4 B

. ;
37
4

University ‘ School of

of Glasgow | Computing Science

An Evaluation Environment for
Simply-Typed Lambda Calculus

Yola Jones

2409217

Supervisor: Ornela Dardha

School of Computing Science
Sir Alwyn Williams Building
University of Glasgow

G12 8QQ

A dissertation presented in part fulfilment of the requirements of the
degree of MSc in Software Development at the University of Glasgow

September 2019

Abstract

This dissertation describes the design, implementation and evaluation of a lambda calculus
expression evaluator built using ANTLR and contained within a web interface, designed as
support material for the Theory of Computation course at the University of Glasgow. This
dissertation discusses in detail the relevant sections of lambda calculus as covered on the
course, then discusses the process of using Abstract Syntax Trees to examine the structure
of a term based on a particular syntax, which can then be used to parse and evaluate input
expressions. The approach taken to evaluation using ANTLR has also been discussed in
detail, before giving a summary of testing done and evidence that the goals of the project
have been met.

There were two key goals for this project, to design an interface which would accurately
evaluate lambda terms, and which would help improve students understanding of those on
the Theory of Computation course. Both of these goals were met, with testing done to prove
the accuracy of lambda term evaluation and a user test carried out in order to determine
the effectiveness of the interface in improving understanding. Positive results were gained
both from qualitative user feedback and statistical analysis using quantitative data taken
from these tests.

The code for this project has been submitted alongside this dissertation, but can also
be found at https://github.com/jonesy30/LambdaCalculator on Github. This tool will
be used in future years to support those on the Theory of Computation course.

The final tool can be accessed at http://haiti.dcs.gla.ac.uk:5000/ from machines within
the University of Glasgow.

Contents

1 Introduction 1
2 Background 2
2.1 Lambda Calculus 2
2.1.1 Basic Principles 2

2.1.2 Alpha Conversion 2

2.1.3 Reduction 3

214 Typing Rules L 4

2.1.5 Related Work L 5)

3 Analysis 6
3.1 Lambda Calculus 6
3.2 Abstract Syntax 6
3.2.1 ANTLR 7

3.3 Imterface L 7

4 Aims and Objectives 7
5 Design and Implementation 9
5.1 Design . . . oo 9
5.1.1 Grammaro e e 9

5.1.2 Expression Evaluator 0000 10

5.1.3 Web Interface 11

5.2 Implementation Lo 11
5.2.1 Grammar e e 11

5.2.2 Abstract Syntax Tree 11

5.2.3 Expression Evaluator 13

524 Web Interface 16

5.2.5 Complete Program 16

6 Testing 16
6.1 Accuracy of Lambda Term Evaluation 20
6.2 Interface Usefulness and Usability 20
6.2.1 Testing 20

6.2.2 Results 22

7 Evaluation 23
7.1 Accurately Evaluating Lambda Terms 24
7.1.1 Limitations e 24

7.2 Improving Student Understanding 24
7.3 Future Worko 25

8 Conclusion 25

9 Appendix
9.1 Appendix 1: Code File Information

Chapter 1: Introduction

Lambda calculus is often reported as being the worlds smallest programming language
[26] expressing terms as mathematical functions which can represent any computable prob-
lem [32]. Students on the Theory of Computation course taught at The University of
Glasgow learn lambda calculus to give them an understanding of functional programming
and other programming paradigms [12].

This report will cover the work done in producing a web application which will verify
and evaluate lambda calculus terms input by a user, in order to support future students
learning functional programming. The project has been split into three major tasks:

1. Understand and use ANTLR to create a parser which will read lambda terms and
produce an abstract syntax tree from the user input

2. Write a program which will use this tree to find the result of the incoming term

3. Create a web interface which will allow users to input lambda calculus expressions
and have them checked and evaluated, in order to help improve their understanding
of lambda calculus

Since the focus is the Theory of Computation course, learning outcomes and course
material have been analysed in order to produce a tool which accurately reflects what is
taught. An effort has been made however to make the tool accessible to those learning
lambda calculus through different means, for example self teaching or those at other univer-
sities. This has resulted in an interface which is aimed at supporting the lecture material
but not limited by it, with goals of future work aimed at expanding the interface further to
support alternative notation than what is covered in the lectures.

Overall the project was a success, an interface was created which accurately evaluates
lambda terms through a web interface. The tool implements simply typed applied lambda
calculus and allows for different reduction strategies for those who want a more in depth
understanding, wrapped in a simple and clear layout that is easy to use. User testing found
that participants enjoyed the interface and said they would use such an interface if they were
learning lambda calculus, reporting a significant increase in understanding having used the
interface for a short time which is verified by statistical analysis. The tool created for this
project will be given to students on the Theory of Computation course when it it is next
taught at the University of Glasgow, in the hopes that it will aid understanding by giving
students practical support. The final system has been hosted on university servers, accessi-
ble through the link found in the Abstract of this dissertation.

The following report documents the process in creating such a tool, by introducing key
concepts and literature and refining specific project objectives, then expanding on the design
and implementation stages, before finally documenting the testing process and evaluating
whether or not the goals of the project have been met.

Chapter 2: Background

2.1 Lambda Calculus

Lambda calculus is a formal syntax for expressing computation statements as mathematical
expressions [32] created by Alonzo Church in 1936 [2]. It is an extremely simple model
of computation, while still being Turing complete [30] and forms the basis for functional
programming languages like Haskell [2]. Pure lambda calculus terms are comprised of three
elements, variables (such as x or y), abstractions (with one input and one output, in the
form Ax.M) and applications (in the form MN) [14].

Applied lambda calculus expands this notation, adding constants which act as values
and operations [33]. Typed lambda calculus extends this further, adding types to each term,
allowing us to restrict the operations available to different types of objects and ensuring that
our expression is runnable [23]. The combination of applied and typed lambda calculus gives
us a grammar which can be used for type checking and arithmetically evaluating lambda
calculus terms.

The Theory of Computation course teaches simply typed lambda calculus (applied
lambda calculus with types), and includes lectures on alpha conversion and beta reduc-
tion, alongside the definition of normal form and typing rules. As a result, these will be
covered in the following sections in an attempt to use lecture material to define requirements
of the final system.

2.1.1 Basic Principles

As discussed above, the lambda grammar is made up of three elements: variables, abstrac-
tions, and applications. Abstractions are representations of single input functions which take
one input, and use this input to compute one output. An example abstraction (Az.z + 1)
is equivalent to the function f(z) = x + 1, taking one input z, and returning the value of z
incremented by 1. Multi-input functions can be expressed in nested abstraction terms, for
example f(z,y) = x 4+ y in strict lambda notation becomes Ax.\y.x + y.

Applications take abstractions and apply other lambda terms to them using substitution.
In a term (Az.M)N, substitution takes all the instances of the bound variable x and replaces
them with the incoming variable N, or expressed mathematically as (Az.M)N = [N/x]M.

With abstractions, applications and variables, any computable function can be ex-
pressed. Functions and constants in applied lambda calculus simplify this slightly, allowing
the number one to be expressed as the integer 1 rather than the Church Numeral encoding
AfAz.fz in lambda calculus [37].

2.1.2 Alpha Conversion

Complexity is increased when substituting variables into abstractions via applications. The
lambda term Ax.\y.y * x multiplies the first input to the function with the second, with x

and y as distinct, different terms. Applying y to this function would result in the application
(Ax.Ay.y *x x)y which reduces to A\y.y * y, the mathematical representation of multiplying
the input by itself. This is incorrect, the meaning of the function has been changed because
of the letter chosen to act as the input, and is an example of variable capture.

Alpha equivalence is the notion in lambda calculus that the choice of variable names
does not matter, Ay.y is alpha-equivalent to Aa.a. This notion is used to prevent variable
capture through a process called alpha conversion, the process of comparing the incoming
variable to the terms inside the abstraction and changing variable names to eliminate cap-
ture.

