. Since 2006, the Erlang VM has been extended to support Symmet-
ric MultiProcessing (SMP) in the form that is commonly found these days in
multicore machines. The goal has been to focus on stability while giving incre-
mental performance improvements in each release. This approach has worked
well for the important class of high-availability server software running on ma-
chines with up to 16 cores, but needs significant extensions to achieve scalability
on bigger multicore machines.

In the RELEASE project we aim to re-design and improve some core as-
pects of Erlang’s VM so that it becomes possible for applications to achieve
highly scalable performance on high-end multicore machines of the future with
minimal refactoring of existing applications. Our goal is to push a big part of
the responsibility for achieving scalability from the application programmer to
the VM. In particular, we will investigate architectural changes and alternative
implementations of key components of Erlang’s VM that currently hinder scal-
ability of applications on large multicore machines. A key consideration is to
design scalable components without sacrificing crucial aspects of the existing ar-
chitecture such as process isolation, high-reliability, robustness and soft real-time
properties.
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To achieve these goals, we will begin our work by a detailed study of the
performance and scalability characteristics of a representative set of existing
Erlang applications running on the current VM. This will help us both to identify
the major scalability bottlenecks and to prioritize changes and extensions of the
runtime system and of key VM components. Independently of the results of
this study however, there are parts of the VM which could definitely benefit
from extensions or redesign. One of them is the Erlang Term Storage (ETS)
mechanism.

Although Erlang processes do not share any memory at the language level,
at the implementation level, the Erlang VM provides built-ins that allow pro-
cesses to store terms in shared global data structures, called ETS tables, and to
destructively modify their contents. Currently, many Erlang applications make
extensive use of this mechanism, either directly in their code or indirectly via
using in-memory databases such as Mnesia [3]. With the current implementation
of ETS, when the number of processes gets big, an access to these tables becomes
serialisation points for applications and hinder their scalability. Moreover, due
to the nature of the garbage collector currently employed by the Erlang VM, an
access to terms in ETS tables requires a physical copy of the term from the table
to the heap of the process. We will investigate scalable designs of ETS tables
that avoid these performance bottlenecks. In addition we will experiment with
runtime system organisations and design language built-ins that avoid the need
for copying data from ETS tables to the process-local memory areas when it is
provably safe to do so.

In the current Erlang VM processes allocate the majority of their data in
process-local memory areas. Whenever processes need to communicate, they
must explicitly copy their data from the heap of the sender to that of the re-
ceiver. The processes also need to wait to get rescheduled when execution reaches
a receive statement with no appropriate messages in the process mailbox. We will
design and investigate scalable runtime system architectures that allow groups
of processes to communicate without the need for explicit copying. We will also
develop the runtime support for processes to temporarily yield to their appro-
priate senders when reaching a receive statement that would otherwise block.
One possible such architecture is a clustered shared heap aided by the presence
of language constructs such as fibers available in languages like C++.

To identify “frequently-communicating processes” and to guide the VM sched-
ulers a scalable design of the Erlang VM needs to be supported both by language
extensions and by static and dynamic analysis. A significant effort in this task
is not only to design and implement the analysis, but also to integrate it in the
development environment in a smooth and seamless way. No matter how scal-
able the underlying VM will get, large scale applications will need tool support
to identify bottlenecks (Section 3.4). Finally, to test the scalability of our imple-
mentation and to enable a case study we will port the Erlang VM to a massively
parallel platform. Our current plan is to use a Blue Gene/Q machine. This plan
may change, or be extended to include more platforms, if we gain access to more
powerful such machines during the duration of the project.
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3.2 Scaling the Erlang Programming Model

We will extend both Erlang, to produce Scalable Distributed (SD) Erlang, and
the associated OTP library. The SD Erlang name is used only as a convenient
means of identifying the language and VM extensions as we expect them to
become standard Erlang in future Erlang/OTP releases.

Controlling Connections. The scalability of a distributed Erlang system is
constrained by the transitive sharing of connections between all nodes and by
explicit process placement. SD Erlang will regain scalability using layering, and
by controlling connection locality by grouping nodes and by controlling process
placement affinity.

Process Placement. Currently the Erlang distribution model permits explicit
process placement: a process is spawned on a named node. Such a static, di-
rective mechanism is hard for programmers to manage for anything other than
small scale, or very regular process networks. We propose to add an abstraction
layer that maintains a tree of node groups, abstractly modelling the underlying
architecture. We will provide mechanisms for controlling affinity, i.e. how close
process must be located, e.g. two rapidly communicating processes may need to
be located in the same node. We will also provide mechanisms for controlling
distribution, i.e. how far the process must be from the spawning process. For
example, two large computations, such as simulation components, may need to
be placed on separate clusters.

Scaling Reliability. Erlang/OTP has world leading language level reliability.
The challenge is to maintain this reliability at massive scale. For example, any
node with a massive number of connections should be placed in a different node
group from its supervisor. A new OTP principle could be to structure systems
with the supervision tree preserving this property.

