
Improving the Network Scalability of Erlang

Natalia Chechina1,a, Huiqing Lib, Amir Ghaffaria, Simon Thompsonb, Phil
Trindera

aSchool of Computing Science, The University of Glasgow, Glasgow, UK, G12 8QQ
bSchool of Computing, University of Kent, Canterbury, UK, CT2 7NF

Abstract

As the number of cores grows in commodity architectures so does the like-
lihood of failures. A distributed actor model potentially facilitates the de-
velopment of reliable and scalable software on these architectures. Key com-
ponents include lightweight processes which ‘share nothing’ and hence can
fail independently. Erlang is not only increasingly widely used, but the un-
derlying actor model has been a beacon for programming language design,
influencing for example Scala, Clojure and Cloud Haskell.

While the Erlang distributed actor model is inherently scalable, we demon-
strate that it is limited by some pragmatic factors. We address two network
scalability issues here: globally registered process names must be updated on
every node (virtual machine) in the system, and any Erlang nodes that com-
municate maintain an active connection. That is, there is a fully connected
O(n2) network of n nodes.

We present the design, implementation, and initial evaluation of a con-
servative extension of Erlang – Scalable Distributed (SD) Erlang. SD Erlang
partitions the global namespace and connection network using s groups. An
s group is a set of nodes with its own process namespace and with a fully
connected network within the s group, but only individual connections out-
side it. As a node may belong to more than one s group it is possible to
construct arbitrary connection topologies like trees or rings.

∗Corresponding author. URL: http://www.release-project.eu/, Fax: +44
(141) 330-4913.

Email addresses: Natalia.Chechina@glasgow.ac.uk (Natalia Chechina),
H.Li@kent.ac.uk (Huiqing Li), Amir.Ghaffari@glasgow.ac.uk (Amir
Ghaffari), S.J.Thompson@kent.ac.uk (Simon Thompson),
Phil.Trinder@glasgow.ac.uk (Phil Trinder)

Preprint submitted to Journal of Parallel and Distributed Computing August 26, 2015

We present an operational semantics for the s group functions, and outline
the validation of conformance between the implementation and the semantics
using the QuickCheck automatic testing tool. Our preliminary evaluation
in comparison with distributed Erlang shows that SD Erlang dramatically
improves network scalability even if the number of global operations is tiny
(0.01%). Moreover, even in the absence of global operations the reduced
connection maintenance overheads mean that SD Erlang scales better beyond
80 nodes (1920 cores).

Keywords: distributed system, Erlang, actor model, operational semantics,
validation, conformance, QuickCheck, testing

1. Introduction

Erlang (1) is a distributed actor-based functional programming language.
The actor model dates from 1973 (2). In the model a system is represented by
community of actors, where actors are independent and interactive entities
whose interactions are defined by asynchronous message passing. The model
is inherently concurrent due to actors being self-contained – every actor has a
state that is not shared with other actors, and hence may fail independently
from each other. Some of the early actor-based languages are as follows:
E (3), Erlang (4), and Smalltalk (5). An overview of, and discussion on, the
first actor languages can be found in (6).

The Erlang concurrency model is based on share nothing message passing
between independent actors or processes. Because of this, it can support
parallelism and reliability directly. The uptake of Erlang is increasing around
the world and broadening from its telecom base into other sectors including
finance, database, messaging, and embedded systems. Erlang concurrency
differs from many other programming languages in that it is handled by the
language and not by the ‘host’ operating system (7). The concurrency is
based on the light-weight processes that are easy to create and destroy, and
inexpensive message passing between processes. The language follows the
functional paradigm in that variables are single-assignment: once a value
is assigned to an instance of a variable it cannot subsequently be changed.
Distributed actor programming is distinctive as it is based on highly-scalable
lightweight processes that share nothing. Erlang/OTP provides high-level
coordination with concurrency and robustness built-in: it can readily support
10,000 processes per core, with transparent distribution of processes across

2

multiple machines, using message passing for communication. Moreover,
the robustness of the Erlang distribution model is provided by hierarchies
of supervision processes which manage recovery from software or hardware
errors.

Currently, Erlang/OTP (8) has inherently scalable computation and sup-
port for building reliable systems, but in practice network scalability is con-
strained by the default model of full connectivity between all distributed
Erlang Virtual Machines (VMs, also called nodes) in a system. This limits
network scalability as the system must maintain live network connections
quadratic in the number of nodes.

In the RELEASE project (9) we aim to scale Erlang’s radical distributed
actor programming paradigm to build reliable general-purpose software, such
as server-based systems, on massively parallel machines. We target reliable
scalable general purpose heterogeneous platforms. Our application area is
that of general server-side computation, e.g. web or messaging servers. This
form of computation is ubiquitous, in contrast to more specialised forms
such as traditional high-performance computing. Moreover, we target com-
putation on stock platforms, with standard hardware, operating systems and
middleware, rather than on more specialised software stacks on specific hard-
ware, e.g. highly reliable HPC hardware.

To extend the distributed actor paradigm to large-scale reliable paral-
lelism we have designed and implemented a conservative extension to the
Erlang language, Scalable Distributed (SD) Erlang, for reliable network scal-
ability. The paper is the first published description of SD Erlang s groups,
and makes the following research contributions.

1. We demonstrate the network scalability limitations of distributed Er-
lang (Section 2).

2. We define and implement s groups to reduce network connectivity by
dividing large sets of distributed nodes in reliable actor systems (Sec-
tion 3).

3. We provide an operational semantics for s groups and validate the im-
plementation against it using QuickCheck (10) (Sections 4 and 5).

4. We demonstrate that SD Erlang provides improved network scalability
on up to 257 distributed nodes (6168 cores) (Section 6).

3

2. Distributed Erlang & Scalability Limitations

2.1. Distributed Erlang

Distributed Erlang was introduced to enable Erlang nodes placed on the
same or different physical machines to work together. By default the system
aims to maintain a fully connected network of nodes by means of transitivity,
i.e. when node N1 connects to node N2 it will also automatically connect to
all nodes N2 is connected to, and visa versa.

It is possible to override the default distributed Erlang connection transi-
tivity and namespace management policies, for example, by using -connect
all false flag. Many applications need to do so to enhance performance

when scaling, e.g. Spapi-router (11), Megaload (12). However, transitive
connections and shared namespace are an important feature of distributed
Erlang because they support fault tolerance and elasticity. We first explain
the type of fault tolerance we mean here. If a process (let us call it a master
process) is globally registered then other processes that want to send it a
message do not need to know its pid, only the name. In case the master
process fails it will be immediately unregistered, so all nodes will be notified
of the failure. When the master process is re-started and re-registered using
the same name, its pid changes but other processes can continue to use its
name to send messages. So, the frequency of global name registration usually
depends on the frequency of the failure of globally registered processes. By
elasticity we mean an effortless scaling (from a programmer’s point of view)
of the number of nodes up and down. That is, if a node fails, all connected
nodes are notified of the failure. When a new node is added to the system it
gets connected to all its nodes and automatically receives information about
globally registered names.

In this paper we discuss network scalability limitations of the default set-
up for distributed Erlang. The s groups we propose in Section 3 are designed
to preserve the transitivity and the shared namespace of distributed Erlang
while enabling scalability of applications.