De Bruijn notation is an alternative method of handling this issue, eliminating the need
for variables altogether and instead expressing abstraction terms as an index representing
which abstraction scope they refer to [18].

The Barendregt Convention assumes bound variables are suitably chosen to avoid cap-
ture, a convention which is taught in the Theory of Computation course. From this and
alpha conversion, a set of rules for substitution can be created which rename terms to avoid
variable capture as substitution is taking place, defined as follows [1]:

[Wﬂy::{t fy = 2.1)

y iffy#z
[t/x](tat2) = [t/z]ta[t/x]t (2.2)
, Ayt ife=y
#/2l0y1) = {)\z.[t’/x] /ylt ife#yAzd FVE)UFV(H) (23)

2.1.3 Reduction

Reduction is a formal method for evaluating lambda terms, of which there are different
levels. Alpha conversion (or alpha reduction) [16] is the process of renaming variables to
avoid variable capture. Beta reduction focuses on finding the result of applications, discussed
in detail below. Delta reduction applies functions to constants arithmetically. Finally, eta
reduction takes the output of delta- or beta-reduction and removes any leftover abstraction
term in an attempt to simplify the final result [34]. Not all of these reduction steps are
necessary, but each simplifies the term in some way, terminating with a final result.

Beta Reduction

Following alpha conversion, beta reduction is ready to be performed abiding by the Baren-
dregt Convention. A definition is first needed which states when a lambda term has reached
its simplest form and can be evaluated no further. This is known as the Normal Form of
a lambda term [2|, and is defined as a term with no beta-redex [17] or which contains no
subterms of the form (Az.M)N [14]. As previously stated, beta reduction is the process of
finding the result from the application of a function, and can be performed by following a
number of rules [9].

1. Ax.M)N = [N/z|M
(Az.M)N is equal to M with all instances of x replaced by N (substitution)
2. M=M

A term is equal to itself

M=N
3. N=M

If M = N then N = M through symmetric equality

4 M=N N=L

M=L
If M =N and N = L then M = L through transitivity
5. _M=N d _M=N

© Mz=Nz M4 7i=zN
If M = N, then Z applied to M is the same as Z applied to N. Similarly if M = N
then M applied to Z is the same as N applied to Z
M=N
6. Ax.M=\x.N
If M = N, then (Ax.M) = (Ax.N)

Different choices made in the application of these rules can generate different results. The
Church-Rosser theorem is a fundamental theorem in the subject of lambda calculus, and
leads to a useful axiom: a term in the lambda calculus has at most one normal form [7]
meaning different reduction strategies cannot produce different normal forms. However, if
a lambda term does have a normal form, not all methods of reduction reach it [16].

The Theory of Computation course teaches two approaches to beta-reduction, call-by-
value and call-by-need. Call-by-value is a leftmost innermost strategy, [9], meaning in a
term MN, M gets reduced to its normal form before N (the left term is reduced first). In
a term (Ax.M)N, N is evaluated before it gets substituted into (Az.M). For this reason,
call-by-value is sometimes referred to as applicative order reduction, as the arguments are
reduced before they are applied [35].

Call-by-need is similar but with one key difference, rather than reducing N and then
substituting the result into M, the original N is substituted into M before [N/z] M is reduced
together as a whole. This is a subtle but very important difference, call-by-need can be
proven to always turn a lambda term into its normal form if one exists [16], unlike call-by-
value. Because of this property, call-by-need is often referred to as normal-order-reduction.

2.1.4 Typing Rules

A desirable property in software engineering is static checking at compile time. This can be
done with lambda calculus by introducing types, which can be used to verify that a lambda
term is performing valid computations before being evaluated arithmetically. For example,
the lambda term (Az.x + 1)y is a valid term, but is not runnable if y is a boolean value such
as TRUE or FALSE.

To use this, a type definition is first needed. A type T can be of ground type A (boolean
or integer), or function type T—T (taking a type T, and converting it into another type
T through a function) [9]. In order to type-check the validity of a lambda term, a typing

context I' is expressed which declares a set of variables to be associated with specific types.
From this, three typing rules can be expressed [9]:

e For variables, if x of type T belongs to the typing context ', in I', x is of type T:

z:T el

e For abstractions, if in a typing context I' where x has type T, if M has type U, then
Ax.M has type T — U:

x:THFM:U
'tXe:TM:T—-U

e In an application MN, if M has type T—U and N has type T, then MN has type U

T Abs (2.5)

'-M:T—-U I'EN:T
I'FMN:U

T App (2.6)

This is all that is needed to statically analyse a lambda term, and determine whether
or not a lambda term is typable, or feasible when considering typing and typing rules.
The rules can be used to determine what type the lambda term should return, provided
information about the types of some of the variables.

Type Inference

In a lambda expression, the type of a term can often be inferred without any explicit type
declaration. For example, in an expression Az.x + 1, x can be assumed to have type int, as
+ is an in integer operator. This is type inference, and is the process of giving a variable a
generic type (or supertype) and then refining this type based on gathered information until
a minimal type is reached. [9] [3] [39]

This gathering of information can be split into two categories, structural and syntax [3].
Structural is done using lambda typing rules, for example using the fact that abstractions
are function types of form 7" — T to find the final type of the term Az.z + 5. The syntax of
the term can also be used to gather information, for example using arithmetic or boolean
operators to determine the type of a variable used in that expression.

2.1.5 Related Work

There are a number of similar interfaces which have been built to solve comparable prob-
lems. In [25], an interface was created to evaluate pi-calculus terms which are similar to
lambda calculus but which model concurrent computation as opposed to single processes.
This methodology is also taught on the Theory of Computation course at the University of
Glasgow, and the program was written to support this course.

The website found in [20] is an interface for users to evaluate lambda terms step-by-step
by clicking on elements within the term. [13] also integrates lambda calculus in a web in-
terface, evaluating untyped lambda terms through a command line interface accessible via
a website. A learning support tool is described in [31] which was written for the Program-
ming Paradigms course at The Universitat de Girona, created to give students a graphical

representation of the parse trees of lambda terms in order to improve their understanding
of how lambda calculus terms are constructed.

Chapter 3: Analysis

As defined in the Introduction of this report, the focus of this tool is to help students
taking the Theory of Computation course gain a better grasp lambda calculus. Because
of this, the Theory of Computation course material will be used to help determine the
objectives of the tool in the following sections.

3.1 Lambda Calculus

The Theory of Computation course details [12]| state two key intended learning outcomes
relating specifically to Lambda Calculus: evaluate expressions in lambda calculus according
to the definition of reduction relation, and determine whether or not expressions in lambda
calculus are typable in the simple type system. From this, the following objectives can be
selected:

e The Barendregt Convention is being chosen as a means of avoiding variable capture
over De Bruijn notation, since it aligns more closely with what is taught on the course
and therefore will better support student learning

e Simply typed applied lambda calculus will be implemented

e Beta reduction will be included, with options to evaluate terms using both call-by-
value and call-by-need reduction strategies as per what is taught

e Typing derivations will be implemented in order to type check the lambda term and
evaluate the final type of the reduced function

Further to what is taught in the course, there are other options which could be included
in such an interface. Delta reduction has been discussed throughout the background section
but is not taught explicitly, however lecture slides do include constants being added together
arithmetically, performing delta reduction implicitly. Because of this, the resultant lambda
term will have arithmetic constants evaluated but delta reduction will not be explicit. Eta
reduction has also been discussed, but is not an integral step to lambda calculus, and most
resources teaching lambda calculus miss it out [1] [2] [9] [16] [30] [14]. Since manipulating
the final result in a way students have not been taught could cause further confusion, eta
reduction will not be included in the final program.

3.2 Abstract Syntax

A way of representing the structure of a lambda term is needed too take a term and turn
it into a program which can evaluate lambda terms. From this, the resultant program can
use the defined rules to evaluate terms.

