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Formal methods for 
modelling biological systems

• lab experiments

• computational model

• results/analysis

Goals: to understand, to predict, to control
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Cell signalling

• communication between cells

• cellular processes: cell growth, proliferation, 
apoptosis...

• malfunctions may lead to diseases
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Challenges

• suitable formalisms

• abstraction techniques

• analysis

• scalability
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Our approaches

• qualitative: rule-based, higher-order 
calculus, runtime-verification

• quantitative: abstraction for CTMCs - 
CTMCs with levels, stochastic model 
checking
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Higher-order 
rule-based modelling
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Port graphs

• graphs with multiple edges and loops 

• edges connect to ports of nodes

• defined over a signature (N,P)
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[AndreiKirchner07-RULE]



A port graph
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Molecular graphs as 
port graphs 

Molecular 
complex Port graph

protein node

site port

bond edge

interaction rewrite rule
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Rewrite rules and strategies

• well-suited for modelling bio-molecular 
interactions

• a rule L → R defines a class of reactions

• rewrite strategies control the rule 
application (Identity, Failure, Sequence, Not, First, ...)
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Port Graph Rewrite Rules
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A Port Graph Rewrite Rule 
is a Port Graph
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A Port Graph Rewrite Rule 
is a Port Graph
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Port Graph Rewriting 
Relation
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if ∃

such that

and



Example: a fragment of the EGFR signaling 
pathway
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[AndreiKirchner07-NCA]
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Example: a fragment of the EGFR signaling 
pathway

17

A stable state:
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Graph-base approaches

• κ-calculus, Kappa factory [Danos et al.]

• BioNetGen [Hlavacek et al.]

• Pathway Logic [Talcott et al.]
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Chemical programming

• γ-calculus = λ-calculus + chemical paradigm 
[BanatreFR04-07]

• a chemical solution where molecules 
interact freely according to reaction rules

• everything is a molecule
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prod = replace X, Y by X×Y
〈prod,3,1,4,5,2〉 → 〈prod,1,4,15,2〉 →* 〈prod, 120〉



Rewriting calculus

• extends first-order term rewriting and the 
λ-calculus [CirsteaK01]

• terms, rules, rule application are explicit 
objects of the calculus
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(s(x)+y ➙ s(x+y)) (s(5)+s(2)) →ρ  s(5+s(2))



Biochemical calculus

• add biochemical flavour to the chemical 
calculus - structures (like port graphs)

• rewrite rules and strategies

• verification
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Syntax

• objects: port graphs

• rewrite rules

• abstractions

• application
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Semantics
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More control?

• enforce confluence and termination

• provide control over the composition or 
choice of the abstraction to apply

★ Identity, Failure, Sequence, Not, First, Repeat...
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Strategies:

First(S1,S2)(G) = S1(G) if S1 does not fail, 
     S2(G) otherwise



Strategies-based extensions
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• tackling application failure

✦ persistent strategies S!



Invariant verification

• invariant: 

• rule G⇒G  

• strategy first(G⇒G, X⇒”Failure”)!

• remove (G⇒”Failure”)! or “repair” (G⇒H)!

• but we can do more...
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Structural Formulas
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Structural Formulas
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Structural formulas:



Structural Formulas
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Structural formulas:

Satisfaction relation:



Mapping Structural 
Formulas to Strategies
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29

• define a new reduction relation

• use strategies

Guarded systems

Example: 



Conclusions (first part)

• port graphs: a biologically-inspired graphical 
structure

• biochemical calculus: a higher-order rule-
based formalism

• verification of invariant properties

• applications to protein-protein interactions 
and autonomic systems
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Future work

• embed runtime verification

• diagnose faults at execution 

• repair faults (adaptive behaviour)

• identify properties to monitor

• choose temporal logic: LTL3 (T, ⊥, ?) 