In distributed Erlang the connections and namespace of a node are defined
by both the node affiliation to a global group and by the node type, namely
hidden or normal. By a namespace we mean a set of names of processes
replicated on a group of nodes and treated as global in that group. The
name is either registered on all nodes or on none. Global name registration
is mainly used to provide reliability. For example, a master process that
communicates with worker processes from different nodes may need to be

4

globally registered, then worker processes communicate with it by name,
rather than by process id (pid). If the master process fails, we restart and
re-register it using the same name, and hence the worker processes can still
communicate with the new master.

If a node is free, i.e. it belongs to no global group, the connections and
the namespace only depend on the node type. A free normal node has transi-
tive connections and shares a common namespace with all other free normal
nodes. A free hidden node has non-transitive connections with all other nodes
and every hidden node has its own namespace. A global group node can be-
long to only one global group. Independently of its type – normal or hidden
– a global group node has transitive connections with the nodes from the
same global group and non-transitive connections with other nodes.

In Figure 1 we show transitive and non-transitive connections between
different types of nodes where nodes N1, N2, N3, N4 are free normal nodes,
nodes H5, H6 are free hidden nodes, and nodes S7, S8, S9, S10, S11, S12,
S13, S14 are global group nodes. Nodes S7, S8, S9, S10 are in global group
G1 and nodes S11, S12, S13, S14 are in global group G2. The lines between
the nodes represent different types of connections: a solid line denotes a
transitive connection, and a dotted line denotes a non-transitive connection.

Figure 1: Types of Connections between Different Types of Nodes in
Distributed Erlang

5

2.2. Scalability Limitations of Distributed Erlang

The main two network scalability limitations of distributed Erlang that
led to introducing s groups are global name sharing and transitive connec-
tions.

Global Name Sharing. To analyse the effect of global operations on the
network scalability of distributed Erlang systems we have conducted exper-
iments using the DEbench benchmarking tool (13) a P2P scalability tool
based on Basho Bench (14). Nodes are interconnected, and every node runs
on a separate host and has its own copy of DEbench. In the experiments we
measure throughput depending on the number of nodes up to 100 (Figure 2),
and we only use four operations: two local operations (spawn and RPC), and
two global operations (name registration and unregistration). The percent-
age of global operations ranges from 0% to 0.1%. The results show that
even a very small percentage of global operations significantly reduces sys-
tem throughput, e.g. 0.005% of global operations prevents a linear increase
of the throughput beyond 60 nodes.

Fully Connected Network. Maintaining a fully connected network between
N nodes requires N(N − 1)/2 or O(N2) connections. In distributed Erlang
these are both live TCP/IP keepalive messages to maintain the connection,
and distributed Erlang heartbeats to monitor the nodes. Clearly, as the num-
ber of nodes grows this places a load on the communication infrastructure.
We analyse the network scalability of the Riak reliable NoSQL DataBase

Figure 2: Impact of Percentage of Global Operations on Scalability

6

Figure 3: Network Scalability of Riak DBMS

Management System (DBMS) (15), and found that Riak 1.1.1 does not scale
beyond 60 nodes. Figure 3 shows Riak 1.1.1 throughput as we increase the
number of nodes from 10 to 100 (one node per host). We have investigated
possible causes of the network scalability limitations and shown that neither
disc, nor RAM, nor network limit scalability. Although Riak is very com-
plex we find good reasons to believe that the number of connections limit
scalability (16).

3. Scalable Group Design and Implementation

Scalable Distributed (SD) Erlang is a modest, conservative extension
of distributed Erlang. SD Erlang introduces the following two concepts
to improve scalability of distributed Erlang applications: scalable groups
(s groups) and semi-explicit placement. S groups aim to reduce the number
of connections maintained by nodes and hence the size of shared namespace.
Semi-explicit placement aims to semi-automate the choice of an appropriate
target node when spawning a process by introducing node attributes and
communication distances. In this paper we only cover research related to the
s group part of the SD Erlang: essentially we address the question of how
to scale a network of Erlang nodes by reducing the number of connections

7

between the nodes. A discussion of semi-explicit placement can be found
in (17).

The design of SD Erlang is guided by the following principles for reliable
network scalability. The principles include concepts that we want to either
preserve or avoid when scaling distributed Erlang, namely (a) preserving the
Erlang philosophy and programming idioms; (b) minimal language changes,
by minimizing the number of new constructs and reusing the existing con-
structs; (c) keeping the Erlang/OTP reliability model unchanged as far as
possible, so maintaining concepts of linking, monitoring and supervision.

3.1. Scalable Group Design

Not only does a fully connected graph of Erlang nodes imply a quadratic
O(N2) number of active TCP/IP connections, but globally registered names
are replicated on all nodes, and the name registration operations are global
and synchronous, e.g. register name/2 is performed either on all nodes
or on none. The larger the network of Erlang nodes the more expensive it
becomes for each node to periodically check connected nodes and keep up-to-
date replications of global names. We propose overlapping scalable groups
(s groups), where nodes transitively connected with other nodes within their
s groups, and non-transitively with other nodes.

In SD Erlang nodes with no asserted s group membership belong to a
notional group G0 that follows distributed Erlang rules and hence allows
backward compatibility. By backward compatibility we mean that when
nodes run the same version of Erlang VM independently of their usage of
s groups the nodes are able to communicate with each other. Therefore,
s groups may be introduced to improve the network scalability of existing
distributed Erlang systems.

To demonstrate transitive and non-transitive connections in SD Erlang
we consider the following example. Assume we start six free normal nodes:
A, B, C, D, E, F , then the nodes belong to the notional group G0 (Fig-
ure 4(a)). Note that a node belongs to the group G0 only when this node
does not belong to any s group. Assume also that nodes are interconnected;
here, the fully connected network of Erlang nodes is not compulsory and is
for a demonstration of transitive connections only. First, on node A we cre-
ate a new s group G1 that consists of nodes A, B, and C. When nodes A,
B, and C become members of the s group they keep connections with nodes
D, E, F but now these connections are non-transitive. We then disconnect
the nodes of s group G1 from the nodes of group G0 using the function

8

Figure 4: Connections in s groups

erlang:disconnect node(Node) (Figure 4(b)). After that on node C we
create an s group G2 that consists of the nodes C, D, and F . The nodes D
and F now have non-transitive connections with the node E. We disconnect
nodes D and F from node E. Figure 4(c) shows that node C does not share
information about nodes A and B with nodes D and F . Similarly, when
nodes A and F establish a direct connection they do not share the connec-
tion information with each other (in Figure 4(d) a dotted line represents a
non-transitive connection). Note, however, that node disconnections are not
compulsory, and are included here for the purposes of demonstration.

3.1.1. Design Alternatives

Before introducing s groups we considered grouping nodes in hierarchical,
overapping and partitioned groups. To choose the most appropriate approach
we took into account the following principles.

9

• Preserving the distributed Erlang philosophy that any node can be
directly connected to any other node.

• Dynamic adding and removing nodes from groups.

• Enabling nodes to belong to multiple groups.

• A simple mechanism.

A hierarchical approach prevents a node from being a member of differ-
ent groups and also prevents there being direct connections between nodes
from different levels and subgroups. We have therefore implemented overlap-
ping s groups, as this approach seems to best satisfy the Erlang philosophy
and our goals. In addition, both overlapping and partitioned groups can be
implemented using overlapping s groups, so that we have enough generality
with this choice.