The idea behind this is to turn a sequence of character strings (the surface syntax of an
expression) into an abstract syntax (a representation of the meaning of the expression). A

lexer is used to do this, which converts a character sequence into a series of identifiers called
tokens, as defined by the grammar of a language (in this case lambda calculus). A parser is
then used which turns this sequence of tokens into a tree known as an Abstract Syntax Tree,
which can then be traversed and explored to create compilers and interpreters of a language
[29]. The applications of this are wide, it can be used to evaluate arithmetic expressions
(Figure 3.1), in syntactic analysis used for natural language processing [5] (Figure 3.2), or
to evaluate lambda calculus terms as done in this project (Figure 3.3).

3.2.1 ANTLR

One such tool which can help represent the structure of a term based on a particular
grammar is ANTLR. ANTLR is a parsing tool which is used to build and explore syntax
trees from character strings. It has a lexer to generate tokens, and has a parser to turn this
stream of tokens into an abstract syntax tree which can then be evaluated using either a
listener or a visitor [27|. It has been used in a wide variety of contexts, including Twitter
(for query parsing) and the NetBeans IDE (for parsing C++) [27].

3.3 Interface

Once a program has been created which can parse and evaluate lambda terms, an interface
is needed to allow this to be used by students. The interface should be simple to understand,
should include a place for user input which will allow students to input a lambda expression
and then see the resultant reduced expression. It should also include an input which will
allow the user to select different types of beta-reduction, and an output which will show the
typability and evaluated type of the returned expression.

Chapter 4: Aims and Objectives

From the background and analysis discussed above, a set of key aims and objectives can
be defined. These eight objectives have been defined below, and have been labelled using
the MoSCoW system, (must-have, should-have, could-have and would-like-to-have) [8]. The
program will include:

e Must Have: The ability to evaluate the validity of lambda calculus terms, so students
can enter terms and check whether or not they are valid. This will be done by turning
the user input lambda term into an Abstract Syntax Tree using ANTLR

e Must have: Applied lambda calculus, to allow the input of expressions

e Must have: The ability to alpha convert these terms, to help students understand alpha
conversion and equivalence. This will be done by navigating the abstract syntax tree
generated by ANTLR

e Must have: A web interface as the front-end for this program to allow users to use the
tool easily

e Should have: Beta reduction used to evaluate terms to normal form to help students
understand beta reduction. This will also be done by navigating the abstract syntax
tree generated by ANTLR

expression

(expression)

expression / expression

expression ¥ expression [expression)

atom atom expression + exXpression
|

scientific scientific atom atom

|
1 2 scientific scientific

|

3 4

Figure 3.1: Syntax Tree of an Arithmetic Term (generated using code from [10])

S
NP VP
l /"—/—F—\\—-
I VP PP
/\ /\
v NF F NF
shot Det N in Det N
| I | |
an elephant my pajamas

Figure 3.2: Syntax Tree for Natural Language Processing [5]

term
application
abstraction term

[abstraction) value

abstraction_term . term variable
% wariable value il
% variable
A

Figure 3.3: Lambda Calculus term (Az.A)M abstract syntax tree

e Should have: Types are included, to help students understand types and typing rules

e Could have: Information is given to the user about the typing context from which
typing validity has been determined

e Could have: Different reduction strategies being offered, to give students the option
to understand call by value/call by need evaluation

e Would like to have: Type inference performed to determine the output type of a
lambda term

e Would like to have: Arithmetically evaluate these terms using delta reduction

e Would like to have: Details given to the user on how the term was evaluated using
beta-reduction

Chapter 5: Design and Implementation

5.1 Design

The overall program is split into a number of distinct elements. Firstly, a grammar has
been written which defines the syntax of lambda terms and allows a term to be broken
down into individual tokens. ANTLR uses this grammar to process lambda terms, creating
an Abstract Syntax Tree for each incoming expression [27], a process which has been well
documented and therefore was not deviated from. A tree traversal mechanism forms the
main section of code which navigates the abstract syntax tree and performs operations to
determine the resultant expression. This is the section of code which performs the evalua-
tion, and therefore needed to be designed accurately with the rules of beta reduction and
lambda calculus in mind. A web interface has been used to house this program, giving the
user a simple and convenient way to interact with the underlying system.

The relevant sections have been discussed below, detailing design and key decisions
which needed to be made before implementation began.

5.1.1 Grammar

The key aim in creating this grammar was creating a syntax which sticks as closely as
possible to the rules of lambda calculus. Lambda Calculus grammar is already clearly
defined, with a lambda term being either a variable, an abstraction or an application [14].
Applied lambda calculus adds functions and constants to this definition [33], resulting in
the following lambda grammar. A lambda term is one of the following:

| An application (of form [term] [term])

| An abstraction (of form [abstraction_term].[term] where [abstraction_term] is
defined by A[variable])

| A function (of form [term] [operation] [term])

| A value (of form [variable] (the letters a-z) or [number] (constant))

With the addition of types, the grammar adds the option of a :[type] term to each
variable, with each type being either a ground type (bool, int or none), or in the form [type]
— [typel. This follows the standard syntax for typing used in the lecture material [14] [9],
and consistency with this syntax allows students on the Theory of Computation course to
input a lambda term directly from the lecture slides with minimal adjustment.

5.1.2 Expression Evaluator

The fundamental component of this evaluator is a tree traversal, which navigates through
the token nodes and performs different operations depending on the type of node encoun-
tered. Abstractions take an incoming value if one exists, and substitute it into the body of
the abstraction. This allows an evaluated expression to be built up, and a result determined.

ANTLR provides two mechanisms for traversing an abstract syntax tree: listeners and
visitors. A listener is a passive way of evaluating a syntax tree, used within an ANTLR
Walker class which traverses the tree using a depth-first approach and triggering methods
from the listener as it enters and exits each token |27]. These listener methods are unable
to return values, so expressions and evaluations have to be handled using separate objects
within the listener class. As the walker traverses the tree, the listener builds up a running
evaluation of the term, returning the result when it exits the topmost node [36].

Unlike listeners, visitors control their own traversal of the tree. By visiting the children
of each node encountered explicitly, the path they take around the tree can be controlled
[27]. Visitors also allow custom return types, meaning nodes can return their resultant
expressions directly to their parent node and do not have to rely on separate objects [36].

With beta reduction, different methods take different approaches to evaluating terms.
In an application MN using a call-by-value approach, N is evaluated before M. In a call-
by-need approach, N is passed into M before being evaluated. This means that depending
on the type of reduction selected, the evaluator will have to traverse the tree in a different
order, suggesting visitor over listener is more appropriate for this task. Furthermore, visi-
tor methods being able to return values directly to their parents as opposed to relying on
separate objects will support evaluation happening as the tree is being visited, due to the
large amount of data being passed around the tree.

The visitor therefore was the main code written in this project, with an ANTLR gen-
erated parser is passed to a custom visitor interface. Different visitors are defined for each
of the beta-reduction strategies being implemented, since each method takes a different ap-
proach to evaluating expressions.

The visitor returns three separate items upon returning to the topmost node: the eval-
uated value of the input lambda term, whether or not the term is typable, and the type
of the final expression. It also returns details of any errors where applicable, for example
syntax errors which ANTLR is unable to parse, or cases where the normal form of a lambda
term does not exist.

10

5.1.3 Web Interface

The web interface allows the user to input a lambda term along with the type of any vari-
able. It also allows the user to select which reduction strategy they would like to have the
term evaluated by, with call-by-need being selected as the default.

The code running the interface and the underlying evaluation code are kept as separate
entities, communicating through input parameters and return statements. This is to ensure
the code is kept as modular as possible, allowing the evaluator code to be run using multiple
different mechanisms, for example through a web interface and a command line for testing
purposes. Any data the user enters is passed to the underlying code, which processes the
term and return any output via a return statement, being read and displayed to the user.

