Modelling scaffold-mediated interaction between the cAMP and the Raf/MEK/ERK pathway

Oana Andrei and Muffy Calder

University of Glasgow

Bio-PASTA, August 27, 2009

* Motivation

- * Formal model
- * Analysis
- * Conclusion and perspectives

Scaffold proteins

- organisational role rather than a signalling role
 - anchoring function (binding proteins)
 - catalytic function (increasing/decreasing the output of a signaling cascade) under some conditions

* AKAP = A-kinase anchoring protein

* crosstalk between the cAMP and Raf/MEK/ERK pathways

Expected Behaviour

$Q_1: \uparrow pPDE8A1 \longrightarrow \downarrow cAMP \longrightarrow \downarrow PKA^+ \longrightarrow \uparrow Rafactivity \\ \implies \downarrow pRafs_{259}$

What is the time relation or causality between events?

Expected Behaviour

$Q_1: \uparrow pPDE8A1 \longrightarrow \downarrow cAMP \longrightarrow \downarrow PKA^+ \longrightarrow \uparrow Rafactivity \\ \implies \downarrow pRafs_{259}$

What is the time relation or causality between events?

Q2: Pulsating behaviour.

Formal model

continuous time Markov chains with levels

* properties expressed as formulas in CSL

PRISM model

* modules for cAMP, scaffold, free PDE8A1 and PP

* filled scaffold (SOOO, S1OO, S1O1, ...) and unfilled scaffold (SOO, S1O, S01, S11)

* mass action law

* information on constant rates ratios

- The PKA activation reaction SOO + cAMP \rightarrow_{r2} S100
- is modeled as follows:
 - in the module for cAMP:

[activate_PKA] (cAMP > basal_camp) -> (cAMP) : (cAMP' = cAMP-1);

• in the module for the scaffold:

11

Continuous Stochastic Logic

* extension of non-probabilistic CTL

* probability operator P

Reward-based properties

- * use of rewards (or costs) in CSL
 - real values assigned to states or transitions
 - to track variable values in states
 - to compute the expected value of a variable at a given time

Reward-based properties

state rewards for computing the expected level for cAMP, pPDE8A1, PKA⁺, pS259

Derivatives

- use of signs of derivatives to keep track of decreasing or increasing variable values
- * add new variables in the PRISM modules for cAMP, PKA⁺ and pS259
- * $\downarrow x (\uparrow x)$ negative (positive) derivative
 - for variable x

Necessarily Preceded

→ requirement / necessarily preceded pattern [Monteiro et al. 08]: "a state ϕ is reachable and is necessarily preceded all the time by a state ψ "

CTL: (EF ϕ) \land AG(($\neg \psi$) \Rightarrow AG($\neg \phi$))

Necessarily Preceded

For $\phi = \downarrow cAMP \land \downarrow PKA^+$ and $\psi = \uparrow pPDE8A1$

CTL: (EF ϕ) \land AG(($\neg \psi$) \Rightarrow AG($\neg \phi$))

 $\textbf{CSL: P_{>0}IF \phi 1 \land P_{\leq 0}IF(-((-\psi)) \Rightarrow P_{\geq 1}IF(-\phi))))}$

For $\phi = \uparrow pPDE8A1 \land \downarrow cAMP \land \downarrow PKA^{+}$

and $\psi = \downarrow pPDE8A1 \land \uparrow cAMP \land \uparrow PKA^+$

a pulsation in CTL [Fages05,Ballarini et al. 091:

 $\mathsf{AG}(\phi \Rightarrow \mathsf{EF}\psi) \land (\psi \Rightarrow \mathsf{EF}\phi))$

to obtain in CSL the formula:

 $\mathsf{P}_{\mathsf{SO}}\mathsf{LF}(\mathsf{-}(\phi \Rightarrow \mathsf{P}_{\mathsf{NO}}\mathsf{LF}\psi 1) \lor \mathsf{-}(\psi \Rightarrow \mathsf{P}_{\mathsf{NO}}\mathsf{LF}\phi 1)$

or formal model of a biological process

It the biologists validated our results

or formal model of a biological process

- It the biologists validated our results
- refine the model with more experimental data

- or formal model of a biological process
- It the biologists validated our results
- refine the model with more experimental data
- derivatives, amplitude of oscillations

- or formal model of a biological process
- It the biologists validated our results
- refine the model with more experimental data
- derivatives, amplitude of oscillations
- formulate new properties and express them using a temporal logic

Acknowledgement

Walter Kolch, George Baillie and Kim Brown from the Faculty of Biomedical & Life Science, University of Glasgow

Bibliography

- [Monteiro et al. 08] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Freitas, and Hidde de Jong. *Temporal logic patterns for querying dynamic models of cellular interaction networks*. Bioinformatics, 24(16):227--233, 2008.
- [Ballarini et al. 09] Paolo Ballarini, Radu Mardare, and Ivan Mura. *Analysing Biochemical Oscillation through Probabilistic Model Checking*. ENTCS, 229(1):3--19, 2009
- [Fages05] François Fages. *Temporal Logic Constraints in the Biochemical Abstract Machine BIOCHAM*. LOPSTR'05, volume 3901 of LNCS, pages 1--5. Springer, 2005.