Joe Armstrong (18) speculated about storing global data using an ap-
proach based on Distributed Hash Tables (DHTs), e.g. Kademlia (19) and
Tapestry (20). In this case a reduction of the namespace and the number of
connections would be achieved through a change of routing algorithm. That
is, instead of establishing direct connections, nodes would communicate with
each other via “hash close” nodes, and global names would be also stored
on “hash close” nodes. However, implementing this approach would mean
going against established Erlang philosophies such as “any node can be di-
rectly connected to any other node”. It would also mean putting a restriction
on developers, forcing them to use a particular network configuration. But
most importantly, we do not know in advance how effective remote super-
vision will be (i.e. supervising a process via other processes due to a lack
of direct connection between nodes on which the processes reside) and im-
pact of extra load on routing nodes on the performance. Whereas using the
SD Erlang s groups the DHT approach could be implemented and analysed
systematically before the actual implementation.

The idea of SD Erlang s groups is similar to the distributed Erlang hid-
den global groups in two ways: (a) each s group has its own namespace, and
(b) transitive connections are only with nodes from the same s group. The
differences from hidden global groups are that (a) a node can belong to mul-
tiple s groups which implies a different synchronisation mechanism, and (b)
s groups can be modified dynamically (21). The functionality of free nodes in
SD Erlang is the same as it is in distributed Erlang. Table 1 provides a sum-
mary of types of connections and a division of the namespaces in distributed
Erlang and SD Erlang.

10

No. Grouping Type of Connections Namespace
Distributed Erlang

1 No grouping All-to-all connections Common
2 Global groups Transitive connections within a global group,

non-transitive connections with other nodes
Partitioned

Scalable Distributed Erlang
1 No grouping All-to-all connections Common
2 S groups Transitive connections within an s group, non-

transitive connections with other nodes
Overlapping

Table 1: Types of Connections and Namespace

The notion of s groups is also similar to that of MPI communicators (22)
but while an MPI communicator groups processes, an s group groups Erlang
nodes. Another difference is that s groups aim to reduce common names-
pace and transitive connections, but, unlike MPI communicators, impose
no other limitations or restrictions on node communications. In addition
when s groups are arranged in a hierarchical manner one can find similari-
ties between Erlang nodes that belong to a number of s groups (let us call
them gateway nodes) and super-peers, i.e. nodes that act simultaneously as
a server and a peer (23). However, in SD Erlang a gateway node having
a super-peer functionality depends on an application and this role is not
imposed by s groups.

3.1.2. S group Implementation

In SD Erlang connections and data replication between nodes that be-
long to the same s group are handled by the following two Erlang processes:
global name server and s group. These processes are present on every
node and are started when the node is launched. The s group process is
started from s group module and is responsible for keeping information
about s groups. The global name server process is started from global

module, and is responsible for keeping connections and common data on the
nodes identified by the s group process.

A node can become a member of an s group either dynamically using
s group:new s group/1,2 functions (Section 3.1.3) or at launch using the
-config flag and the .config file. For example, Listing 1 presents the
configuration of node C if nodes in Figure 4(d) join the s groups at launch.

11

Listing 1: S group configuration for node C in Figure 4(d)

[{kernel,[{s_groups,[
{group1,normal,[’nodeA@glasgow.ac.uk’,’nodeB@glasgow.ac.uk’,

’nodeC@glasgow.ac.uk’]},
{group2,normal,[’nodeC@glasgow.ac.uk’,’nodeD@glasgow.ac.uk’,

’nodeE@glasgow.ac.uk’]}]}]}].

The configuration file may contain information either about the s groups
of a particular node or about the whole system. In the latter case the node
is aware of the remote s groups and may interact with processes registered
there (Section 3.1.4). That said, information from .config file about remote
s groups must used with caution because it is not updated during runtime and
may be inconsistent with the actual group structure. We have introduced
this functionality to explore the opportunities and challenges of dynamic
configuration update but this has not been implemented yet. See further
discussion in Section 8.2.

The SD Erlang implementation and measurements we present in this
paper are based on Erlang/OTP 17.0 and 17.4. We call SD Erlang an ex-
tension because it only makes some changes in Erlang/OTP modules, but
does not change Erlang VM. In particular in lib/kernel/src/ directory
SD Erlang replaces global group.erl module with s group.erl mod-
ule to group nodes and modifies the following four modules: global.erl,
global search.erl, kernel.erl, net kernel.erl. Instructions on how
to build SD Erlang can be found in http://www.dcs.gla.ac.uk/research

/sd-erlang/.
Erlang code that uses neither global groups nor s groups can be run on

both distributed Erlang and SD Erlang. However, it is not advisable to
use both types of nodes in the same application due to a modification of
Erlang/OTP modules that handle connections.

3.1.3. S group Functions

In this section we discuss three s group functions related to grouping
Erlang nodes: creating a new s group, removing nodes from an s group,
and listing own and known nodes. The types of arguments in the functions
below are as follows (24): Name::term(), Pid::pid(), Node::node(),

SGroupName::group name(), Reason::term(), Msg::term(). The de-
scription of the remaining six functions, such as deleting an s group, adding

12

Function Description
new s group([Node]) Creats new s groups
new s group(SGroupName, [Node])
delete s group(SGroupName) Deletes an s group
add nodes(SGroupName, [Node]) Adds nodes to an s group
remove nodes(SGroupName, [Node]) Removes nodes from an s group
s groups() Returns a list of all s groups known to

the node
own s groups() Returns a list of s group tuples of the

s groups the node belongs to
own nodes() Returns a list of nodes the node shares

namespaces with
own nodes(SGroupName) Returns a list of nodes from the given

s group

Table 2: Summary of S group Specific Functions

nodes to an s group, listing the nodes of own and known s groups, synchro-
nisation of nodes, and providing node information can be found in (21).

A summary of modified and new functions from global and s group mod-
ules is presented in Tables 2 and 3; some of these functions we discuss in detail
in Sections 3.1.3 and 3.1.4. Functions from module global have identical
functionality on free nodes in distributed Erlang and SD Erlang.

Creating an S group. The s group:new s group/1,2 functions are used to
create new s groups dynamically (Listing 2). A new s group is created first on
the initiating node and then the remaining nodes are added. If the initiating
node either is not in the list of s group nodes or is already a member of the
s group the function fails and an error is returned. When an s group name
is not provided the crypto:strong rand bytes(30) function is used to
generate a random s group name. The particular function was chosen as
a proof of concept, and may be replaced by an alternative one that also
guarantees high probability of name uniqueness.