5.2 Implementation

Despite the examples in the ANTLR Reference Guide [27] all being written in Java, Python
was chosen as the main language for this project. ANTLR offers support for Java and
Python, both of which are regularly listed in the top three programming languages being
used in industry from various sources [15][28][6]. Since the MSc Software Development
course which this dissertation is being written for teaches only Java, Python was chosen in
order to expand the number of programming languages encountered throughout the course.
Therefore the majority of the code for this project will be written in Python, with HTML
being used for the web interface.

5.2.1 Grammar

ANTLR requires that the grammar of a language is contained in a .g4 file which defines
the parser and lexer rules for the language. A section of the grammar written for lambda
calculus is shown in Figure 5.1, and indicates the parser rules for some of the token nodes,
alongside the lexer rules which are shown in Figure 5.2. This grammar is consistent with
the syntax defined in the background section of this report, with slight modifications such
as the addition of parentheses and an explicit definition for boolean and integer values.

5.2.2 Abstract Syntax Tree

Having defined a grammar, ANTLR can then be used to create an abstract syntax tree,
which can be seen for an example term in Figure 5.3. This is very simple to do using
ANTLR libraries, and involves passing the input term through a number of ANTLR gen-
erated classes before passing the result through a parser which turns the tokens into an
abstract syntax tree [38]. The lexer and parser are created by ANTLR when the grammar
file is compiled, resulting in a syntax tree which processes terms based only on the syntax
of the defined language.

The process of creating a tree from the grammar and an incoming term is well docu-
mented, and so no modifications need to be made, with the exception of attaching a custom
Error Listener to both the lexer and parser as expanded on later on in this Implementation
section.

11

abstraction
: abstrac
| LBRACKET =& ~action RBRACKET
3
abstraction term
. vy :

.
»

Figure 5.1: Parser Rules

NUMBER : [©-9]+ ;

BOOL : "TRUE'| 'true'|'True'|"FALSE'| false'|"False’ ;
VARIABLE : [a-Z

ADD : -

SUBTRACT : '-'

MULTIPLY : '*'

DIVIDE : '/' ;

POWER : '~'
RBRACKET : '
AND : &'

OR :

GT :

LT :

EQ :

3
LBRACKET : "(' ;
)

.
»

Figure 5.2: Lexer Rules

12

5.2.3 Expression Evaluator

This is the largest block of code in the program, and defines how the incoming lambda
term should be evaluated depending on the input given by the user. For the purposes of
simplicity this code can be split into three distinct sections, alpha conversion, beta reduction
and typing rules.

Alpha Conversion

The alpha conversion is based on the rules for explicit alpha conversion with substitution,
as defined by [1], and as discussed in detail in a previous chapter. The final rule is the rule
to be focused on and so will be repeated here for clarity:

Ay.t ife=y

[t'/z](Ny.t) = {Az.[t,/x] [2/ylt fx£ynzd FV(E)UFV(Y)

This defines the process of finding a variable z that does not appear in the free variables
of the incoming term or the existing term, replacing all bound variables y with this new
term z, and then substituting in t’ as normal.

The alpha conversion code written for this project follows this process. First, the set
of free variables in the term are determined, by taking the set of all alphabetic characters
in the term and eliminating the bound variables. These variables are then replaced with
letters that are not in the list of free variables, in situations where a clash in free variables
between the two expressions are found. This produces an alpha-converted term, into which
substitution can be performed using a simple String.replace() method in Python.

Beta Reduction

Two beta reduction strategies are taught on the Theory of Computation course, call-by-
value and call-by-name. The differences between these two strategies have been discussed
in detail, but the key difference is in the order in which substitution and evaluation occurs
in an application MN.

Because of these differences in evaluation strategy, two separate visitors are used to limit
the use of control coupling [22]. Since they share a lot of functionality, a BaseVisitor was
defined which contains all common code between these two strategies. The two call-by-value
and call-by-need visitors are subclassed from this base visitor, and define their unique be-
haviour for the application and abstraction terms. Both visitors pass information to the web
interface about the steps being taken to evaluate the term as the tree is navigated. This out-
put is given to the user alongside the evaluation result through a clickable link which opens a
separate webpage containing this information. This can be seen in Figure 5.7, and contains
a set of beta-steps along with the reduction rules which have been used to evaluate the term.

The abstraction term differs between the two methods due only to typing, since deter-
mining the type of a term happens during the evaluation of that term. In call-by-value,
the type of N is known before substitution, so can be carried throughout the function. In
call-by-need, the whole term needs to be type checked after substitution has happened to
determine the type of M with N incorporated. Two separate abstraction methods were
therefore needed, with common code moved into a method defined within the base visitor.

13

Typing Rules

Lambda Calculus has clearly defined typing rules which are taught in the Theory of Com-
putation course. These rules have been discussed in more detail previously. Each type can
either be of ground type T, or function type T—U under a typing context I" [14].

Since the visitNode methods already evaluate their children nodes, these typing rules
can be integrated directly into these nodes, with each visitNode method returning a value
and a type. When a type is determined for a variable, this is added to a global typing
context associated with the term. This is given to the user via a separate webpage linked to
the output type. Once the term is evaluated, shown in Figure 5.7. Type checking happens
throughout the code in each method where evaluation occurs, and is implemented as follows:

Variable
Variables simply return the type given to them by the user, as defined by Rule 2.4. Any
number is given type int, and any boolean values TRUE or FALSE are given type bool.

Abstraction
Users enter types in the form x:type, which can be applied to any variable included in the
term. The abstraction method takes the input type T, and joins it with the output type
with ->, to become of function type input->output. The input and output types are either
specified by the user, or determined through type inference.

Application
For an application MN, application typing involves iteratively removing the first ground
type of M and the first ground type of N until the type of N is None. For example, if M
is of type int->bool->int and N is of type int->bool the typing of application MN is of
type int through the following process:

M :int — bool — int N :int — bool
M : bool — int N : bool
M :int N : None

If at any point the first ground type of N does not match the first ground type of M,
the typing is invalid (for example if N was of type bool->bool in this case). This is imple-
mented using string manipulation, splitting a type T into its individual ground type using
the split () method in Python, then comparing and removing the types of M and N itera-
tively.

Type inference uses the typing rules defined above to determine the type of an output
term where possible. Abstractions are initially given function type None—None, and vari-
ables are given ground type None. This is inference using structural information.

In the visitFunction node, syntactical information can be used to determine the input
and output types of terms by examining the operation term. The following is declared in

code:

e The operations {&,|} take two boolean values and return a boolean. Therefore the
type of the incoming and outgoing term can be inferred to be of type boolean

14

e The operations {+,-,*} take two integer values and return an integer. Similar to above,
the incoming and outgoing term can be inferred to be of type integer

e The operations {==,>,<} take two integer values and return a boolean, it can there-
fore be inferred that the input term is of type integer, and the output is of type
boolean.

The output type of a function is used to determine the output type of its parent node.
In an abstraction, this type inference can be used to determine the type of its input term,
for example the lambda term Az.z + 1 can be inferred to have type int->int despite no
input type given by the user.

There is a limit to this type inference, the function will infer the input type when there
is only one operation term. For example, the term Ax.(x == 1)&b contains two operations,
== and &. In this case, working out the input type is more complicated, since the typing
has to be broken down in to sub-functions, which need to determine what they think the
input type should be, which then needs to be examined collectively as a complete term. The
type of this output is returned by the program therefore as None->bool. This is correct,
just not as minimal as its alternative type int->bool.

While narrowing type inference to its most minimal state is definitely possible, it is not
the key goal in the project, and is a small edge-case when it comes to improving student
understanding. Because of this, and due to the finite nature of this project, this limitation
has been deemed acceptable, with other tasks which more greatly contribute to students
understanding of lambda calculus being prioritised.

