Recursive Session Types Revisited

Ornela Dardha*
School of Computing Science, University of Glasgow, UK

Ornela.Dardha@glasgow.ac.uk

Session types model structured communication-based programming. In particular, binary session
types for the n- calculus describe communication between exactly two participants in a distributed
scenario. Adding sessions to the 7-calculus means augmenting it with type and term constructs. In
a previous paper, we tried to understand to which extent the session constructs are more complex
and expressive than the standard z- calculus constructs. Thus, we presented an encoding of binary
session - calculus to the standard typed z- calculus by adopting linear and variant types and the
continuation-passing principle. In the present paper, we focus on recursive session types and we
present an encoding into recursive linear n-types. This encoding is a conservative extension of the
former in that it preserves the results therein obtained. Most importantly, it adopts a new treatment of
the duality relation, which in the presence of recursive types has been proven to be quite challenging.

1 Introduction

Session types are a type formalism used to model structured communication-based programming for dis-
tributed systems. In particular, binary session types for the 7-calculus describe communication between
exactly two participants in such scenario [6,/8/11}/12]. When sessions are added to the standard typed 7-
calculus, the syntax of types and terms is augmented with ad-hoc constructs, added on top of the already
existing ones. This yields a duplication of type and term constructs, e.g. restriction of session channels
and restriction of standard - channels or, recursive session types and recursive standard 7- types [6].
Most importantly, this redundancy is also propagated in the theory of session types: various properties
are proven for session types as well as for standard n-types. In a previous work [5]], we focused on a
subset of binary session types, namely the finite ones, and posed the following question:

To which extent session constructs are more complex and more expressive
than the standard n-calculus constructs?

We answered this question by showing an encoding of finite binary session types into finite linear n-
types and of finite session processes into finite standard z-processes. In the present paper, we extend the
encoding to an infinite setting, namely to recursive session types and replicated processes, and pose the
same question. We encode recursive session types into recursive linear z- types and replicated session
processes into replicated standard m- processes. We show that the current encoding i) is sound and
complete with respect to typing derivations, intuitively meaning: “a session process is well-typed if and
only if its encoding is well-typed”; and ii) satisfies the operational correspondence property, intuitively
meaning: “a session process and its encoding reduce to processes still related by the encoding”.

The interest and benefits of this encoding are mainly in expressivity and reusability for a larger setting
than the one adopted in [5]. The encoding is an expressivity result for recursive types. Its faithfulness,
proved by i) and ii), permits reusability of already existing theory for standard typed n-calculus: e.g.,

*The author is supported by the UK EPSRC project From Data Types to Session Types: A Basis for Concurrency and
Distribution (ABCD) (EP/K034413/1).

© 0. Dardha
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
BEAT 2014

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Recursive Session Types Revisited

subject reduction or type safety for session n-calculus can be obtained as corollaries from the encoding
and the corresponding properties in the standard typed n-calculus.

The present encoding is not just an extension of the former, it presents novelties and differences
with respect to [5], as listed below. Duality is a fundamental notion of session types, as it describes
compatible behaviours between communicating parties. The most used duality is the inductive duality
function = [8l/12]. Recent work [2] has shown the inadequacy of - in the presence of recursive types,
because it does not commute with unfolding. As a consequence, using relations like subtyping or type
equivalence becomes challenging, because these relations explicitly use unfolding of recursive types. In
the light of such discovery, the present encoding adopts the complement function cplt() defined in [2],
which is shown to be adequate, instead of =, adopted in the former encoding. Since cplt() and - coincide
for finite session types, the encoding in [5] remains sound and the present encoding is a conservative
extension of the former, in that it preserves all the properties that the former encoding satisfies. For
completeness, the present one is extended to standard variables and hence non session - processes: in
this case the encoding is an homomorphism and no linearity is required. On top of cplt(), we present
the co-inductive duality relation, which is shown to contain the complement [1]], and is used in the type
system for session mr-calculus [3,/6]]. This permits us to give a definition of complement and co-inductive
duality for linear 7r-calculus types, which is another contribution of the present paper.

Structure of the paper. In § 2] we present the syntax of types and terms for both the session 7-calculus
and the standard types 7-calculus. In § [3] we present the encoding of recursive session types and session
processes and we state the main results for the encoding. In § 4 we give a detailed example of the
encoding of a well-typed replicated process which uses recursive session types. We conclude in § 5} The
proofs of the result herein presented can be found in the online version of the paper [3]].