Listing 2: New S Group

s_group:new_s_group([Node]) -> {SGroupName,[Node]} |
{’error’,Reason}

s_group:new_s_group(SGroupName,[Node]) -> {SGroupName,[Node]} |
{’error’,Reason}

13

global: s group:
info() info()
Returns global state information Returns s group state information
register name(Name,Pid) register name(SGroupName,Name,Pid)
Registers a name on the connected
free normal nodes

Registers a name in the given s group

re register name(Name,Pid) re register name(SGroupName,Name,Pid)
Re-registers a name on the con-
nected free normal nodes

Re-registers a name in the given s group

unregister name(Name) unregister name(SGroupName,Name)
Unregisters a name on the con-
nected free normal nodes

Unregisters a name in the given s group

registered names() registered names(node,Node)
Returns a list of all registered names
on the node

Returns a list of all registered names on the given
node
registered names(s group,SGroupName)
Returns a list of registered names in the given
s group

whereis name(Name) whereis name(SGroupName,Name)
Returns the pid of a name registered
on a free node

Returns the pid of a name registered in the given
s group

whereis name(Node,SGroupName,Name)
Returns the pid of a name registered in the given
s group. The name is searched on the given node

send(Name,Msg) send(SGroupName,Name,Msg)
Sends a message to a name regis-
tered on a free node

Sends a message to a name registered in the given
s group

send(Node,SGroupName,Name,Msg)
Sends a message to a name registered in the given
s group. The name is searched on the given node

Table 3: Summary of Global and S group Functions

Removing Nodes from an S group. The s group:remove nodes/2 function
is used to dynamically remove nodes from an existing s group (Listing 3).
The initiating node cannot remove itself, and to remove other nodes it should
be a member of the target s group.

Listing 3: Removing Nodes from an S group

s_group:remove_nodes(SGroupName,[Node]) -> ’ok’

14

After leaving an s group the node unregisters the s group names. In case
the node belongs to no other s group it becomes free. Which free node type
it is – hidden or normal – depends on the flag with which the node was
launched. If the node becomes a free hidden node then it just keeps its
existing connections. If the node becomes a free normal node then apart
from keeping its existing connections the node synchronises with other free
normal nodes with which it has connections, and as a result shares their
connections and namespace.

Listing Own Nodes. The s group:own nodes/0,1 functions are used to list
nodes with which the node shares namespaces (Listing 4). On an s group
node s group:own nodes() function returns a list of nodes from all s groups
the node belongs to. On a free node the function returns a list of connected
free normal nodes.

Listing 4: List of Own Nodes

s_group:own_nodes() -> [Node]
s_group:own_nodes(SGroupName) -> [Node]

The s group:own nodes(SGroupName) function returns a list of nodes
of the given s group. In case the node does not belong to the s group an
empty list is returned. On a free node the function returns an empty list.

3.1.4. Name Registration Functions

In this section we discuss the following three functions related to manip-
ulating registered names: name registration, listing registered names, and
searching for registered names. The functions called on s group nodes treat
free nodes as if they belong to an ’undefined’ s group. The detailed de-
scription of the remaining functions from Table 3 can be found in (21).

Name Registration. A name is registered with one of the register name/2,3

functions (Listing 5). On free nodes names are registered using global:re-

gister name(Name,Pid), and on s group nodes names are registered using
s group:register name(SGroupName,Name,Pid). Neither name nor pid
should be already registered in the given group, and only a node that belongs
to that group can register a name in it.

15

Listing 5: Name Registration

global:register_name(Name,Pid) -> ’yes’ | ’no’
s_group:register_name(SGroupName,Name,Pid) -> ’yes’ | ’no’

If for some reason we want a name to be known to the whole network,
then we cannot simply register it in every s group, because when registering
a process globally the node on which the process information is replicated
establishes a link to the node on which the process resides. This is due to
a mechanism of process monitoring. So, to avoid establishing direct connec-
tions between nodes from different s groups a programmer needs to introduce
a mechanism of forwarding messages to the s group in which the process is
registered, for example, via gateway nodes.

Listing Registered Names. A list of registered names is returned by the
registered names/0,1 functions (Listing 6). The global:registered

names() function can be used on both s group and free nodes; it returns a
list of all names registered on the calling node.

The s group:registered names/1 function can be used with one of the
following two arguments: {node,Node} and {s group,SGroupName}. With
{node,Node} argument the s group:registered names({node,Node})
function can be used on both s group and free nodes; it works similarly to
global:registered names() function but returns registered names from
the given node. If the node that owns the calling process is not connected
to the target node then a new connection is established between the nodes.
This connection will remain until, for example, it is decided to disconnect
the nodes or one of the nodes fails. With {s group,SGroupName} argument
if the node that owns the calling process belongs to s group SGroupName the
s group:registered names({s group,SGroupName}) function returns a
list of names registered in this s group; if the node does not belong to s group
SGroupName but has information about it then the node establishes a con-
nection with one of the nodes of the s group. A node may have information
about an s group but not belong to it when s groups are started at launch
(Section 3.1.2), e.g. in Listing 1 node nodeA@glasgow.ac.uk has informa-
tion about group2 but does not belong to it, and therefore, does not share
the group’s namespace.

16

Listing 6: List registered names

global:registered_names() -> [Name]
s_group:registered_names({s_group,SGroupName}) ->

[{SGroupName,Name}]
s_group:registered_names({node,Node}) -> [{SGroupName,Name}]

Searching for a Name. A registered name can be found using whereis

name/1,2,3 functions presented in Listing 7. The name search is done
sequentially, and as soon as the name is found its pid is returned. The
global:whereis name(Name) function on a free node returns a pid in case
the name is found, otherwise it returns ’undefined’. On an s group node
the function returns ’undefined’ because the s group name is not specified.

Listing 7: Searching for a Registered Name

global:whereis_name(Name) -> Pid | ’undefined’
s_group:whereis_name(SGroupName,Name) -> Pid | ’undefined’
s_group:whereis_name(Node,SGroupName,Name) -> Pid | ’undefined’

The s group:whereis name(SGroupName,Name) function first checks
the name in the node own registry. If the name is not found locally then it is
searched in other known s groups by picking a node from the given s group,
then establishing a connection with that node, and checking whether the
name is registered on that node. The function returns a pid if the name is
registered in the given group and the node is aware of that group.

The s group:whereis name(Node,SGroupName,Name) function searches
the name only on the defined node independently of the type of the initiating
node. If the initiating node and the target node are not connected, then the
connection is established.

4. Operational Semantics

To provide a formal basis for program understanding and enable reason-
ing we introduce an operational semantics for the s group operations, and
validate the library against the semantics in the following section. The se-
mantics also provides an intuition for the functions that enabled us to improve
implementation of a number of functions.

17

We start by defining an abstract state of SD Erlang systems (Section 4.1),
before defining each function as a transition between states (Section 4.2).

4.1. SD Erlang State

We define the SD Erlang system state and associated abstract syntax vari-
ables as shown in Figure 5. The state of a system is modelled as a four tuple
comprising a set of s groups, a set of free groups, a set of free hidden groups,
and a set of nodes. Each type of groups is associated with nodes and has a
namespace. An s group additionally has a name, whereas a free hidden group
consists of only one node, i.e. a hidden node simultaneously acts as a node
and as a group, because as a group a hidden node has a namespace but does
not share it with any other node. Free normal and hidden groups have no
names, and are uniquely defined by the nodes associated with them. There-
fore, group names, gr names, are either NoGroup or a set of s group names.
A namespace is a set pairs of names and process ids, pids, and is replicated
on all nodes of the associated group.

A node has the following parameters: node id identifier, node type that
can be either hidden or normal, connections, and group names, i.e. names of
groups the node belongs to. The node can belong to either a list of s groups
or one of the free groups. The type of the free group is defined by the node
type. Connections are a set of node ids.

SD Erlang State Property. Every node in an SD Erlang state is a member of
one of the three classes of groups: s group, free group, or free hidden group.
The three classes of groups partition the set of nodes. That is, for any
state (grs , fgs , fhs , nds) {Πnode idgrs, Πnode idfgs, Πnode idfhs} is a partition
of Πnode idnds where Πnode id is projection onto the node id attribute, or set
of attributes, of the tuples.