Error Handling

Each visit method in the visitor returns an evaluated result and a type, which is used to
build the evaluated term and determine the final result, type and type validity of the input
expression. However, during this process, there are a number of occurrences which could
stop the program from being able to return a final result. These are broken down into two
key issues: syntax errors and occurrences where a term doesn’t have a normal form (and
therefore cannot be evaluated to termination). These have been summarised below.

Syntax Errors
Lambda terms often include nested parentheses. It is easy for a user to mismatch brackets,
such as forgetting to close an open bracket. Because of this, before the term is passed to
ANTLR, the code checks to ensure brackets are matched correctly, and if not, returns an
error to the user informing them of the issue and asking them to re-enter.

Aside from this, syntax errors specific to lambda calculus are likely to occur which
cannot be picked up until the term is passed through a lexer. To handle this, ANTLR’s
ErrorListener class is overridden, instead throwing a custom SyntaxTokenError exception
which is caught by the program and passed back to the user.

Recursion Errors
Recursion errors are thrown in Python when a maximum stack depth is reached in order to
protect Python from crashing [11]. This is the exception which is thrown when a lambda
term has no normal form, as the code keeps trying to evaluate the term before eventually
throwing a RecursionError.//

15

To handle this, the recursion limit for the code is set to 200, smaller than the python
default to prevent excessive time waiting for the program to fail, but large enough to ensure
that any reasonable lambda term can be processed. A recursion limit for the code equates
to a lambda term with approximately 50 nested abstractions. While this is a limitation, it’s
is deemed to be a reasonable one, as limiting students to 50 nested abstractions as opposed
to 100 is unlikely to impact student understanding. If a recursion error is thrown, it is
caught by the code in a try/except block, and an error message informing the user that a
normal form cannot be found for this term is given.

5.2.4 'Web Interface

Flask is a web framework designed for use with Python, and allows python scripts to be
controlled from a web interface [24]. The websites’ front-end is written in HTML, and is
connected to the python file using Flask’s render_template () function.

Users enter lambda terms in the input dialogue box, entering a % sign as a lambda
symbol. Using a HTML onkeydown event, the interface automatically changes this symbol
to a A, allowing users to easily enter lambda terms. The complete web interface can be seen
in Figure 5.4, Figure 5.5 and Figure 5.6.

Clicking the Check Ezpression button on the web interface sends a HT'TP post request
to the Flask server, which takes the value held in the user input box along with the selected
reduction strategy, and sends this to the main lambda program. The output is returned to
the HTML code through Flask, and the webpage is re-rendered to display the results.

The evaluation details (including the typing context and a list of beta-steps, along with
what reduction rules have been used) are connected to the main webpage through a clickable
link in the results section. This allows users to see details of the evaluation which has just
been done, shown in Figure 5.7.

5.2.5 Complete Program

The complete class diagram for the final program can be seen in Figure 5.8, and shows how
the web interface connects to the main lambda code using the route.py file which integrates
Flask. It also shows how the ANTLR generated classes are utilised, and how each evaluation
method is implemented using a separate visitor. The complete list of files used in the code
along with what was written by the author and what was ANTLR generated can be found
in the Appendix of this report.

Chapter 6: Testing

The aim of this project is to build a web application which will verify and evaluate
lambda calculus terms input by the user, with the goal of improving student understanding.
This can be broken down into two key goals for the created tool, the interface should evaluate
lambda terms accurately and should be useful for students learning functional programming.

Because of this, the testing will be broken into sections in accordance with these two
goals. The first set of tests will evaluate the accuracy of the lambda term evaluation. The

16

term

application
application te|rm
(application) value
abstraction teIm variable
(abstraction) val|ue zZ o functio|n_type
abstraction_term . te|rm }riab{ grounT_type
% vari|ab|e abstraction vy functio|n_type bool
R S
¥ abstraction_term . te|rm grounT_type
% vari|ab|e val|ue int
Y vari|ab|e
X

Figure 5.3: Abstract Syntax Tree Example for ((Ax.Ay.x)y:int)z:bool

Lambda Calculus Expression Evaluator

Enter the term in the box below, the result will tell you the output, whether it is typable and what type it should be
To enter A, type %

Types can also be entered for any variable, in the form x:type (bool, int and none types allowed)

Enter expression here

Evaluation Method: @ Call By Value (applicative order) ¢ Call By Name (normal order) @ Alpha Conversion Only

Check Expression

Note: this program only allows single input abstractions. To enter a multi-input abstractions, nest them. So Axy.xy becomes Ax.Ay.xy

Need more information? Have a look at the for a list of commands and operations

Spot an issue? Code can be found

Figure 5.4: Web Interface

17

Lambda Calculus Expression Evaluator

Enter the term in the box below, the result will tell you the output, whether it is typable and what type it should be
To enter A, type %

Types can also be entered for any variable, in the form x:type (bool, int and none types allowed)

Enter expression here

Evaluation Method: @ Call By Value (applicative order) ¢ Call By Name (normal order) @ Alpha Conversion Only

Check Expression
Input = (Aa.a+(Ax.x+1)3)4
Result = (4+(3+1)) = 8 by arithmetic reduction (click here for evaluation details)
Valid typing = True under typing context (click here)
Type returned = int

Note: this program only allows single input abstractions. To enter a multi-input abstractions, nest them. So Axy.xy becomes Ax.Ay.xy

Need more information? Have a look at the for a list of commands and operations

Spot an issue? Code can be found

Figure 5.5: Web Interface With Returned Result

Lambda Calculus Expression Evaluato

Enter the term in the box below, the result will tell you the output, whether it is typable and what type it should be
To enter A, type %

Types can also be entered for any variable, in the form x:type (bool, int and none types allowed)

Enter expression here
Evaluation Method: @ Call By Value (applicative order) ¢ Call By Name (normal order) @ Alpha Conversion Only

Check Expression

Input = (AxAy.y)((Az.zz)(Az.zz))
Normal form cannot be found - does this term have a normal form?

Note: this program only allows single input abstractions. To enter a multi-input abstractions, nest them. So Axy.xy becomes Ax.Ay.xy

Need more information? Have a look at the for a list of commands and operations

Spot an issue? Code can be found

Figure 5.6: Web Interface With Error

18

Lambda Calculus Expression Evaluator
Input = (Aa.a+(Ax.x+1)3)4

Typing Context
t

Note: Some variables may have duplicate types, this is because the variable refers to different objects in the expression. For example, in the
expression (Ax:bool.x & Ax:iint.x+1), the two x's are unconnected, and therefore in this term x has both type int AND type bool

Beta Reduction Details
Call by name visitor selected
In application (Aa.a+(Ax.x+1)3)4, expression (Aa.a+(Ax.x+1)3) being evaluated using the left-reduction rule
In application (Ax.x+1)3, expression (Ax.x+1) being evaluated using the left-reduction rule
In application (Ax.x+1)3, expression 3 being passed to (Ax.x+1)

Beta Reduction Rules
M=N
ZM = ZN

right-reduction

(AXM)N=M[x:=N] M=M
beta equivalence

x.N

symmetric equality left-reduction lambda- reduction

Figure 5.7: Web Interface

ey
m
=<

ANTLR generated classes LambdaCalculus.g4 -

used by ANTLR to create
Classes created from LambdaParser lexer and parser. Syntax
scratch i
ErrorListener {auto-generated by ANTLR) s R

Non-python files + syntaxError({)

Lambdal exer
Web Interface (using Flask) MainLambdaClass (auto-generated by ANTLR})

,% + weblnterface{term, selection_flags)

5 e + commandLinelnterface()
.
web_page_methods(} BetaReductionVisitorClasses

routes.py

+ visitNode() methods

HTML Template Files
AlphaConversionVisitor DeltaConversionVisitor

+ visitNode() methods + visitNode{) methods BaseVisitor AlphaConversionAsSubsitution

+ visitNode{) methods €—— + convert{term)

AlphaConversionFromComplete ;]7 Jy

I

+ convert{term) LambdaVisitor
(auto-generated by ANTLR)

Figure 5.8: Complete Code Class Diagram

19

second set of tests will test the usability of the interface and whether or not it meets the
goal of improving student understanding, by performing a user test with students who have
an understanding of computer science and performing statistical analysis on the results.