2 The Model

2.1 Background on 7-calculus with sessions

Syntax. The syntax of the n-calculus with session types [6,/12] is given in Figure

PO = xKv).P (output) | x?(y).P (input) | x<l;.P (selection)
x>{li: Pi}ie; (branching) | PO (parallel) | (vxy)P (session res.)
*P (replication) | (vx)P (channel res.) | 0 (inaction)
vV U= X (variable) | 1 (unit value)

Figure 1: m-calculus with sessions, syntax.

P, O range over processes, x,y over variables, v over values and / over labels. A value is a variable
or 1. A process is an output x!{v).P which sends v on x with continuation P; an input x?(y).P which
receives a value on x and proceeds as P; a selection x</;.P which selects /; on x and proceeds as P; a
branching x> {/; : P;};c; which offers a set of labelled processes on x, with labels being all different; a
parallel composition P | Q of P, Q; replicated =P which spawns copies of P; a session restriction (vxy)P
or a standard channel restriction (vx)P; or 0, the terminated process. Session restriction differs from
the standard one: (vxy) states that x and y, called co-variables, are the opposite endpoints of a session
channel and are bound in P. It models session creation and the connection phase [8},/11]].

Session types. The syntax of types for the 77-calculus with sessions [6]] is given in Figure 2]

O. Dardha 3

S = ITS (send) | ?T.S (receive) | &®{l;:Si}ier (select)
&{l; : S;}ie; (branch) | X (type var.) | X (dual type var.)
end (termination) | uX.S (rec. session type)

T == S (session type) | #T (channel type) | X (type variable)
uX.T (recursive type) | Unit (unit type)

Figure 2: nr-calculus with sessions, types.

S ranges over session types and T over types. A session type can be !7T.S or 7T.S which respectively,
sends or receives a value of type 7 and continuation S; select ®{/; : S;}ie; or branch &{/; : S;}ie; which
are sets of labelled session types indicating respectively, internal and external choice, with labels being
all different; a (dualised) type variable X, X, or recursive session type uX.S or the terminated type end.
A type can be a session type S; a standard channel type §7'; a type variable X or recursive type uX.T or
a unit type Unit. Recursive (session) types are required to be guarded, meaning that in uX.T, variable X
may occur free in 7 only under at least one of the other type constructs. To work with recursive types we
need the unfolding function (unr) which unfolds a recursive type until the first type constructor different
from pX is reached (see [3]]). Finally, we use SType to denote the set of closed (no free type variables)
and guarded session types.

On duality for session types. Below we give an adaptation of the complement function [2] to X, X.

Definition 2.1 (Complement function for session types). The complement function is defined as:

cplt(?T.S) = IT.cplt(S) cplt(X) = X

cplt(!7.5) = 2T.cplt(S) cplt(X) = X

Cpt(&li: Sitier) = @{li:cplt(S)ilier cpt(uX.S) = wuX.cplt(S[*XS/x])
cplt@{li : Sitier) = &{li:cplt(S)ilier cplt(end) = end

It uses a syntactic substitution | ~/_ |, which acts only on carried types and is formally defined in [1+-
3|]. Below we give the definition of standard type substitution for (dualised) type variables [7].

X{S/X)=5 Y{S/X}=Y IfX=#Y
X{S/X} = cplt(S) Y{S/X)=Y IfX#Y

However, when describing opposite behaviours between communicating parties, in this paper we adopt
the co-inductive duality relation Lg by following [6]]. The benefits of this approach are: i) L commutes
with unfolding [2] and hence it is adequate; ii) as stated in [6]], since it is a relation it captures dual
behaviours that *,cplt() do not capture, like xX.7Unit.X and !Unit.uX.!Unit.X. iii) as stated in [[1]], it
contains cplt(). Before defining L , we need the notion of type equivalence and hence subtyping. For
simplicity, we omit subtyping on base types and on standard channel types, which are given in [2,/6]].