Assumptions. We make the following assumptions to simplify the state tran-
sitions. It is clearly desiarable to relax some of these assumptions in our
future work on the SD Erlang semantics (Section 8.2).

1. No two s groups have the same name, that is all s group names are
unique.

2. All node ids identify some node. More formally, for all node ids oc-
curring in some state (grs , fgs , fhs , nds), there exists some node in nds
with that node id.

3. No failures occur.

18

(grs, fgs,fhs,nds) ∈
∈ {state} ≡ {({s group}, {free group}, {free hidden group}, {node})}

gr ∈ grs ≡ {s group} ≡ {(s group name, {node id},namespace)}
fg ∈ fgs ≡ {free group} ≡ {({node id},namespace)}
fh ∈ fhs ≡ {free hidden group} ≡ {(node id ,namespace)}
nd ∈ nds ≡ {node} ≡ {(node id ,node type, connections, gr names)}
gs ∈ {gr names} ≡ {NoGroup, {s group name}}
ns ∈ {namespace} ≡ {{(name, pid)}}
cs ∈ {connections} ≡ {{node id}}
nt ∈ {node type} ≡ {Normal, Hidden}
s ∈ {NoGroup, s group name}
n ∈ {name}
p ∈ {pid}

ni ∈ {node id}
nis ∈ {{node id}}
m ∈ {message}

Figure 5: SD Erlang State

4.2. Transitions

The transitions we present in this section have the following form:

(state, command, ni) −→ (state ′, value)

meaning that executing command on node ni in state returns value and
transitions to state′. The transitions use a number of auxiliary functions that
we also define. In the following ⊕ denotes disjoint set union; and by y′ ≡⊕
{y |...} we mean that elements from all generated y sets are accumulated

in one y′ set.
In total we have implemented transitions of fifteen SD Erlang functions.

Nine of these functions change their state after the transition, whereas the
other six functions only return some state information but do not change
the state after the transition. To illustrate the semantics we present the

19

transitions for three functions previously described in Sections 3.1.3 and 3.1.4:
s group:register name/3 and s group:new s group/2 change the state,
and s group:whereis name/2 does not. The full semantics is available
in (25).

s group:register name/3. When registering name n for pid p in s group s the
pair (n, p) is added to the namespace ns of the s group only if node ni is a
member of s group s and neither n nor p appears in the s group namespace
(Listing 5 in Section 3.1.4).

((grs ,fgs , fhs , nds), register name(s , n, p), ni)

−→ (({(s , {ni} ⊕ nis , {(n, p)} ⊕ ns)} ⊕ grs ′, fgs , fhs , nds), True)

If (n,) /∈ ns ∧ (, p) /∈ ns

−→ ((grs , fgs , fhs , nds), False) Otherwise

where

{(s , {ni} ⊕ nis , ns)} ⊕ grs ′ ≡ grs

s group:whereis name/2. If node ni belongs to s group s the function returns
pid p registered as name n in the s group, undefined otherwise (Listing 7 in
Section 3.1.4). The IsSGroupSNode function returns either True or False
depending on whether node ni belongs to s group s. The FindName function
searches for the pid p of a registered name n depending on the type of the
group in which the name is registered, i.e. s group, free normal, or free hidden
group.

((grs ,fgs , fhs , nds), whereis name(s , n), ni)

−→ ((grs , fgs , fhs , nds), p) If IsSGroupSNode(ni , s , grs)

−→ ((grs , fgs , fhs , nds), undefined) Otherwise

where

{(s , {ni} ⊕ nis , ns)} ⊕ grs ′ ≡ grs

p ≡ FindName(ni , s , n, grs , fgs , fhs , nds)

s group:new s group/2. When we create a new s group s, the s group to-
gether with its nodes nis are added to the list of s groups. If before joining
the s group nodes nis are free then the nodes are removed from correspond-
ing free groups fgs and fhs. The new s group has an empty namespace
(Listing 2 in Section 3.1.3). InterConnectNodes function interconnects

20

nodes from nds identified by nis node ids. AddSGroup function adds mem-
bership of s group s to all nodes identified by nis node ids. RemoveNodes

function removes node ids identified by nis from free normal groups fgs and
free hidden groups fhs.

((grs ,fgs , fhs , nds), new s group(s , nis), ni)

−→ ((grs ′, fgs ′, fhs ′, nds ′′), (s , nis)) If ni ∈ nis

−→ ((grs , fgs , fhs , nds), Error) Otherwise

where

nds ′ ≡ InterConnectNodes(nis , nds)

nds ′′ ≡ AddSGroup(s , nis , nds ′)

grs ′ ≡ grs ⊕ {(s , nis , {})}
(fgs ′, fhs ′) ≡ RemoveNodes(nis , fgs , fhs)

5. Validation of Conformance

A specification is of little value if there is no attempt made to check that it
corresponds to its implementation. In order to ensure conformance between
the SD Erlang semantic specification and the actual implementation, we
have implemented an executable version of the semantic specification based
on the formal mathematical definition of Section 4. This work is reported in
full in (26); in this section we give an introduction to the approach, as well
as a full statement of the results. The paper (26) provides a comprehensive
account of the work and its background.

5.1. Property-based testing

The executable semantic specification is implemented within the property
and model-based random testing framework provided by the Erlang testing
tool QuickCheck (10). Property-based testing (PBT) provides a high-level
approach to testing: rather than focusing on individual test cases, in PBT
the required behaviour is specified by properties, expressed in a logical form.
For example, a function without side effects might be specified by means of
the full input/output relation using a universal quantification over all the
inputs; a stateful system will be described by means of model, which is an
extended finite state machine. The system is then tested by checking whether
it has the required properties for randomly generated data, which may be

21

inputs to functions, sequences of API calls to the stateful system, or other
representations of test cases. Since SD Erlang has a stateful API, we use the
modelling approach here.

The advantage of writing the executable semantics within the QuickCheck
testing framework is that it allows us to test the conformance between se-
mantics and implementation as well as, inter alia, the correctness of semantic
specification and the correctness of implementation. As a link between the
formal mathematical specification and the implementation, the executable
model makes it more feasible for the co-evolution of specification and imple-
mentation; it also provides us with a means to explore the new features to
be added to the library without having to provide a full implementation of
them.

5.2. The Validation Approach

The architecture of the testing framework is shown in Figure 6. First we
define an abstract state machine eqc statem client module that is the exe-
cutable version of the semantics. The source code can be found at https://
github.com/huiqing/s group/blob/master/s group eqc.erl.

The state machine defines the abstract state representation and the tran-
sition from one state to another when an operation is applied. Test case and
data generators are then defined to control the test case generation; this in-
cludes the automatic generation of eligible s group operations and the input

Figure 6: Testing s groups Using QuickCheck

22

data to those operations. Test oracles are encoded as the postcondition for
s group operations.

During testing, each test command is applied to both the abstract model
and the actual s group implementation. The application of the test command
to the abstract model takes the abstract model from its current state to a
new state as described by the transition functions; whereas the application of
the test command to the real system leads the system to a new actual state.
The actual state information is collected from each node in the distributed
system, then merged and normalised to the same format as the abstract state
representation. In order for a test to be successful, after the execution of a
test command, the test oracles specified for this command should be satisfied.
Various test oracles can be defined for s group operations; for instance one of
the generic constraints that applies to all the s group operations is that after
each s group operation, the normalised system state should be equivalent to
the abstract state.

