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Scatfold proteins

* organisational role rather than a signalling
role

» anchoring function (binding protfeins)

» catalytic function (increasing/decreasing
the output of a signaling cascade) under
sowe conditions
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AKAP

* AKAP = A-kinase anchoring protein

* crosstalk between the cAMP and
Raf/MEK/ERK pathways
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Expected Behaviour

Qi:1pPPESAL=p | cAMP =p | PKA* = 1 Raf activity
=p | pRafszs9

What is the time relation or causality between
events?



Expected Behaviour

Qi:1pPPESAL=p | cAMP =p | PKA* = 1 Raf activity
=p | pRafszs9

What is the time relation or causality between
events?

Q2: Pulsating behaviour.



Formal wmodel

* continvous time Markov chains with
levels

* properties expressed as formulas in CSL

* symbolic probabilistic model checker
PRISM



PRISM wodel

* modules for cAMP scaffold, free PPESAL
and PP

* filled scaffold (5000, S100, S101....) and
unfilled scaffold (500, $S10, S01, S11)

* mass action law

* information on constant rates ratios
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PRISM wodel

The PKA activation reaction S00 + cAMP —2S100
is modeled as follows:

*in the modvule for cAMP:

[activate_PKA] (cAMP > basal_camp) -> (cAMP) : (cAMP’ = cAMP-1);

*in the module for the scaffold:

[activate_PKA] (S000 > 0) & (S100 < scaffold_max) ->
(r2*S000) : (S100’ = S100+1) & (S000’ = S000-1);
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Continvous Stochastic Logic

* extension of non-probabilistic CTL
* probability operator P
* steady-state operator S
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State formulae @ =T
Path formulae ¢ =X
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Reward-based properties

* Use of rewards (or costs) in CSL

* real values assigned to states or
transitions

* to track variable values in states

* {o compute the expected value of a
variable at a given time
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Reward-based properties

* state rewards for computing the expected
level for cAMP pPDESAL PKA*, pS259
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Derivatives

* use of signs of derivatives to keep track
of decreasing or increasing variable
values

* add new variables in the PRISM wmodules
for cAMP PKA* and pS259

* | x (7 x)negative (positive) derivative
for variable x
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Necessarily Preceded

= requirement / necessarily preceded
pattern LMonteiro et al. 081
a state ¢ is reachable and is necessarily

preceded all the time by a state ¥~
CTL: (EF @) A AGU-%) = AG(- ¢ ))
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Necessarily Preceded

Ford = | cAMP A | PKA* and ¥ = T pPPESAI
CTL: (EF ¢ ) A AGl(-0) = AG(- ¢ ))
GSL: PyolF &1 A Pl (= ¥ )= PylF(= ¢ )1)]
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Pulsations
Ford = 7T pPPESAL A | cAMP A | PKA

and ¥ = | pPPESAL A T cAMP A T PKA*

a pulsation in CTL LFages03Ballarini et al. 091:
AGI(oO =EFY) A (L =EF)

to obtain in OSL the formula:
PolF (-( @ =P50lF 1 1) v ~( ¥ =PsoLF ¢ 1)
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Conclusions

@ formal model of a biological process
@ the biologists validated our results
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@ formal model of a biological process
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O refine the model with more experimental data
O derivatives, amplitude of oscillations
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Conclusions

@ forwmal model of a biological process

@ the biologists validated our results

O refine the model with more experimental data
O derivatives, amplitude of oscillations

O forwmulate new properties and express them
using a temporal logic
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Thank you!