6.1 Accuracy of Lambda Term Evaluation

In order to test the accuracy of the evaluation, the tests were split into three categories:
alpha-conversion, beta-reduction and typing rules. For each category, key points of potential
failure were identified. Unit tests written using the pytest framework were used to test the
beta-reduction and typing rules, split into 13 different test modules. The alpha-conversion
was not tested for using unit tests due to alpha equivalence being difficult to unit test for,
since Az.z and Aa.a are equivalent terms but not string equivalent.

The results of the tests are shown in Figure 6.1 and 6.2 below, with the unit test results
shown in Figure 6.3 and 6.4. Each table includes the input to test, the motivation for testing
that input and the results, with the name of the unit test where applicable. The unit test
outputs have been split into those which have passed and those which have failed for clarity
of reading.

Figures 6.1 and 6.2 demonstrate that in the majority of cases which have been tested,
the evaluation is accurate and does yield expected results. Any instances where the output
is not as expected have been discussed in the Evaluation section of this report.

6.2 Interface Usefulness and Usability

In order to test the usability and usefulness of the interface, a user test was conducted using
participants who had a computer science background, to simulate those on the Theory of
Computation course. Statistical analysis using quantitative data has been used to determine
whether or not the interface created helps to improve understanding of lambda calculus.
Qualitative feedback given by participants in the user test is also used to support any
conclusions drawn and a discussion on user ideas and possible improvements has been made.

6.2.1 Testing

In the user test, participants were first given a Participant Information sheet and to sign a
Participant Consent Form, which stated they were happy with the results of their user test
to be included in this dissertation, provided their answers will be kept anonymous as will
be done here. They were then asked to read a document giving them a brief introduction
to lambda calculus, which was written for this test and was based on the Theory of Com-
putation lecture slides [9]. This was done to simulate students who have been introduced
to lambda calculus, but are still very new to the subject.

Having read a brief summary, participants were asked to rate their understanding of
lambda calculus on a scale of 1-10, before being given the interface to test. They were pro-
vided with a few sample lambda terms to test if they wanted to, but were not obligated to
use them. This was to simulate students who may be using the tool to evaluate a particular

20

Input ‘ Motivation Expected | QOutput ‘ Result
Alpha Conversion
Variable capture (Ax.a*x)y or alpha-
® * v
(x.x*y)y protection test equivalent (Ax.x*a)y
Multi-input, risk of (Ax.Az.zx)y or alpha- v
(xAyyx)y nested variable capture equivalent (Ax.2b.bx)y
Beta Reduction
Alpha conversion hze.yuci):fe?llgl?ta- (Aa.y)
(AxAy.X)y simultaneous to qutve . Type Validity = True v
. Type Validity = True _
substitution Type = None—None
Type = None—None

Figure 6.1: Evaluating the Accuracy of Lambda Term Evaluation - Alpha Testing

Unit Test Name | Input | Motivation Expected | Result
Beta Reduction
Call-by-value
test_call_by_value() | . A Testing difference
(u;.?g.z) l(z()!iz zz) between call-by-value No normal form PASS
3 and call-by-need
Call-by-need
test_call_by_need() | .. A Testing difference vy
("“"'33"23 l(z()’;z'zz) between call-by-value | Type Validity = True | PASS
3 and call-by-need Tvpe = None—None
Both
test_multi_input() . . 4+3+4 =11
("“b'w;f”b)?' Multi-input Type Validity = True | PASS
Type =int
test_scope_of_bound . ; . 3+hxx
variables() (e xthxx)3 Scope of bound variables Type Validity = True PASS
test_order_of operati Order of operations,
ons() (e x*3) 30w y+ applications are left (3*3)hy.y+2) PASS
2) associative so (Ay.v+2) | Type Validity = True
should stay in the result
test_int_to_bool() I False
(ex=4)3 Tes“ﬁ‘;ﬁc’?mb""l Type Validity = True | PASS
Type = bool
Typing Rules
test_type_clashing() Type clashing, type of x Oxx+1)
(dx-bool x+1) conflicts with operation T e PASS
ype Validity = False
tvpe +
test_type_wvalid clash e (hxx+l)
- _— Type validity through e
ing() (Pt x+1) bound variable Ty%z.:;l:ldi;?_:hime PASS
test_tvpe_multiple f | (Axbool.iyinty - g Type Validity = True
unction_tyoes() +1) Multi-input valid typing Type = bool—int—int PASS
‘e“—"'afa‘s‘"‘gzawpe—d (xcintxcbool) | Variable type clashes | Type Validity = False | PASS
test_fype_inference() |, 4y Testing type inference TYTI,’;: a:hi‘j:ttizororl“e PASS
test_multi_operation . Testing multi-operation | Type Validity = True
type_inference() Ox(xt)=2) type inference Type = int—bool FAIL
test_order_of arithm A Testing order of
etic() (xx"24x"3) arithmetic operations 12 FAIL

Figure 6.2: Evaluating the Accuracy of Lambda Term Evaluation - Beta and Types Testing

21

test_lambda_evaluator.py:261: A

Figure 6.4: Unit Tests Failing Output

lambda expression they have found in the lecture slides or online.

Finally, users were given a questionnaire which again asked them to rate their under-
standing of lambda calculus having used the interface for a short period of time, so their
understanding could be compared before and after using the tool. The questionnaire also
asked a number of qualitative questions, asking participants to give feedback on whether or
not they would use this tool if they were studying lambda calculus and what they thought
of the interface, along with any suggestions they had for possible improvements.

6.2.2 Results

Although the test was not conducted with a time limit, each participant spent approxi-
mately five minutes using the interface before stating they were ready to move on. As can
be seen from Figure 6.5, in the five minutes participants interacted with the interface their
understanding improved by 39.1% on average, with the only user not noting an improvement
in understanding stating that they had significant knowledge of lambda calculus before us-
ing the tool and therefore did not need help understanding. 100% of participants said they
would use the tool created if they were on the Theory of Computation course, and 100%
said they found it useful in improving their understanding.

The percentage of improvement found in Figure 6.5 will now be used to determine
whether students are statistically likely to improve in understanding using the tool, and
whether or not the improvement is statistically significant or due to chance. This has been
done using z-scores and t-testing.

22

We can prove whether the tool created was successful in improving understanding using
z-scores and Statistical Hypothesis Testing. Given an alpha-level of 0.05, this leads to a
z-value of 1.645 [21]. With a sample size of 14 and a mean percentage of improvement of
39.1%, we can state a null hypothesis that participant understanding improved less than
25% after using the tool, leading to a z-score of 2.69 which is larger than the z-value of 1.64.
This means that the null hypothesis can be confidently rejected, and leads to the conclusion
that with a short amount of time using the tool, students will on average likely improve in
understanding of lambda calculus by at least 25%.

Calculating the t-value of this data using the equal variance method [19] results in a
t-value of 2.645, or approximately 98% confidence that the improvement in understanding is
statistically significant. It is acknowledged that the sample size of 14 in this case is small due
to time restrictions in the project, and in order for more concrete conclusions to be drawn
more participants would be needed, which has been discussed further in the Future Work
section of this report. This result is still significant however and supports the hypothesis
that the interface created is useful in improving understanding of students learning lambda
calculus.

The qualitative questions on the tool revealed that participants found the system simple
and easy to use, with some suggestions for improvement. Suggested interface changes in-
cluded making the colour of the input box darker to differentiate between input boxes and
menus, changing the background as some participants found it distracting, and splitting
up the output box to make individual elements clearer. Participants also suggested adding
additional features such as tooltips to give the user more information on what particular
lambda terms meant, and adding a workbook section which would allow users to save the
results to a file in order to create a study resource they could go back to later.