Performance Portability. The abstract computational control mechanisms
are not strongly related to a specific architecture. As far as possible we intend
to construct performance portable programs, and computational patterns, by
computing distance metrics for the affinity and distribution metrics. Moreover,
locality control enables us to use layering as a principle to structure systems:
for example, the control processes for a layer appearing in a different group
from the controlled processes. This facilitates performance portability as the top
layers can be refactored for the new architecture while preserving the lower layers
unchanged.

Scalable and Portable OTP. Some OTP principles and behaviours will need to
be extended with new scalable principles, and perhaps to some extent redesigned
and refactored to control locality and support layering. The supervisor group
discussed above and the control layering are examples of new scalable principles.

3.3 Scalable Virtualisation Infrastructure

Given the aim of the RELEASE project to develop a model of participating clus-
ters, it is logical to also explore the possibility of creating super-clusters of on-
demand clusters provisioned from competing Cloud providers. This would make
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it possible to cost-optimise large clusters by matching capability profiles against
the requested work, and combining groups of instance types, possibly from dif-
ferent providers, into a larger grid. The complexities of running a computing
task across such a cluster generally fall into the categories addressed within the
RELEASE project: providing a layer of distribution transparency across coop-
erating clusters; monitoring neighbouring clusters and recovering from partial
failures; and tolerance to latency variations across different network links.

A possible small-scale use for a Cloud cluster broker could be to act as
a “Pricerunner” for on-demand computing resources. For Erlang Solutions, it
is a natural extension of their Hosted Continuous Integration and Testing as a
Service offerings (SWARM), where the system can match the computing needs of
different build-and-test batches against availability and pricing of virtual images
from different providers. In the context of Hosted Continuous Integration, this
capability can also be used to simulate both server- and client-side, using different
capabilities, and possibly different providers, for each. It needs to be easy to
configure and automate.

The infrastructure that we construct will be novel as few cloud computing
providers today offer a powerful enough API for this task. For this reason, we will
build our own virtualisation environment, e.g. based on the Eucalyptus Cloud
software, which is API-compatible with Amazon EC2, but available as open
source.

3.4 Tool Support for Developing Reliable Parallel Software

The Erlang programming model provides abundant concurrency, with no theo-
retical limit to the number of concurrent processes existing – and communicating
– at any particular time. In practice, however, there can be problems in the ex-
ecution of highly concurrent systems on a heterogeneous multicore framework.
Two particular difficulties are, first, balancing of computational load between
cores. Each Erlang process will run on a single core, and a desirable property of
the system is that each core is utilised to a similar extent. Secondly, there may be
bottlenecks due to communication. Each process executes on a single core, but a
typical process will communicate with other processes which are placed on other
cores, and in a large system this can itself become a bottleneck. Using more cores
can ease load balancing, but communication bottlenecks may be alleviated by
keeping related processes close together, potentially on the same core, but these
two are in tension.

We will supply tools that can measure and visualise performance in a number
of different ways. The Erlang VM is equipped with a comprehensive, low-level
tracing infrastructure on which other tools can be built. DTrace also provides
dynamic tracing support at the operating system level on a number of Unix
platforms, complementing the built-in facilities. Because of the volume of data
generated, we will need to ensure that local monitoring and analysis are per-
formed, leveraging the locality properties of the running system. The tools will
be built in sequence. First we will develop textual reports and graphical visuali-
sations for off-line monitoring, secondly, these will be generated as snapshots of



12 Olivier Boudeville, Francesco Cesarini et al.

a running system, and finally we will build tools to support interactive, real-time
on-line system monitoring.

For SD Erlang to be taken up in practice, it will be essential to provide users
with a migration path from Erlang: using the Wrangler refactoring platform
we will provide the infrastructure for users to migrate their programs to SD
Erlang, and moreover provide decision-support tools suggesting migration routes
for particular code. Finally, we will supply tools to debug concurrency bugs (or
Heisenbugs) in SD Erlang programs, and to develop an intelligent debugger based
on saving partial histories of computations.

4 Case Studies

The case studies will demonstrate and validate the new reliable massively paral-
lel tools and methodologies in practice. The major studies using SD Erlang and
the scalable infrastructure are large-scale discrete simulations for EDF, i.e. 107

model instances, and dynamically scalable continuous integration service for Er-
lang Solutions. Key issues include performance portability, scalability and relia-
bility for large-scale software. We will also investigate the feasibility of impacting
dominant programming models by adding our scalable reliability technologies to
an Actor framework for a mainstream programming language, such as Java.

EDF Simulation. The goals of this first case study are to enhance the relia-
bility and scalability of an existing open-source simulation engine, Sim-Diasca
that stands for “Simulation of Discrete Systems of All Scales”. Sim-Diasca is a
general-purpose engine dedicated to all kinds of distributed discrete simulations,
and currently used as the corner stone for a few simulators of smart metering
systems. The increased scalability will enable Sim-Diasca to execute simulations
at an unprecedented scale by exploiting large-scale HPC resources, clusters or
Blue Gene supercomputer that in total provide 105 cores.

