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Our motivation

• Users engage with an app in different ways — understand 
them and use them to inform the app redesign.  

• How should we identify and characterise the different 
styles of use within a population of users?  

• How does such characterisation evolve: 

• over an individual user trace? 

• over a number of sessions? 

• over days and months? 
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Case study: the AppTracker app 

• Runs in the background 

• Records opening and closing 
of apps, locking and 
unlocking the device 

• Provides charts and statistics 
about the device usage 

• Over 35K downloads
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AppTracker main menu

• Overall Usage provides a 
summary of all the data 
recorded since AppTracker 
was installed: 

✦ Most Used Apps (Top Apps)

✦ Stats
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AppTracker main menu
• Last 7 Days shows a stacked 

bar graphs of usage of the top 
5 apps during the last 7 days 
of usage. 

• Select by Period shows 
statistics by any period of 
interest, e.g. 

✦ most used app last Monday 

✦ time spent on Facebook last 
week 

✦ device usage over a day
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AppTracker state diagram
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AppTracker hypothesised behaviour
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Overview of the analysis 
• Instrument the app  

• Clean and prepare the raw logged data 

• Infer activity patterns and user weightings for given 
parameters and data sets 

• Ask questions about the patterns using probabilistic 
temporal properties and model checking in PRISM 

• Compare user weightings / patterns distributions 

• Discuss with developers to inform redesign
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Overview of the analysis 
• Instrument the app  

• Clean and prepare the raw logged data 

• Infer activity patterns and user weightings for given 
parameters and data sets 

• Ask questions about the patterns using probabilistic 
temporal properties and model checking in PRISM 

• Compare user weightings / patterns distributions 

• Discuss with developers to inform redesign

Complementary to other data 
analytics methods 

(e.g., SQL queries, visualisations)
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Instrument the app

SGLog data logging infrastructure (SUM group@GU)

User’s phone Developers’ server

event
event
event

Batch of 
timestamped
logs of events
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Prepare the raw logged data
• User traces based on 15 selected state abstractions: 

• Clean up the data: 489 user traces between Aug. 2013 - May 2014 

• Segment the session data: intervals of days of usage [0,1), [1,7), 
[7,30), [0,30), [30,60), [60,90) 

• Compute the 15x15 transition-occurrence matrix for each 
trace in a given data set

[{"deviceid":"xx:xx:xx:xx:xx:xx","totalevents":230,"firstSeen":"2013-08-20 
09:10:59","lastSeen":"2014-03-24 09:57:32","sessions":[[{"timestamp":"2013-08-20 
09:11:02","data":"TermsAndConditions"},{"timestamp":"2013-08-20 09:11:23", 
"data":"Main"},{"timestamp":"2013-08-2009:11:46","data":"TopApps"},
{"timestamp":"2013-08-20 09:11:50”,"data":"Main"}, 
{"timestamp":"2013-08-2009:11:52","data":"Last7Days"},{"timestamp":"2013-08-20 
09:11:56", "data":"Main"},{"timestamp":"2013-08-20:11:59", "data":"PeriodSelector"},
{"timestamp":"2013-08-20 09:12:04","data":"Main"},{"timestamp":"2013-08-20 
09:12:06","data":"UseStop"}],...
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Infer activity patterns

• Look for K distinct behaviours 

• Run a non-linear optimisation algorithm for parameter 
estimation to learn K admixture bigram models from transition-
occurrences matrices 

• K discrete-time Markov chains Φk — activity patterns: Φk[i,j] is 
the probability of moving from state i to state j while in Φk 

• for each user trace, a weight vector (Θ1, …, ΘK) with Θk the 
probability of using the kth activity pattern
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Activity patterns for the first 30 days
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What questions can we ask?

• An exploratory process of identifying the “good” questions: 

✦ any type of app 

✦ a particular type of app (e.g. goal-oriented apps) 

✦ a particular app 

• Find experiential questions in order to identify: 

✦ more relevant questions to ask and  

✦ most relevant states to query
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Probabilistic model checking

• Ask questions using Probabilistic Computation Tree 
Logic with rewards (rPCTL) and PRISM  

• Compare the results across: 

• all activity patterns, 

• states: TopApps, Stats, PeriodSelector, Last7Days, 
UseStop, 

• intervals of days of usage [0,1), [1,7), [7,30), [0,30), [30,60), 
[60,90)
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About PRISM

Probabilistic model checker (Birmingham & Oxford) 

• probabilistic models expressed in a high-level state-based 
language (DTMC, MDP, CTMC, etc.) 

• model checking quantitative properties expressed as temporal 
logic formulae (PCTL, CSL, PCTL*, etc.), extensions with   
costs/rewards 

✴ exhaustive analysis of all possible executions of the model
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Activity patterns in PRISM

• Generate a PRISM model for each activity pattern 

• 15 states — one for each view, including UseStop 

• reward structures for:  

• visiting a specific screen view (state) — reward value 1  

• counting button taps (steps/transitions) — reward value 1 

• What can we say about each activity pattern?
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Temporal logic properties
• General questions: 

• Likelihood of viewing a particular screen for the first time within 100 taps. 

• Average number of views of a particular screen within 20 button taps. 

• Average number of button taps to reach a particular screen view, etc. 

• More app-specific questions: 

• Probability to perform an event if always reading InfoView within 25 steps. 