By default, QuickCheck generates 100 test cases for each run, with each
test case consisting of a sequence of test commands. The number of test
cases to test can be changed however. Testing is deemed to be successful
if all the test cases have been passed, otherwise a test fails and a ‘shrunk’
counter-example is returned.

5.2.1. Results

The model covering the nine s group operations contains 1,100 lines of
code. So far, thousands of tests have been run using this test model. In this
section, we summarise the kinds of errors encountered during testing.

• Errors in the test code. Test code is code, hence not immune from errors.
As a result, some of the errors encountered, especially in the early stage
of the testing, were errors in the test code itself.

• Errors in the semantic specification. In this case, the actual state is differ-
ent from the abstract state after some test execution, and human exami-
nation identifies that the actual state represents the expected result.

We found two semantic errors during testing. One error was that a free
normal node was not properly removed from its original free group when
the node joins an s group; the other error was due to erroneous manip-
ulation of the gr names of a node resulting that gr names contains both
NoGroupName and an s group name.

23

• Errors in the implementation. An error in the implementation also leads
to a disagreement between the actual state and the abstract state, but in
this case the abstract state represents the expected result.

Our testing revealed two errors in the implementation. One error was due
to the synchronisation between nodes where one node was expecting a
’nodeup’ message from another node but failed to receive it after a time-
out although the other node was actually up; the other error was related
to the remove nodes operation, where a mismatch between the expected
result and actual value returned by a list search operation happened and
crashed the Erlang node.

• Inconsistency between semantics and implementation. In this case, al-
though the actual system state and the abstract state are equivalent, the
value returned by the implementation and the abstract state machine are
not always the same.

In one case the formal semantics specified that the send operation should
return ’undefined’ as the result if the message receiving process does not
exist, however the actual implementation returned a tuple with the first
element as ’badarg’ and the second element being the arguments sup-
plied; in another case the semantics specified that the unregister name

operation always returns ’True’, whereas the implementation could also
return {no, cannot unregister from remote group}.

The results show the value of the executable approach, in that we were
able not only to debug the implementation, but also to debug the formal
semantics itself, as well as the consistency between the semantics and its
implementation.

6. Preliminary Evaluation

In this section we discuss the results of the preliminary evaluation of the
SD Erlang implementation. The evaluation includes measurements with a
test harness where we can control key network scalability aspects, such as
percentage of global operations using DEbench (Section 6.1), and an analysis
of the impact of transitive connections on the scalability of a distributed
application using Orbit benchmark (Sections 6.2).

DEbench is selected for these benchmarks as it enables us to investigate
both the impact of reduced number of connections and of smaller namespaces.

24

In contrast Orbit demonstrates the impact of reduced number of connections
alone.

6.1. The DEbench Measurement Harness

To analyse the impact of global operations on network scalability of SD
Erlang we again use the DEbench tool (Section 2.2). This time we compare
distributed Erlang results with corresponding SD Erlang results when the
transaction mix contains 0.01 per cent of global operations. Recall that in
context of this paper a global operation is an operation that is applied to
all nodes of a group and treated as global in that group (Section 2.1). The
experiments are based on Erlang/OTP 17.0.

In the SD Erlang version we partition a set of nodes in such a way that ev-
ery s group has 10 nodes. Therefore, when we register a name in distributed
Erlang the name is replicated on all nodes, whereas in SD Erlang the name
is replicated on 10 nodes of a particular s group. Recall that by a global
operation we mean an operation that involves all nodes from a given names-
pace. We ran the experiments varying the number of nodes between 10 (80
cores) and 100 (800 cores). The results presented in Figure 7 show that up

Figure 7: Impact of Global Operations on Network Scalability of
Distributed Erlang and SD Erlang

25

to 40 nodes distributed Erlang and SD Erlang perform similarly, and beyond
40 nodes the throughput of distributed Erlang stops increasing, whereas the
throughput of SD Erlang continues to grow linearly.

6.2. Orbit

To evaluate the impact of reduced number of connections when intro-
ducing s groups on the network scalability of Erlang applications we have
conducted experiments using the Orbit benchmark (27), i.e. a symbolic com-
puting kernel and a generalization of a transitive closure computation. We
have chosen Orbit as a case study as it uses a Distributed Hash Table (DHT)
similar to NoSQL DBMS like Riak and standard P2P techniques. Orbit
is only a few hundred lines of code, and has a good performance and ex-
tensibility. To compute Orbit for a given space [0..X] a list of generators
g1, g2, ..., gn are applied on the initial vertex x0 ∈ [0..X] that creates new
numbers (x1...xn) ∈ [0..X]. The generator functions are applied on the new
numbers until no new number is generated. We have implemented distributed
Erlang and SD Erlang versions of Orbit (28) where neither version uses global
operations. The computation is started on the master node, and then is dis-
tributed between worker nodes.

We ran Orbit experiment on a cluster located in EDF, France, called
Athos. For the experiments we had simulataneous access to up to 257 com-
pute nodes (6168 cores) for up to 8 hours at a time. Each Athos node has
64GB of RAM and an Intel Xeon E5-2697 v2 processor with 24 cores. In
the Orbit experiments each worker node has 8 DHTs. The number of nodes
varied between 1 (24 cores) and 257 (6168 cores). The experiments are based
on Erlang/OTP 17.4.

The distributed Erlang implementation of Orbit has one master node and
the remaining nodes are workers. All nodes are interconnected.

The SD Erlang implementation of Orbit has one master node and the
remaining nodes are submasters and workers. The nodes are grouped into
sets of s groups (Figure 8). Within an s group nodes communicate directly
with each other but to reach a node outside of an s group the communica-
tion is done via the submaster nodes. The s groups reduce the number of
connections between nodes, i.e. the number of connections of a worker node
is equal to the number of worker nodes in its s group, and the number of
connections of a sub-master node is equal to the number of connections of
a worker node plus the number of sub-master nodes. Every s group has one

26

Figure 8: Communication Model in SD Erlang Orbit

submaster node and ten worker nodes. Every sub-master node has 40 gate-
way processes that perform transferring of messages between worker nodes
from different s groups.

Figures 9(a) and 9(b) compare the runtime and the speed-up of dis-
tributed Erlang and SD Erlang implementations. Every experiment was
repeated 7 times, and the median results are plotted in the diagrams. The
vertical segments depict 95% confidence interval. The speedup is a ratio be-
tween execution time on one node with one core and the execution time on
corresponding number of nodes and cores. The results show that performance
of distributed Erlang version starts degrading after 40 nodes (984 cores). SD
Erlang performs better on larger scales – beyond 80 nodes (1920 cores) –
and the performance does not degrade as the number of nodes grows. The
results confirm our expectations that on a small scale SD Erlang performs
a bit worse than distributed Erlang but the larger the scale the better SD
Erlang performs in comparison with distributed Erlang.