Overall the feedback was incredibly positive, with participants commenting that the tool
helped improve understanding by adding a practical element to the much more theoretical-
based lecture slides. With an original goal for the tool of helping to improve student under-
standing in lambda calculus, this combined with the Statistical Hypothesis Testing above
proves that this goal has been met successfully.

Chapter 7: Evaluation

As stated in the beginning of this report, the aim of this project is to build a web ap-
plication which will verify and evaluate lambda calculus terms input by the user. This tool
is created with the goal of helping future students learning functional programming to gain
a better understanding of lambda calculus.

This chapter will discuss whether or not the project description has been met, and
whether or not the tool created could be used as a supplementary resource for students
learning lambda calculus on the Theory of Computation course taught at the University of
Glasgow.

23

Participant Understanding Before and
Improvement Using Interface

[ANDING

30%

JNDER:

Figure 6.5: Participant Understanding Results

7.1 Accurately Evaluating Lambda Terms

As evidenced by section 6.1, the tool created does accurately evaluate lambda terms, re-
turning the normal form, type and type validity of lambda terms for both call-by-value
and call-by-need evaluation strategies. Applied lambda calculus with types is supported, as
taught on the Theory of Computation Course.

7.1.1 Limitations

Figure 6.2 demonstrates the type inference issue when functions have multiple operations.
This has been discussed in detail in the Implementation section of this report, and there-
fore will not be discussed here. It also shows an issue related to the order of arithmetic
operations in a function. Functions in the syntax are set to be right-associative to align
with abstractions, which means that the function 22 + 23 is processed as 2(2 4 (23)) = 1024
rather than (22) + (23) = 12. This means that arithmetic order of operations is not followed
in multi-operation terms. This is a limitation and is discussed in the future work section.

The final limitation to be mentioned is the lack of responsive design in the interface.
This means that elements on screen may not display correctly on some devices. This could
be easily remedied in future but has not been done due to time restrictions, this has again
been discussed in the future work section.

7.2 Improving Student Understanding

The user tests conducted and summarised in section 6.2 suggest that students with a com-
puter science background learning lambda calculus for the first time would likely find the
tool useful in supporting their learning. Possible improvements such as including tooltips
as suggested in user feedback are valid and would be implemented given more time.

24

The user feedback also suggested that the simplicity of the interface is a positive, and
care must be taken to prevent the interface from becoming too complicated. With a goal of
supporting learning by providing an interface which accurately evaluates lambda terms, it
can be said that these goals have been met.

7.3 Future Work

Due to the time limited nature of this project, not all features or corrections have been
implemented. Given more time, the following work would be done:

1. Fix the order of arithmetic operations issue discussed in the Limitations section of
this report, this was simply left out due to time restrictions with the project

2. Add in multi-input abstraction terms to allow users to enter Axy.M as appears in the
lecture slides [9] as opposed to Az.\y.M, which would allow students to directly copy
more lambda terms from the lecture slides to see how they are evaluated.

3. Improve the web interface by implementing responsive design

4. Improve the type inference to allow input types of multi-operation functions to be
inferred.

5. Include tooltips linked to various aspects of the web interface to give users more
information about what particular phrases mean or what elements of the web interface
do.

6. Do further user testing for the web interface to get a wider understanding of any
style/usability issues that exist from a wider demographic of participants. This could
include those who have previously taken the Theory of Computation course to identify
any areas which would most benefit from further support, those learning lambda
calculus using alternative methods, or those who have less of a background in computer
science than the participants used in the study.

7. Allow users to enter lambda terms in the De Bruijn notation, for those unfamiliar with
the Barendregt convention or those wanting to expand their knowledge of Lambda
Calculus.

8. Add a feature which would evaluate the term step-by-step, so evaluation could be
paused. This would allow users to see exactly how the term is being evaluated, and
the state of evaluation at each stage.

Chapter 8: Conclusion

This report has documented the work done in creating a tool to evaluate lambda terms
designed to support those studying the Theory of Computation at Glasgow University. The
report has given an introduction to key terms, an analysis to determine specific objectives,
and has detailed the design and implementation of the tool. It has also covered the testing

25

and evaluation of the final interface to determine how well key goals have been met.

The outcome of the project was extremely successful, resulting in a simple and conve-
nient tool which accurately evaluates lambda calculus terms in an easy-to-use web interface.
Design decisions were made based on lecture material, but the tool was not limited so much
that it could only be used by those on the Theory of Computation course. The final tool is
broad enough to be accessible to those learning lambda calculus through alternate methods,
but specific enough to support those on the course achieve understanding of key learning
outcomes.

Creating this tool was very much a challenge, having no prior knowledge of lambda
calculus before the project was started resulted in an extremely steep learning curve and a
number of setbacks due to misunderstandings made early on in the project. As well as this
ANTLR had to be learned from scratch, resulting in a portion of time being allocated to
becoming familiar with the tool in order to utilise it in the best way possible.

Due to the finite nature of the project and the amount of learning that had to be done as
implementation was underway, there are features which would benefit the tool which have
not been included due to time restrictions. These include supporting multiple notations
such as De Bruijn notation and multi-input terms which have been discussed previously.
The tool could also be expanded in ways which would further benefit student learning, for
example adding tooltips to give users more guidance on the theoretical aspects of lambda
calculus and allowing students to evaluate terms step-by-step so they could see how the
term is processed as evaluation is happening.

As well as additional features, one key goal would be to perform additional user testing
across a wider demographic of participants, including those who previously have taken the
Theory of Computation course, those more familiar with lambda calculus and those at other
universities or learning lambda calculus through other means. This would help improve the
tool for a wider range of potential users, and allow additional feature ideas to come from
people who would actually be using it.

However, despite the narrow demographic of user feedback and the additional features
which could potentially be implemented, the project was a huge success. From the 14 test
participants, 100% said they found the tool useful and would use it if they were on the The-
ory of Computation course, reporting a 39% improvement in understanding having used the
tool for a short period of time. Testing has also shown that the tool does evaluate lambda
terms accurately, by following the rules of lambda calculus as closely as possible and mak-
ing the best use of the extremely powerful parsing tool that is ANTLR. This has resulted
in a system which will accessible to students on the Theory of Computation course next
year, and is hosted on university servers at the link found in the abstract of this dissertation.

Creating the tool was definitely a challenge, due to having no knowledge of lambda
calculus or ANTLR before starting the project. But the tool created has met all the goals
which were set out at the start of the project, and includes additional features going beyond
the limited specification to further improve student understanding. It is hoped that future
students will find this tool useful in their university studies, and that it will help to improve
their understanding of lambda calculus and functional programming.

26

Bibliography

[1]

2]

13l
4]
[5]
16]

[7]
18]
[9]
[10]
[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]

Umut Acar and Amal Ahmed. Lecture 3: Lambda Calculus (Syntaz, Substitution, Beta Re-
duction). Jan. 17, 2018. URL: https://ttic . uchicago . edu/~pl/classes/CMSC336 -
Winter08/lectures/lec3.pdf (visited on 08/01/2019).

Henk Barendregt and Erik Barendsen. Introduction to Lambda Calculus. Mar. 2000. URL:
http://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers . pdf
(visited on 07/27/2019).

Marc Bezem and Jan F. Groote. Typed Lambda Calculi and Applications. Springer-Verlag,
June 13, 2008, p. 356.

Manish Bhojasia. Python Program to Implement a Stack. URL: https://www.sanfoundry.
com/python-program-implement-stack (visited on 08/28/2019).

Steven Bird, Ewan Klein, and Edward Loper. Natural Languge Processing with Python: An-
alyzing Text with the Natural Language Toolkit. O’Reilly, 2009, pp. 291-322.

Rosalie Chan. The 10 most popular programming languages, according to the ’Facebook for
programmers’. Aug. 10, 2019. URL: https://www.businessinsider . com/the- 10-most-
popular-programming-languages-according-to-github-2018-107r=US&IR=T (visited on
01/22/2019).