• Average number of button taps to go to screen view s2 from s1. 

• Probability of repeating a specific event 50 times, etc.
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Temporal properties in rPCTL

✦ Probability to reach the state s for the first time within N steps:  

➡ P=? [!s U<=N s]

✦ Expected number of visits to the state s within N steps:  

➡ R{“r_s”}=? [C<=N]

✦ Expected number of steps to reach the state s:  

➡ R{“r_Steps”}=? [F s]

27



AppTracker hypothesised behaviour
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First month analysis: 
•  two activity patterns (K=2) 
•  Pattern 1 

Higher TopApps and Stats 
Shorter and more frequent sessions 

•  Pattern 2 
Significant results for Last7Days and 
PeriodSelector 
Longer and less frequent sessions 
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Probabilistic model checking
• For the second month data, [30,60), we need more discriminatory properties 

• More app-specific questions: 
✦ Probability to reach s from t during the same session: 

➡ filter(state, P=?[(!s & !”UseStop”) U<=N s], t)

➡ for (s, t) ∈ {TopApps, PeriodSelector, Last7Days}
2

✦ Expected number of steps to reach s from t: 

➡ filter(state, R{“r_steps”}=?[F s], t)

➡ for (s, t) ∈ {TopApps, PeriodSelector, Last7Days}
2

➡ for (s, t) ∈ {TopApps, PeriodSelector, Last7Days} × Main

➡ for (s, t) ∈ UseStop × {TopApps PeriodSelector, Last7Days}
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Probabilistic model checking

• Conclusions for K=2 — two distinct activity 
patterns labelled: 

✦ Overall viewing pattern (pattern 1) — higher level stats 
visualisations 

✦ Time-partitioned viewing pattern (pattern 2) — in-depth 
stats visualisations
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Comparing pattern distributions

Probability of a user trace to behave  
according to the Time-partitioned viewing pattern
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• First day dominated by 
app exploration 

• Interval [30,60) sees a 
rise in app exploration 

• Intervals [1,7), [7,30), 
[60,90) — more settled 
usage behaviour

K=2



Analysis for K=3, first month data
1. Overall Viewing pattern:  

• TopApps and Stats have best results for all three general properties, 

• PeriodSelector and Last7Days are absent, 

• twice as short and twice more frequent sessions than for pattern #3. 

2. ’weaker’ Overall Viewing pattern than pattern #1:  

• TopApps has poorer results than #1, and better results than Stats and Last7Days in #2, 

• PeriodSelector is absent.  

3. Time-partitioned Viewing pattern:  

• PeriodSelector has the best results, followed closely by TopApps and Last7Days. 
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Analysis for K=4, first month data

• Activity patterns: 

1. mainly TopApps Viewing 

2. mainly Stats — TopApps Viewing 

3. Time-Partitioned Viewing 

4. exclusive TopApps — UsageBarChartTopApps  

• Shorter and more frequent sessions for #1 than for #2 and #3
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Comparing pattern distributions
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First 30 days

1. Overall 
2. Time-partitioned

1. Overall 
2. weaker Overall 
3. Time-partitioned

1. mainly TopApps 
2. Stats - TopApps 
3. Time-partitioned 
4. exclusive TopApps 

and UsageBarChart

K=2 K=3 K=4



Inform the app redesign
• For K=2 no pattern is significantly 

dominant, usage is fairly distributed 
between the two patterns. 

• Session length indicative of a more 
suitable glancing-like view. 

• From 3 to 2 main viewing options ? 

1. glancing-like short interactions in a new 
Overall Usage screen 

2. longer interactions in a new Select by Period, 
including Last 7 Days and more filtering and 
querying tools
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Inform the app redesign

• Are users merely following the 
suggested paths defined by the 
interface?  

• For K=3 there is no pattern centred 
uniquely around Select by Period, but 
one centred around Last 7 Days, and 
one around both. 

• For K=4 Last 7 Days and Select by 
Period always go together, the same is 
true for K=5. 
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Inform the app redesign

• For K=4 and K=5 we uncover 
repeated switching between 
TopApps and 
UsageBarChartTopApps

• more investigatory than glancing 
behaviour 

• not just uncovering the menu 
structure, but finding unexpected 
behaviours 

• move this loop from Overall Usage to 
Select by Period ?
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Inform the app redesign

• Discovering glancing 
activity patterns for 
widget extensions on 
iOS8 and iOS9, or 
glances on the Apple 
Watch 

• Typical glancing patterns 
for AppTracker are Overall 
Viewing and TopApps-
centred patterns
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Conclusion — our contribution

• Populations of users characterised by inferred temporal 
behaviours rather than user attributes 

✦ Inference of Markov models of usage patterns from logged user 
sessions — activity patterns 

✦ Characterisation the activity patterns by probabilistic temporal 
properties using model checking 

• Analysis of a mobile app to inform developers about the 
actual use and future redesign 
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Ongoing and future work

• Developing a code environment for the analysis — Blocks 

• More apps to analyse and properties to identify: 

✦ Activity patterns combined with user attributes (timezone, device type) 

✦ Different probabilistic models, e.g., Hierarchical Hidden Markov models 

✦ Game app: Hungry Yoshi — for a richer dataset of user traces 

✦ Activity tracking/health apps: MatchFIT, Quped
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Thank you!  

Questions?

www.softwarepopulations.com

http://www.softwarepopulations.com