7. Actor Languages & Frameworks

The Erlang programming model and philosophy is widely acknowledged
as very effective. It has influenced and inspired a number of languages
and frameworks, including Akka (29), Cloud Haskell (30), APRIL (31), and
Kilim (32). The most well-known ones – Akka and Cloud Haskell – we discuss

27

(a) Network Scalability

(b) Relative Speedup

Figure 9: Impact of Transitive Connections on Network Scalability of
Distributed and SD Erlang Orbit

28

here in more details.
Akka is an event-driven middleware framework to build reliable distributed

applications (29). Akka is implemented in Scala, a statically typed program-
ming language that combines features of both object-oriented and functional
programming languages. Fault tolerance in Akka is implemented using sim-
ilar to Erlang ‘Let it crash’ philosophy and supervisor hierarchies (33). An
actor can only have one supervisor which is the parent supervisor but sim-
ilarly to Erlang actors can monitor each other. Due to the possibility of
creating an actor within a different Java VM, two mechanisms are available
for accessing an actor: logical and physical. A logical path follows parental
supervision links toward the root, whereas, a physical actor path starts at
the root of the system at which the actual actor object resides, but cannot
reference actors on other Java VMs. Like Erlang Akka does not support
guaranteed delivery. As far as we know, cluster support for Akka is only
planned to be introduced (34; 35).

Cloud Haskell (30) is a domain specific language embedded as a library
in the Haskell functional programming language (36). From Haskell the lan-
guage inherits purity, types and monads. As a pure functional programming
language Haskell provides immutability of data, and types and monads stat-
ically guarantee program properties. Similarly to Erlang the processes in
Cloud Haskell are lightweight and are central for the concurrency. In con-
trast to Erlang, Cloud Haskell allows shared-memory concurrency within a
process. The language utilises Erlang message-passing mechanism, i.e. pro-
cesses do not share data and communicate with each other only via message
passing. However, in contrast to Erlang, where messages can be sent to
process for which the sender has the address (or name) of the recipient, in
Cloud Haskell the messages are sent via two types of channels: untyped and
typed. Here, the incoming messages are matched by type. The supervision
philosophy for the fault tolerance is also borrowed from Erlang, i.e. processes
are monitored and can be restarted following a failure. (37) presents network
scalability measurements on up to 160 cores.

The above shows that Akka and Cloud Haskell are heavily influenced by
Erlang and apply many of Erlang properties and philosophy. When scaling
these languages over a set of nodes we believe the programmers will find
useful our experience of scaling Erlang. This does not mean though that
the functionality or wording should be the same to have a similar impact.
For example, such property as shared-memory concurrency within a process
should not have an effect on a scalability of a set of nodes. It may have

29

an impact on a performance of a single node or rubbish collection but as
processes are isolated from each other this should not effect processes on
remote nodes and scalability of a set of nodes in particular.

On the other hand, both Akka and Cloud Haskell do not support tran-
sitive connections, however monitoring a process on a remote node implies
a connection between the nodes and a heart-bit signal. As the number of
nodes in the system grows nodes likely to maintain a larger number of con-
nections which will have a negative impact on scalability, so a restriction of
connections to sub-groups of nodes may be advisable. The same principle ap-
plies to global namespace and global operations. Applying global operations
to a subset of nodes rather than to all nodes should significantly improve
scalability.

8. Conclusion and Future Work

8.1. Conclusion

We address the network scalability limitations of distributed Erlang (Sec-
tion 2.2) by presenting the design and implementation of SD Erlang – a small
conservative extension of distributed Erlang (Section 3). We discuss the main
aspects of s group design and implementation. That is nodes have transitive
connections with nodes from the same s groups and non-transitive connec-
tions with other nodes. Free nodes in SD Erlang have the same functionality
as in distributed Erlang. In total we introduce sixteen functions of two types:
s group functions that manipulate s groups, for example, creating an s group
and listing all s groups of a particular node, and name registration functions
that support registration of names in s groups, for example, unregistration
of a name and listing names registered in a particular s group.

We provide a semantics for s groups by defining an abstract state of SD
Erlang systems and presenting the transitions of fifteen SD Erlang functions
(Section 4). Nine of the functions change their state, whereas the remaining
six functions do not. We validate the consistency between the formal seman-
tics and the SD Erlang implementation using Erlang QuickCheck testing tool
(Section 5). Apart from validating the semantics the test enabled us to val-
idate the implementation of the SD Erlang functions, and the conformance
between the semantics and implementation. We provide the details of the
testing approach and discuss the errors that we encountered while working
on the semantics, the implementation, and the validation.

30

We provide the preliminary evaluation of SD Erlang performance com-
pared with distributed Erlang (Section 6). The results show that introduc-
ing s groups improves network scalability. We analyse the impact of global
operations on network scalability of distributed Erlang and SD Erlang appli-
cations using DEbench benchmarking tool. The experiments are conducted
on 10–100 nodes (80–800 cores). The results show that with 0.01% of global
opperations the distributed Erlang version stops scaling beyond 40 nodes
(320 cores) whereas the SD Erlang version continues to scale (Figure 7). The
impact of all-to-all connections is analysed using the Orbit benchmark. In
the experiments we utilise between 1 and 257 nodes (24 and 6168 cores). The
results show that on a small scale (up to 40 nodes or 960 cores) distributed
Erlang version of Orbit performs better than SD Erlang one, but as the num-
ber of nodes grows (beyond 80 nodes or 1920 cores) SD Erlang outperforms
distributed Erlang (Figure 9).

8.2. Future Work

We plan to proceed the work on SD Erlang in the directions outlined
below. Ultimately, we aim SD Erlang to be included in the standard Er-
lang/OTP.

Evaluation of SD Erlang reliability. To analyse SD Erlang reliability in
comparison with distributed Erlang we develop an Instant Messenger (IM)
benchmark. From the IM experiments we expect to get a better under-
standing if additional features need to be added to ensure application fault
tolerance when using s groups.

SD Erlang semantics. We plan to relax some of assumptions of the SD Er-
lang semantics discussed in Section 4.1, and in particular to consider failures.
We hope this will provide a deeper understanding of Erlang’s non-defence ap-
proach to fault tolerance.

Dynamic information updating about remote s groups. In SD Erlang
we introduced a possibility for a node to be aware of other s groups (Sec-
tion 3.1.2). Currently, this information is static and a node can get it only
via the .config file at launch. The idea is to introduce a dynamic updat-
ing of this information. We conduct this work in conjunction with the work
on semi-explicit placement (17) that also requires an up-to-date information
about the network of nodes to make reasonable placement decisions.

Patterns and properties. We analyse different SD Erlang applications
to identify common patterns and properties of s groups. The work on the
s group patterns includes introducing functions to group nodes according

31

to different structures, and identifying refactoring mechanisms for gateway
processes that route messages between nodes from different s groups. We
also work on identifying s group properties, such as the best ratio of the
number of worker nodes to the number of submaster nodes (see for example
Figure 8).

Acknowledgements. We would like to thank our RELEASE project colleagues
for technical insights. This work has been supported by the European Union
grant RII3-CT-2005-026133 ’SCIEnce: Symbolic Computing Infrastructure
in Europe’, IST-2011-287510 ’RELEASE: A High-Level Paradigm for Reli-
able Large-scale Server Software’, and by the UK’s Engineering and Physical
Sciences Research Council grant EP/G055181/1 ’HPC-GAP: High Perfor-
mance Computational Algebra and Discrete Mathematics’.

[1] J. Armstrong, Programming Erlang: Software for a Concurrent World,
Pragmatic Bookshelf, 2007.