• add a stochastic semantics

• robustness analysis
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Abstractions for 
continuous-time 
Markov chains

32



CTMCs

• state-based formalisms for describing 
dynamic systems: C = (S, s0, R, L)

• discrete steps, continuous time-steps

• suitable for modelling signalling pathways: 
stochastic, computational, concurrent
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CTMCs with levels

• population (species) based modelling

• discrete levels of concentrations

• maximum molar concentration M

• choose N as granularity for the abstraction, 
concentration step size H = M/N

• 0,1, ...,N levels of concentrations correspond 
to 0, (0,H], (H,2∗H],..., ((N−1)∗H, N∗H]
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CTMCs with levels

• mass-action kinetics 

• reaction A + B →C with k constant rate

• transition rate: k∗(LA∗H)∗(LB∗H)/H
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CTMCs with levels

• mass-action kinetics 

• reaction A + B →C with k constant rate

• transition rate: k∗(LA∗H)∗(LB∗H)/H

• let’s see a real example ...

35



Signalling and scaffold 
proteins

A
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Expected behaviour

pPDE8A1 cAMP PKA+ Raf activity
pRafS259

What is the time relation or causality between 
events? 

Q1:
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Expected behaviour

pPDE8A1 cAMP PKA+ Raf activity
pRafS259

What is the time relation or causality between 
events? 

Q1:

Q2: Pulsating behaviour
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Formal model

• continuous time Markov chains with levels 

• properties expressed as formulas in 
Continuous Stochastic Logic (CSL)

• symbolic probabilistic model checker PRISM
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PRISM model

• modules for cAMP, scaffold, free PDE8A1, PP

• mass action kinetics

• information on constant rates ratios
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PRISM model

• in the module for cAMP:

• in the module for the scaffold:

The PKA activation reaction S000 + cAMP →r2 S100 
is modeled as follows:
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Continuous Stochastic 
Logic

• extension of non-probabilistic CTL

• probability operator P

• steady-state operator S
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Reward-based properties

• use of rewards (or costs) in CSL

- real values assigned to states or transitions

- to track variable values in states

- to compute the expected value of a 
variable at a given time
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Reward-based properties

• state rewards for computing the expected 
levels for cAMP, pPDE8A1, PKA+, pS259
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Trend Variables
• keep track of decreasing or increasing variable 

values 

• define new variables in the PRISM modules for 
cAMP,  PKA+ and pS259 

           cAMP’ = cAMP-1  &  trend_cAMP’ = -1

• ↓x (↑x) ascending (descending) trend for 
variable x
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Necessarily Preceded

For φ = ↓cAMP ∧ ↓PKA+  and    ψ = ↑pPDE8A1

CTL: (EF φ) ∧ AG((¬ψ) ⇒ AG(¬ φ))

CSL: P>0[F φ] ∧ P≤0[F(¬((¬ ψ)⇒ P≥1[F(¬ φ)]))]

47

[Monteiro et al. 08]



Pulsations

Show that the levels of pPDE8A1 fluctuate:

• φ = ↑pPDE8A1 and ψ = ↓pPDE8A1

• pulsation in CTL [Fages05,Ballarini et al. 09]: 

          AG((φ⇒EFψ) ∧ (ψ⇒EFφ))

• pulsation in CSL:

          P≤0[F (¬(φ⇒P>0[Fψ]) ∨ ¬(ψ⇒P>0[Fφ])
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Pulsations

• for cAMP: φ = ↑cAMP and ψ = ↓cAMP

• for PKA+: φ = ↑PKA+ and ψ = ↓PKA+

• coordinated pulsations:

φ = ↑pPDE8A1 ∧↓cAMP ∧ ↓PKA+  and

ψ = ↓pPDE8A1 ∧↑cAMP ∧ ↑PKA+
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Overview AKAP
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Overview AKAP

formal model of a biological process

the biologists validated our results

refine the model with more experimental data

trend variables, amplitude of oscillations

formulate new properties and express them using 
a temporal logic
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Abstractions for CTMCs 
with levels

• relation between CkN and CN for k≥2, N≥4

• aim: preserve temporal properties

• if CN satisfies temporal formula φ, then CkN 

satisfies f(φ) - who is f ?

• (weak) simulation does not work...
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Temporal properties

• classification of temporal properties for 
signalling pathways

• BIOCHAM [Fages et al.]

• patterns [Monteiro et al.08]

• stochastic models, not only qualitative or 
probabilistic
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Temporal properties

• is CSL expressive enough?

• what about LTL(R) ? [Fages et al.]

• linear versus branching time for biologists?

• satisfaction probabilities for biologists?
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Thank you!
Questions?
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