Currently, Sim-Diasca is designed to halt if any node fails during a simu-
lation. The goal is to make the engine able to resist to the crash of up to a
pre-determined number of computing nodes, e.g. 3 nodes. This is a twofold task:

– The main part of the task is to add application-level fault tolerance to the
engine, so that the engine is able to store its state based on triggers, e.g. wall
clock durations elapsed, simulation intermediate milestone met, in such a way
that state is spread over all the computed nodes involved. Thus, a distributed
snapshot is to be created, and the state of a given node must be duplicated
to k other nodes depending on the targeted k-reliability class, either in RAM
or on a non-volatile memory, e.g. local files, a distributed file system, or a
replicated database. This check-pointing is meant to allow for a later restart
on a possibly different resource configuration.

– The second part of the task is to integrate the lower-level mechanisms for
reliability provided by SD Erlang. Some mechanisms will be transparent,
whereas others will be used as building blocks for the first part of the task.
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The distributed snapshot/restart feature will be implemented using a trigger,
e.g. every N simulation ticks all the attributes of all the simulation instances are
replicated on k other nodes. This requires that simulation agents like the time
managers and data-loggers have means of serialising their state for future re-use.
The main difficulty is to do the action for all model instances.

Tolerating the common case of losing a “slave” node at the leaf of the simu-
lation tree is the basic requirement. More advanced challenges to be investigated
include the following:

– Tolerating the loss of intermediate nodes, or even the root node. For the
latter case consensus and leader election are required, and may be generic
reliability mechanisms for Sim-Diasca.

– The dynamic addition of nodes that naturally follows from tolerating the
loss of nodes.

– Supporting instance migration, for example, for planned down-time or load
balancing.

Target platforms include both large clusters such as the Blue Genes and
multicore cards like Tilera. The advantages of the latter are ready access and
local administration.

Continuous Integration Service. The second case study will be to integrate the
support for on-demand, capability-driven heterogeneous super clouds into Erlang
Solutions’ Continuous Integration framework, SWARM. We envisage integrating
up to 4 Amazon EC2 clusters ranging from small, e.g. four 1GHz cores, to
large, e.g. hundreds of 3GHz cores. To meet client requirements we will also
include in-house clusters, such as bespoke embedded device clusters, e.g. 20 ARM
cores, or clusters of dedicated machines currently not available in virtualised
environments.

Erlang Solutions has a dynamic stream of customer projects and the ex-
act configurations will depend on the clients’ use cases, but already, prospective
clients of SWARM include massively scalable NoSQL databases, multisite instant
messaging systems and middleware for nation-wide trading infrastructures. Er-
lang Solutions is also currently developing ad-hoc networking solutions for mobile
devices. We plan to explore the potential of Hosted Continuous Integration in
all these areas, and derive from that experience what a common provisioning
framework for heterogeneous clusters should look like.

Scalable Reliability for a Mainstream Actor Framework. The goal of this study
is to evaluate how the scalable reliable concurrency oriented paradigm we will
develop can be effectively applied to mainstream software development. We will
investigate the feasibility and limitations of adding SD Erlang scalability con-
structs to a popular Actor framework for a dominant language. The investiga-
tion will focus on an open source framework with an active user base. One such
framework that meets the requirements is Kilim for Java [10].
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5 Progress So Far

In the first six months of the RELEASE project we have made the following
progress [36].

We have started to design SD Erlang by making an overview of architecture
trends, possible failures, and Erlang modules that might impinge on Erlang
scalability [37]. We have formulated the main design principles, and analysed
in-memory and persistent data storage mechanisms. We also have developed an
initial SD Erlang design that includes implicit process placement and scalable
groups to reduce node connections.

We have started to benchmark and trace multicore systems using both the
built-in Erlang tracing and DTrace for Unix systems. We are also compiling
a set of programs for Erlang and in particular Distributed Erlang, so that we
can benchmark the performance of multicore SD Erlang on a set of practical
problems [38].

We have produced a survey of the state-of-the-art cloud providers and man-
agement infrastructures. The survey is a foundation for the initial work on pro-
viding access to cloud infrastructure for different tasks, such as system building,
testing and deployment. We have added a few useful features to Sim-Diasca to
ease troubleshooting, e.g. a distributed instance tracker. We are also working on
a scalable simulation case that can be used for benchmarking purposes.

6 Conclusion

The RELEASE project intends to scale Erlang’s concurrency-oriented program-
ming paradigm to build reliable general-purpose software, such as server-based
systems, on massively parallel commodity hardware. We outline the state of the
art (Section 2), and then explain how we plan to tackle the challenge at the
following three levels. We are evolving the Erlang VM for large scale multicore
systems (Section 3.1). We are evolving the language to Scalable Distributed (SD)
Erlang, and adapting the OTP framework to provide both constructs like locality
control, and reusable coordination patterns (Section 3.2). We are developing a
scalable Erlang infrastructure to integrate multiple, heterogeneous clusters (Sec-
tion 3.3). To support these activities we are developing tools to enable program-
mers to understand the behaviour of large scale Erlang systems, and to refactor
standard Erlang programs into SD Erlang (Section 3.4). We have outlined how
case studies will be used to investigate and validate the new reliable massively
parallel tools and methodologies in practice (Section 4). Finally, we have briefly
outlined our initial progress (Section 5). We look forward to reporting on the
progress of the project in the years to come.
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