Definition 2.2 (Subtyping and type equivalence for session types [6]). A relation R C SType X SType is
a type simulation if (T,S) € R implies the following:

i) if UNF(T) = end then unr(S) = end

i) if une(T) = T,,.T" then uNe(S) = 2S,,.8" and T,y R Spand T' R S’

iii) if une(T) = !T,,. T then une(S) =15,,.8" and S, R Ty and T’ R S’

iv) if UNK(T) = &{l; : Ti}ic; then uNr(S) = &{l; : S j}jes, ICJ, T; R S;, Viel

V) If UNK(T) = ®{l; : Ti}icy then uNe(S) =l : S j}jes, JSLT; R Sj,VjedJ

4 Recursive Session Types Revisited

The subtyping relation <g is defined by T =g S if and only if there exists a type simulation R such that
(T,S) e R. The type equivalence relation =g is defined by T =5 S if and only if T <¢ S and S <5 T

Definition 2.3 (Co-inductive duality for session types [6]]). A relation R € SType X SType is a duality
relation if (T,S) € R implies the following conditions:
i) If une(T') = end then UNF(S) = end
i) If une(T) = 2T, T’ then uNe(S) = 1S ,,.8" and T" R S’ and Ty, =5 S,
iii) If one(T) = !T,,,.T' then uNe(S) = 25 ,.S" and T" R S" and T,, =5 S,
iv) If une(T) = &{l; : T;}ics then UNF(S) = ®{l; : S j}icr andNie l, T; R S;
V) IfUNF(T) = @{l,‘ : Ti}ie[then UNF(S) = &{l[: Si}[el and Vi € 1, T,' R S[
The co-inductive duality relation Lg is defined by T Ls Siff 1 R, a duality relation such that (T,S)e R.
Proposition 2.4. Let T,S € SType, cplt(T)=S = T1sS.
Proposition 2.5 (Idempotence). Let T,S,U € SType. If TLs S and S Lg U then T =5 U.
By Proposition [2.4] and Proposition [2.5| we have the following.

Proposition 2.6. Let T,S,U € SType. If cplt(T) =S and cplt(S) = U then T =5 U.

2.2 Background on standard n-calculus

Syntax. The syntax of the polyadic n-calculus [[10] is given in Figure

PO == xK¥).P (output) | x?(#).P (input) | PlQ (parallel)
(vx)P (channelres.) | =P (repl.) | casevof{l;_x;>P;}ic; (case)
0 (inaction)
vV o= X (variable) | 1 (unitval.) | Il (variant val.)

Figure 3: Standard n-calculus, syntax.

P, O range over processes, X,y over variables, [over labels and v over values, i.e., variables, 1, or variant
values. A process can be an output x!(¥).P which sends ¥ on x and proceeds as P; an input x?(¥).P which
receives a sequence of values on x, substitutes them for y in P; a parallel composition P | Q of P,Q;
replicated *P; a restriction (vx)P which creates a new channel x and binds it in P; a casevof {{;_x;> P;};c;
which offers a set of labelled processes, with labels being all different; or inaction 0.

Standard 7- types. The syntax of n-types [9,/10] is defined in Figure

T == 0[] (no capability) | ﬁ[f] (connection)
G [T] (linear input) | € [T] (linear output) | ¢ [T] (linear connection)
T == 71 (channel type) | (l;:Ti)ies (varianttype) | X (type var.)
|

X (dual type var.) Unit (unit type) | uX.T (recursive type)

Figure 4: Standard n-calculus, types.

7 ranges over channel types and 7" over types. A channel type is a type with no capability 0[], meaning it
cannot be used further; a connection ﬁ[T 1ndeﬁn1tely used; a linear input ¢ [T] a linear output ¢, [T] or
the combination of both, i.e., a linear connection ¢y [T] used exactly once [9|] according to its capability.

O. Dardha 5

A type can be a channel type 7; a variant (/; : T;);c; being a set of labelled types, with labels being all
different; a (dualised) type variable X, X or recursive type uX.T or Unit. Again, we require recursive
types to be guarded and use PType to denote the set of closed (no free type variables) and guarded
standard 7-types. To conclude, the definition of unfolding is the same as in the previous section.

On duality for linear types. Inspired by duality on session types, below we give the definition of
complement function picplt() and co-inductive duality relation L, for linear 7-types.

Definition 2.7 (Complement function for linear n-types). The complement function is defined as:

picplt(([T]) = & [T] picplt(X) = X
picplt(t, [T1) = & [T] picpltX) = X
picplt(uX.T) = uX.picpt(T|**T/x]) picplt@[]) = 0]

The definition of type substitution for linear types is the same as in the previous section, where cplt()
is replaced by picplt(). Before defining L, , we give a co-inductive definition of subtyping and type
equivalence for linear n-types. For simplicity, we omit the subtyping on base types, standard channel
types, or variant types which can be found in the literature [[10].