Alonzo Church and J. B. Rosser. “Some Properties of Conversion”. In: Transactions of the
American Mathematical Society 38 (3 1936), pp. 472-482.

Agile Business Consortium. The DSDM Agile Project Framework. Jan. 2014.

Ornela Dardha and Simon Gay. The Theory of Computation (H), course code COMPSCLL072
Lecture Slides. 2019. URL: https://www.gla.ac.uk/coursecatalogue/course/?code=
COMPSCI4072.

Stacy Everett. Grammar. July 11, 2019. URL: https://github. com/antlr /grammars -
v4/tree/master/arithmetic (visited on 07/28/2019).

Python Software Foundation. Built-in Ezceptions. Aug. 8, 2019. URL: https://docs.python.
org/3/library/exceptions.html (visited on 08/08/2019).

University of Glasgow. Theory of Computation (H) Course Specification. 2019. URL: https:

/ /www . gla . ac.uk/ coursecatalogue /document 7 type =sp & courseCode = COMPSCI4072
(visited on 08/02/2019).

Liang Gong. Lambda Calculus Interpreter. URL: https://jacksongl.github.io/files/
demo/lambda/index.htm (visited on 08/29/2019).

Chris Hankin. An Introduction to Lambda Calculi for Computer Scientists. 2nd ed. King’s
College Publication, 2004.

Mehedia Hasan. The 20 Most Popular Programming Languages To Learn For Your Open
Source Project. Aug. 10, 2019. URL: https://www.ubuntupit.com/top-20-most-popular-
programming-languages-to-learn-for-your-open-source-project/ (visited on 2019).

Susan B. Horowitz. Lambda Calculus (Part 1). 2013. URL: http://pages.cs.wisc.edu/
~horwitz/CS704-NOTES/1.LAMBDA-CALCULUS.html#normal (visited on 08/01/2019).

Paul Hudak. A Brief and Informal Introduction to the Lambda Calculus. 2008. URL: http:
//www.cs.yale.edu/homes/hudak/CS201508/lambda.pdf (visited on 08/20/2019).

Fairouz Kamareddine. Reviewing the Classical and the de Bruijn Notation for A-calculus
and Pure Type Systems. Oct. 4, 2000. URL: https://pdfs. semanticscholar.org/2b65/
df6c8cOcc14db2afcacbca0f0423588ec6f0.pdf? (visited on 08/02/2019).

27

[19]
[20]

[21]

22|

23]

[24]

[25]
[26]

[27]
28]

[29]
[30]

[31]

32|

[33]
[34]
[35]
[36]
[37]
[38]

[39]

Will Kenton. T-Test. Jan. 25, 2019. URL: https://www. investopedia.com/terms/t/t-
test.asp (visited on 08/22/2019).

Robert Kovacsics. Lambda-Calculus Evaluator. Mar. 15, 2019. URL: https://www.cl.cam.
ac.uk/~rmk35/lambda_calculus/lambda_calculus.html (visited on 08/29/2019).

Wayne W. LaMorte. Hypothesis Testing: Upper-, Lower, and Two Tailed Tests. Nov. 6, 2017.
URL: http://sphweb . bumc.bu.edu/otlt/MPH- Modules/BS/BS704_HypothesisTest -
Means - Proportions / BS704 _ HypothesisTest - Means - Proportions3 . html (visited on
08/22/2019).

Timothy C. Lethbridge and Robert Laganiére. Object-Oriented Software Engineering. Mc-
Graw Hill Book Company, Dec. 1, 2004, p. 323.

Ralph Loader. Notes on Simply Typed Lambda Calculus. Feb. 1998. URL: http://www.1lfcs.
inf . ed.ac.uk/reports/98/ECS- LFCS-98-381/ECS-LFCS-98-381.pdf (visited on
07/28/2019).

Matt Makai. Flask. Aug. 8, 2019. URL: https://www.fullstackpython.com/flask.html
(visited on 2019).
Andrew McNab. “Session Types in Pi-Calculus”. Apr. 2019.

Greg Michaelson. An Introduction to Functional Programming through Lambda Calculus.
Dover Publications Inc., Apr. 21, 2011.

Terrance Parr. The Definitive Antlrj Reference. 1st ed. The Pragmatic Programmers, 2012.

Alison DeNisco Payome. Forget the most popular programming languages, here’s what devel-
opers actually use. Aug. 10, 2019. URL: https://www.techrepublic.com/article/forget-
the-most - popular - programming - languages - heres - what - developers - actually-use/

(visited on 10/22/2018).
Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

Raul Rojas. A Tutorial Introduction to the Lambda Calculus. 1998. URL: https://www.inf.
fu-berlin.de/lehre/WS03/alpi/lambda.pdf (visited on 07/28/2019).

David Ruiz and Mateu Villaret. “TILC: The Interactive Lambda-Calculus Tracer”. In: Elec-
tronic Notes in Theoretical Computer Science 248 (2009), pp. 173-183.

Peter Selinger. Lecture Notes on the Lambda Calculus. 2013. URL: https://www. irif .fr/
“mellies/mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf (visited on
07/27/2019).

Ken Slonneger and Barry Kurtz. Chapter 5: The Lambda Calculus. Pearson, 1995, pp. 139—
166.

Kevin Sookocheff. Fta Reduction. Sept. 27, 2018. URL: https://sookocheff.com/post/fp/
eta-conversion/ (visited on 08/02/2019).

Kevin Sookocheff. Normal, Applicative and Lazy FEvaluation. Sept. 18, 2018. URL: https:
//sookocheff .com/post/fp/evaluating-lambda-expressions/ (visited on 08/01/2019).

Saumitra Srivastav. Antlr4 - Visitor vs Listener Pattern. Oct. 19, 2017. URL: https://
saumitra.me/blog/antlr4-visitor-vs-listener-pattern/ (visited on 08/06/2019).

Paul Tarau. Church Encoding. Feb. 17, 2017. URL: http://www . cse.unt.edu/ “tarau/
teaching/PL/docs/Church%20encoding.pdf (visited on 08/02/2019).

Gabriele Tomassetti. The ANTLR Mega Tutorial. Mar. 8, 2007. URL: https://tomassetti.
me/antlr-mega-tutorial/ (visited on 08/06/2019).

Sebastian Wiesner. Type Inference - Main seminar, summer term 2011. Aug. 14, 2019. URL:
http://www2.in.tum.de/hp/file?fid=880 (visited on 06/22/2011).

28

Chapter 9: Appendix

9.1 Appendix 1: Code File Information

The following lists the code files created for this dissertation, and lists which were created

by the author of this dissertation, which are accredited to other authors, and which are auto-

generated by ANTLR. A detailed view of these files can be found on at https://github.com/jonesy30/LambdaCalc
on Github.

Files Created By Dissertation Author

e All unit tests (contained within the testing folder)

e All web-interface files (contained within the app folder)
e AlphaCalculatorFromComplete.py (alpha conversion)

e AlphaCalculatorPartial.py (alpha conversion)

e AlphaConversionVisitor.py (alpha conversion)

e BaseVisitor.py (base beta visitor)

e BracketCheck.py (support file used by other classes)

e CallByNameVisitor.py (beta reduction)

e CallByValueVisitor.py (beta reduction)

e DeltaReductionVisitor.py (arithmetic evaluation)

e LamdaCalculus.g4 (grammar file)

e LambdaCalculus.py (MAIN RUNNABLE FILE)

e LambdaSessionInformationObject.py (support file used by other classes)

e interface runner.py (used to launch web interface)

File Based on and Credit Given To [4]
e Stack.py (used by other classes)

Files Auto Generated By ANTLR

e LambdaCalculusLexer.java
e LambdaCalculusParser.java

e LambdaCalculusVisitor.py

LambdaCalculusLexer.py

e LambdaCalculusVisitor.py

29

