Modelling scaffold-mediated interaction between the cAMP and the Raf/MEK/ERK pathway

Oana Andrei University of Glasgow joint work with Muffy Calder MOAN-CB, September 23, 2009

Outline

- Motivation
- Scaffold model
- Formal model
- Analysis
- Conclusion and perspectives

Signalling and scaffold proteins

B

С

Expected Behaviour

$Q:\stackrel{\text{PDE8A}}{\Rightarrow} \downarrow_{cAMP} \stackrel{\text{PKA}^{+}}{\Rightarrow} \uparrow_{Raf activity}$ $\stackrel{\text{PDE8A}}{\Rightarrow} \downarrow_{pRaf_{S259}}$

What is the time relation or causality between events?

Expected Behaviour

$Q:\stackrel{\text{PDE8A}}{\Rightarrow} \downarrow_{cAMP} \stackrel{\text{PKA}^{+}}{\Rightarrow} \uparrow_{Raf activity}$ $\stackrel{\text{PDE8A}}{\Rightarrow} \downarrow_{pRaf_{S259}}$

What is the time relation or causality between events?

Q₂: Pulsating behaviour

Formal model

- continuous time Markov chains with levels
- properties expressed as formulas in Continuous Stochastic Logic (CSL)
- symbolic probabilistic model checker PRISM

PRISM model

- modules for cAMP, scaffold, free PDE8A1, PP
- mass action kinetics
- information on constant rates ratios

PRISM model

The PKA activation reaction S000 + cAMP \rightarrow_{r2} S100 is modeled as follows:

• in the module for cAMP:

[activate_PKA] (cAMP > basal_camp) -> (cAMP) : (cAMP' = cAMP-1);

• in the module for the scaffold:

Continuous Stochastic Logic

- extension of non-probabilistic CTL
- probability operator P
- steady-state operator S

Reward-based properties

- use of rewards (or costs) in CSL
 - real values assigned to states or transitions
 - to track variable values in states
 - to compute the expected value of a variable at a given time

Reward-based properties

 state rewards for computing the expected levels for cAMP, pPDE8A1, PKA⁺, pS259

Trend Variables

- keep track of decreasing or increasing variable values
- define new variables in the PRISM modules for cAMP, PKA⁺ and pS259

cAMP' = cAMP-1 & trend_cAMP' = -1

\$\frac{1}{x}\$ (\$\frac{1}{x}\$) ascending (descending) trend for variable \$\times\$

Necessarily Preceded

We use the requirement / necessarily preceded pattern [Monteiro et al. 08]:

"a state ϕ is reachable and is necessarily preceded all the time by a state ψ "

 $\mathsf{CTL}:(\mathsf{EF}\;\phi)\wedge\mathsf{AG}((\neg\psi)\Rightarrow\mathsf{AG}(\neg\phi))$

Necessarily Preceded

For $\varphi = \downarrow cAMP \land \downarrow PKA^+$ and $\psi = \uparrow_p PDE8AI$ CTL: (EF φ) $\land AG((\neg \psi) \Rightarrow AG(\neg \varphi))$ CSL: P>0[F φ] $\land P_{\leq 0}[F(\neg((\neg \psi) \Rightarrow P_{\geq 1}[F(\neg \varphi)]))]$

Pulsations

Show that the levels of pPDE8A1 fluctuate:

- $\varphi = \uparrow_p PDE8AI$ and $\psi = \downarrow_p PDE8AI$
- pulsation in CTL [Fages05,Ballarini et al. 09]:

 $\mathsf{AG}((\phi \Rightarrow \mathsf{EF}\psi) \land (\psi \Rightarrow \mathsf{EF}\phi))$

• pulsation in CSL:

 $\mathsf{P}_{\leq 0}[\mathsf{F} \ (\neg(\phi \Rightarrow \mathsf{P}_{\geq 0}[\mathsf{F}\psi]) \lor \neg(\psi \Rightarrow \mathsf{P}_{\geq 0}[\mathsf{F}\phi])$

Pulsations

- for cAMP: $\phi = \uparrow cAMP$ and $\psi = \downarrow cAMP$
- for PKA⁺: $\phi = \uparrow PKA^+$ and $\psi = \downarrow PKA^+$
- coordinated pulsations:

 $\varphi = \uparrow_{P}PDE8AI \land \downarrow_{c}AMP \land \downarrow_{P}KA^{+} and$

 $\psi = \downarrow pPDE8AI \land \uparrow cAMP \land \uparrow PKA^+$

I formal model of a biological process

formal model of a biological process
the biologists validated our results

If formal model of a biological process

If the biologists validated our results

The refine the model with more experimental data

If formal model of a biological process

- If the biologists validated our results
- C refine the model with more experimental data
- C trend variables, amplitude of oscillations

- If formal model of a biological process
- If the biologists validated our results
- **O** refine the model with more experimental data
- C trend variables, amplitude of oscillations
- formulate new properties and express them using a temporal logic

Acknowledgement

 Walter Kolch, George Baillie and Kim Brown from the Faculty of Biomedical & Life Science, University of Glasgow

Bibliography

- [Monteiro et al. 08] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Freitas, and Hidde de Jong. *Temporal logic patterns for querying dynamic models of cellular interaction networks*. Bioinformatics, 24(16):227--233, 2008.
- **[Ballarini et al. 09]** Paolo Ballarini, Radu Mardare, and Ivan Mura. *Analysing Biochemical Oscillation through Probabilistic Model Checking*. ENTCS, 229(1):3--19, 2009
- [Fages05] François Fages. *Temporal Logic Constraints in the Biochemical Abstract Machine BIOCHAM*. LOPSTR'05, volume 3901 of LNCS, pages 1--5. Springer, 2005.

Thank you! Questions?