Definition 2.8 (Subtyping and type equivalence for linear n-types). A relation R C PType XPType is a
type simulation if (T,S) € R implies the following:

i) if UNF(T) = Q[] then unr(S) = O[]

i) if uNe(T) = ¢ [T] then UNF(S) = ¢ [S] andT R S

iii) if UNK(T) = £, [T] then une(S) = €, [S] andT R S

The subtyping relation <g is defined by T <y, S if and only if there exists a type simulation R such that
(T,S) € R. The type equivalence relation =, is defined by T =p S if and only if T <, S and S <, T

Definition 2.9 (Co-inductive duality for linear n- types). A relation R € PType X PType is a duality
relation if (T,S) € R implies the following conditions:

i) If uNe(T) = O[] then uNr(S) = 0[]

it) If une(T) = ¢ [T] then uNK(S) = £o S] andT = I =p S

iti) If une(T) = £, [T] then UNE(S) = ¢ [T]and T =p S

The co-inductive duality relation Ly is defined by T 1, S iff 3 R, a duality relation such that (T,S) € R .

Proposition 2.10. Let T,S € PType, picplt(T) =S = T1,S.
Proposition 2.11 (Idempotence). Let T,S,U € PType. If T 1, S and S L, U then T =, U.
Proposition 2.12. Let T,S,U € PType. If picplt(T) = S and picplt(S) = U then T =, U.

3 Encoding recursive session types

Below we give the encoding of recursive session types into recursive linear 7-types and of session 7r-pro-
cesses into standard z-processes. It is based on the notions of: linearity, variant types and continuation-
passing principle. To preserve communication safety and privacy of session types, we use linear chan-
nels. To encode internal and external choice, we adopt variant types and the case process. To preserve
the sequentiality of session types and hence session fidelity, we adopt the continuation-passing principle.

Types encoding. The encoding of session types is presented in Figure[5] Type end is encoded as the
channel type with no capability O[]; output !7°.S and input ?7'.S session types are encoded as linear output
€o [ILT1, [cplt(S)HI] and linear input & [[T], [[S]]] channel types carrying the encoding of type T and of

6 Recursive Session Types Revisited

[xI = fi
[end] =) Lx1(v). Pl E S TPT)
I7.5] b [T, [epit(S)I] [x2(). Pl E £20,0IP] e
[27.5] LTI IST [x<l,.Pl; WO LML) TP ey
[l Sihierl S 6o [: [[cplt(S) 1ier] [x>{li : Pitierlly et fx2(y). caseyof {l;_c> [Pl (v bier
[&ll: S el &5 € [l - 1S Aier] [(vxy)Ply E VOIPI e yey
[x1 L x [P ol E1P1; 1 1O1;
X1 X [(vx)P1 C wolPly
XS] et XIS [+P1y ©F LLpl,
101, def)

Figure 5: Encoding of session types and terms

continuation type cplt(S) and S, respectively. cplt(S) is adopted in the output since it is the type of a
channel as seen by the receiver, namely the communicating counterpart. Select &{/; : S ;};c; and branch
&{l; : S }ier are encoded as linear output £, [{/; : [cplt(S)])icr] and linear input & [{/; : [.S:1)ier] types
carrying a variant type with the encoded continuation types; the reason for cplt(S ;) is the same as before.
The encoding of a (dualised) type variable and a recursive session type is an homomorphism.

Terms encoding. The encoding of session 7-terms, presented in Figure[5] uses a partial function f from
variables to variables which performs a renaming of linear variables into new linear variables to respect
their nature of being used exactly once and it is the identity function over standard variables. The formal
definition can be found in [3]]. A variable x is encoded as f;; an output x!{v).P is encoded as an output
on f, of v and the freshly created channel ¢ which replaces x in the encoding of P. The encoding of an
input x?(y).P is an input on f, with placeholders y and the continuation channel ¢ used in [P]lfxc)-
The encodings of selection x</;.P and branching x»>{/; : P;};c; are the output and input processes on fy,
respectively. The output carries a variant value /;_c where /; is the selected label and ¢ the new channel to
be used in the continuation. The input has a continuation of a case, offering the encoded processes of the
branching. The session restriction process (vxy)P is encoded as the restriction on ¢ which replaces both
of the endpoint x,y in the encoding of P. The rest of the equations states that the encoding of parallel
composition, standard channel restriction and replication is an homomorphism and the encoding of the
inaction process is the identity function.

Results of the encoding. The proofs of the following results can be found in [3|]. The following two
lemmas relate the encoding of equal and dual session types to equal and dual linear n-types.