[2] C. Hewitt, P. Bishop, R. Steiger, A universal modular ACTOR formal-
ism for artificial intelligence, in: Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1973, pp. 235–245.

[3] J. E. Richardson, M. J. Carey, D. T. Schuh, The design of the E pro-
gramming language, ACM Trans. Program. Lang. Syst. 15 (3) (1993)
494–534.

[4] F. Cesarini, S. Thompson, Erlang Programming: A Concurrent Ap-
proach to Software Development, 1st Edition, O’Reilly Media, 2009.

[5] A. Goldberg, D. Robson, Smalltalk-80: The Language and Its Imple-
mentation, Addison-Wesley, Boston, MA, USA, 1983.

[6] G. Agha, An overview of actor languages, SIGPLAN Not. 21 (10) (1986)
58–67.

[7] J. Armstrong, Erlang, Commun. ACM 53 (2010) 68–75.

[8] Ericsson AB, Erlang/OTP Efficiency Guide, System Limits, www.er-
lang.org/doc/efficiency guide/advanced. html#id67011 (2014).

32

[9] O. Boudeville, F. Cesarini, N. Chechina, K. Lundin, N. Papaspyrou,
K. Sagonas, S. Thompson, P. Trinder, U. Wiger, RELEASE: A high-
level paradigm for reliable large-scale server software, in: In Proceedings
of the 13th International Symposium on Trends in Functional Program-
ming, Vol. 7829, Springer, 2012, pp. 263–278.

[10] J. Hughes, QuickCheck testing for fun and profit, in: Practical Aspects
of Declarative Languages, Springer, 2007, pp. 1–32.

[11] SpilGames, Spapi-router, https://github.com/spilgames/spapi-router
(2014).

[12] Erlang Solutions, Megaload - The Age of Load Testing,
https://www.erlang-solutions.com/resources/webinars/megaload-
age-load-testing (2014).

[13] A. Ghaffari, Investigating the scalability limits of distributed Erlang, in:
Proceedings of the 13th ACM SIGPLAN Workshop on Erlang, ACM,
2014, pp. 43–49.

[14] Basho Technologies, Riakdocs. Basho Bench, http://docs.
basho.com/riak/latest/ops/building/benchmarking/ (2014).

[15] R. Klophaus, Riak core: Building distributed applications without
shared state, in: ACM SIGPLAN Commercial Users of Functional Pro-
gramming, ACM, New York, NY, USA, 2010, pp. 14:1–14:1.

[16] A. Ghaffari, N. Chechina, P. Trinder, J. Meredith, Scalable persistent
storage for Erlang: Theory and practice, in: Proceedings of the 12th
ACM SIGPLAN Workshop on Erlang, ACM, New York, NY, USA, 2013,
pp. 73–74.

[17] K. MacKenzie, N. Chechina, P. Trinder, Performance portability
through semi-explicit placement in distributed Erlang, in: Proceedings
of the 14th ACM SIGPLAN Workshop on Erlang, ACM, 2015, pp. 27–
38.

[18] Ericsson AB, Inside Erlang – Creator Joe Armstrong Tells His
Story, http://www.ericsson.com/news/141204-inside-erlang-creator-
joe-armstrong-tells-his-story 244099435 c (2014).

33

[19] P. Maymounkov, D. Mazieres, Kademlia: A peer-to-peer information
system based on the xor metric, in: Peer-to-Peer Systems, Springer,
2002, pp. 53–65.

[20] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, J. D.
Kubiatowicz, Tapestry: A resilient global-scale overlay for service de-
ployment, Selected Areas in Communications, IEEE Journal on 22 (1)
(2004) 41–53.

[21] N. Chechina, H. Li, P. Trinder, A. Ghaffari, Scalable SD Erlang com-
putation model, Tech. Rep. TR-2014-003, The University of Glasgow
(December 2014).

[22] J. J. Dongarra, S. W. Otto, M. Snir, D. Walker, An introduction to the
MPI standard, Tech. rep., University of Tennessee, Knoxville, TN, USA
(1995).

[23] B. Beverly Yang, H. Garcia-Molina, Designing a super-peer network, in:
Proceedings of the 19th International Conference on Data Engineering,
2003, pp. 49–60.

[24] Ericsson AB, Types and Function Specifications,
http://www.erlang.org/doc/reference manual/typespec.html (2013).

[25] N. Chechina, H. Li, S. Thompson, P. Trinder, Scalable SD Erlang re-
liability model, Tech. Rep. TR-2014-004, The University of Glasgow
(December 2014).

[26] H. Li, S. Thompson, Improved semantics and implementation through
property-based testing with QuickCheck, in: Proceedings of the 9th
International Workshop on Automation of Software Test, AST 2014,
ACM, 2014, pp. 50–56.

[27] F. Lübeck, M. Neunhöffer, Enumerating large Orbits and direct conden-
sation, Experimental Mathematics 10 (2) (2001) 197–205.

[28] RELEASE Project, Benchmarks, https://github.com/release-
project/benchmarks (2014).

[29] Typesafe Inc., Akka: Event-driven middleware for Java and Scala,
www.typesafe.com/technology/akka (2012).

34

[30] J. Epstein, A. P. Black, S. Peyton-Jones, Towards Haskell in the Cloud,
SIGPLAN Not. 46 (12) (2011) 118–129.

[31] F. G. McCabe, K. L. Clark, APRIL – agent process interaction language,
in: Proceedings of the Workshop on Agent Theories, Architectures, and
Languages on Intelligent Agents, Springer-Verlag New York, Inc., New
York, NY, USA, 1995, pp. 324–340.

[32] S. Srinivasan, A. Mycroft, Kilim: Isolation-typed actors for Java, in:
ECOOP’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 104–128.

[33] Typesafe Inc., Akka Documentation: Release 2.1 - Snapshot,
http://www.akka.io/docs/akka/snapshot/ (July 2012).

[34] D. Trabold, H. Grosskreutz, Parallel subgroup discovery on computing
clusters – first results, in: Big Data, 2013 IEEE International Conference
on, 2013, pp. 575–579.

[35] J. He, P. Wadler, P. Trinder, Typecasting actors: From Akka to TAkka,
in: Proceedings of the Fifth Annual Scala Workshop, SCALA’14, ACM,
New York, NY, USA, 2014, pp. 23–33.

[36] S. Thompson, Haskell: The Craft of Functional Programming, 3rd Edi-
tion, Addison-Wesley Publishing Company, USA, 2008.

[37] O. Batchelor, R. Green, Cloud Haskell: First impressions and applica-
tions to processing large image datasets, in: Proceedings of the 28th
International Conference on Image and Vision Computing New Zealand
(IVCNZ), 2013, 2013, pp. 412–417.

35

	Introduction
	Distributed Erlang & Scalability Limitations
	Distributed Erlang
	Scalability Limitations of Distributed Erlang

	Scalable Group Design and Implementation
	Scalable Group Design
	Design Alternatives
	S_group Implementation
	S_group Functions
	Name Registration Functions

	Operational Semantics
	SD Erlang State
	Transitions

	Validation of Conformance
	Property-based testing
	The Validation Approach
	Results

	Preliminary Evaluation
	The DEbench Measurement Harness
	Orbit

	Actor Languages & Frameworks
	Conclusion and Future Work
	Conclusion
	Future Work