Lemma 3.1 (Encoding =5). T,S € SType and T =5 S. If [T]| =7, then [S]| = 0 and 7 =p 0.
Lemma 3.2 (Encoding 1s). 7.,S € SType and T Ls S. If [UNe(T)] = 7 then, [UNK(S)]| = o and 71 0.
Lemma 3.3 (Value Typing). I' v : T if and only if [T]|s + [V : [T]. EI
Theorem 3.4 (Process Typing). I' + P if and only if [T'] s + [P .
Theorem 3.5 (Operational Correspondence). Let P be a session process. The following hold.

1. If P— P’ then [Pl —»<= [P']y,

I The encoding is extended to typing environments I and the details can be checked in [3)].

O. Dardha 7

2. If [Ply — Q then, 3 P',&["] such that E[P] — E[P'] and Q < [P']y, where f’ is the updated f
after reduction and f = f, for all (vxy) € &[].
— denotes = possibly extended with a case reduction; &[] is an evaluation context.

4 Example of encoding

We present an error-free process which requires recursive session types. We let a, b range over standard
channels and x,y, z, v, w range over session channels; we associate a type to a variable in an object position
in input or restriction as in [6]. The typing rules and the operational semantics can be found in [3]].

Let P ==(a?(x : T).x<l.a!{x).0) be a replicated process that on a standard channel a receives a session
channel x on which selects / and proceeds as a!(x). We have the following typing derivation for P:

T-Nil
T-Out

a:ﬁTI—O SﬁsT
a:#T,x:S Falx).0

a:fT,x:@(l:S)rxalal{x)0 T = @{l:S) ﬁ*elect
~In
: x: ! .
a:§T ra?(x:T).x<lal{x).0 un(a : #7) Rep

a:§T + x(a?(x: T).x<l.a!{x).0)

For this derivation to hold, T and S need to be such that 7 <g @{/: S} and S <5 7. The simplest way to
solve this system of subtyping in-equations is to have S = T, which requires 7 = uX. ®{l : X}.

Let Q = «(b?(x : U).x>{l: b!{x).0}); it has dual behaviour to P and the typing derivation is similar to
above, with T-SeLecT replaced by T-BrancH. We now have the in-equations U <g &{/: S’} and S’ <4 U.
We let U = uX.&{l : X}. By Definition [2.3] we have U_Ls T. We now close P and Q with two auxiliary
output processes, a!(v).0 and b!(w).0, where v, w are to be co-variables. Then, we have:

OFSys=(va:4T)(vb : fU)(vvw : T)(a(v).0 | bXw).0 | P | Q)
=—(va: §T)(vb : U)Y(vww : T)(v<la’{v).0 | we{l: b {w).0} | P | Q)
—va : 4T)vb : 4U)vvw : T)(a!(v).0 | bXw).0 | P | Q) = Sys —*
The encoding of types is as follows. Since U Ls T by Lemma [3.2] we have v 7.
[UT = [eX.&{l: X} = pX.0&{L: X3 = puX.6 [: [XT)] = pX.6 [{L: X)] = v
[TT = [pX.®{l: X} = pX.[eil : X}] = uX.Co [: [eptDTY] = uX.lo [(1: X)] =7
Duality of session types boils down to opposite capabilities in the outermost level (¢}, £,) and the same

carried type, where in [S] same means synfactic identity and in the present means type equivalence.
Unfolding is performed in order to test linear type duality and the type equivalence of the carried type.

[P1s = [*(a?(x).x<l.a’x).0)]; = «[(a?(x).x<l.al{x).0)] s = *(a?(x).[x<la'{x).0])
= #(a?(x).(ve)x{l_c).[al{x).0]l £, (xoc}) = *#(a?2(x).(ve)x K c).al(c).0)

[Q1; = [#(b2(x).x>{l: bYx).0)] f = *[(b?(x).x>{L: bUx).0N] f = #(b?(x).[x>{I : bKx).0)]
= #(b2(x).x2(y).caseyof {{_c> [b!(x).0}] 1,{x-c}}) = *(D?(x).x2(y).caseyof {{_c>b!{c).0}})

0 F [Sysly =va)(vb)(v2)[(a!(v).0 | bXw).0 | P| Q)] s v wz) = (Va)(vD)(v2)(a!(z").0 | b1z7).0 | [P | [OT)
=(va)(vb)(v2)(al{z").0 | b!{z7).0 | a?(x).(vc)x Kl _c).a{c).0 | b2(x).x2(y).caseyof {{_c>b){c).0}} |
* (a?2(x).(ve)x!(l_c).a{c).0) | =(b?(x).x?(y).caseyof {{_c>b!{c).0}}))

8 Recursive Session Types Revisited

—va)(vb)(vz)(ve)z" {Ic™).al{c").0 | 2 2(y).caseyof {{_c™>b(c).0} | [PTs | [Q1y)
S a)(b)V2)(ve).al(ct).0 | casel_cof (L™ » bYc).0)} | [P1, | Q1)
—Sva)(vb)((ve).al(c).0 | bXc™).00 [[P1s |1 1Q]f) = [Sysly -

5 Conclusions and Future Work

In this paper we present an encoding of recursive session types into recursive linear types and session
processes into corresponding - processes. The encoding is a conservative extension of the one given
in [5]]. It uses cplt() instead of -, because the latter is inadequate in the presence of recursive types [1,2].
Since these two functions coincide for finite session types, the encoding in [5]] remains sound. We prove
the faithfulness of the present encoding with respect to typing derivations and operational semantics,
following the same line of [4}5]. As long as future work is concerned, we would like to test our encoding
under different dualities for sessions presented in [1]]. Moreover, as in [5] we would like to extend the
present encoding to advanced features like polymorphism or higher-order, or multiparty session types.
Acknowledgements. The author would like to thank Simon J. Gay, Elena Giachino and Davide San-
giorgi for the inspiring and very useful discussions.

References

[1] Giovanni Bernardi, Ornela Dardha, Simon J. Gay & Dimitrios Kouzapas (2014): On duality relations for
session types. To appear in Proc. of TGC.

[2] Giovanni Bernardi & Matthew Hennessy (2013): Using higher-order contracts to model session types. CoORR
abs/1310.6176. Available athttp://arxiv.org/abs/1310.6176.

[3] Ornela Dardha (2014): Recursive Session Types Revisited.
http://www.dcs.gla.ac.uk/~ornela/my_papers/D14-Extended.pdf.

[4] Ornela Dardha (2014): Type Systems for Distributed Programs: Components and Sessions. Ph.D. thesis,
University of Bologna. http://www.dcs.gla.ac.uk/~ornela/my_papers/DardhaPhDThesis.pdf.

[5] Ornela Dardha, Elena Giachino & Davide Sangiorgi (2012): Session types revisited. In: PPDP, ACM, New
York, NY, USA, pp. 139-150, doi:10.1145/2370776.2370794.

[6] Simon Gay & Malcolm Hole (2005): Subtyping for Session Types in the Pi Calculus. Acta Informatica
42(2-3), pp. 191-225, doi:10.1007/s00236-005-0177-z.

[7] SimonJ. Gay (2008): Bounded polymorphism in session types. Mathematical Structures in Computer Science
18(5), pp. 895-930, doi:10.1017/S0960129508006944.

[8] Kohei Honda, Vasco Vasconcelos & Makoto Kubo (1998): Language primitives and type disciplines for
structured communication-based programming. In: ESOP’98, LNCS 1381, springer, Heidelberg, Germany,
pp. 22-138, doi:10.1007/BFb0053567.

[9] Naoki Kobayashi, Benjamin Pierce & David Turner (1996): Linear Types and n-calculus. In: POPL, 21(5),
ACM Press, New York, NY, USA, pp. 358-371, doi:10.1145/330249.330251.

[10] Davide Sangiorgi & David Walker (2001): The n-calculus - a theory of mobile processes. Cambridge Uni-
versity Press.

[11] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994): An Interaction-based Language and its Typing System.
In: PARLE’94, pp. 398413, doi:10.1007/3-540-58184-7_118,

[12] Vasco T. Vasconcelos (2012): Fundamentals of session types. Information Computation 217, pp. 52-70,
doi{10.1016/j.ic.2012.05.002!

http://arxiv.org/abs/1310.6176
http://www.dcs.gla.ac.uk/~ornela/my_papers/D14-Extended.pdf
http://www.dcs.gla.ac.uk/~ornela/my_papers/DardhaPhDThesis.pdf
http://dx.doi.org/10.1145/2370776.2370794
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1017/S0960129508006944
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/330249.330251
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1016/j.ic.2012.05.002

	Introduction
	The Model
	Background on - calculus with sessions
	Background on standard - calculus

	Encoding recursive session types
	Example of encoding
	Conclusions and Future Work

