A New Linear Logic for Deadlock-Free
Session-Typed Processes *

Ornela Dardha and Simon J. Gay

School of Computing Science, University of Glasgow, United Kingdom
{Ornela.Dardha,Simon.Gay}@glasgow.ac.uk

Abstract. The m-calculus, viewed as a core concurrent programming
language, has been used as the target of much research on type systems
for concurrency. In this paper we propose a new type system for deadlock-
free session-typed m-calculus processes, by integrating two separate lines
of work. The first is the propositions-as-types approach by Caires and
Pfenning, which provides a linear logic foundation for session types and
guarantees deadlock-freedom by forbidding cyclic process connections.
The second is Kobayashi’s approach in which types are annotated with
priorities so that the type system can check whether or not processes
contain genuine cyclic dependencies between communication operations.
We combine these two techniques for the first time, and define a new
and more expressive variant of classical linear logic with a proof assign-
ment that gives a session type system with Kobayashi-style priorities.
This can be seen in three ways: (i) as a new linear logic in which cyclic
structures can be derived and a CycCLE-elimination theorem generalises
CuTt-elimination; (ii) as a logically-based session type system, which is
more expressive than Caires and Pfenning’s; (iii) as a logical foundation
for Kobayashi’s system, bringing it into the sphere of the propositions-
as-types paradigm.

1 Introduction

The Curry-Howard correspondence, or propositions-as-types paradigm, provides
a canonical logical foundation for functional programming [42]. It identifies types
with logical propositions, programs with proofs, and computation with proof
normalisation. It was natural to ask for a similar account of concurrent pro-
gramming, and this question was brought into focus by the discovery of linear
logic [24] and Girard’s explicit suggestion that it should have some connection
with concurrent computation. Several attempts were made to relate w-calculus
processes to the proof nets of classical linear logic [1,8], and to relate CCS-like
processes to the x-autonomous categories that provide semantics for classical
linear logic [2]. However, this work did not result in a convincing propositions-
as-types framework for concurrency, and did not continue beyond the 1990s.

* Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)”, and by COST Action
IC1201, “Behavioural Types for Reliable Large-Scale Software Systems (BETTY)”.

collector process { P

agent
process

[
.
,

& o
</ \o
IS \\-Z
S D
& 4]

Fig. 1. Cyclic Scheduler

Meanwhile, Honda et al. [26,27,38] developed session types as a formalism for
statically checking that messages have the correct types and sequence according
to a communication protocol. Research on session types developed and matured
over several years, eventually inspiring Caires and Pfenning [12]| to discover a
Curry-Howard correspondence between dual intuitionistic linear logic [7] and a
form of w-calculus with session types [38]. Wadler [41] subsequently gave an al-
ternative formulation based on classical linear logic, and related it to existing
work on session types for functional languages [23]. The Caires-Pfenning ap-
proach has been widely accepted as a propositions-as-types theory of concurrent
programming, as well as providing a logical foundation for session types.

Caires and Pfenning’s type system guarantees deadlock-freedom by forbid-
ding cyclic process structures. It provides a logical foundation for deadlock-free
session processes, complementing previous approaches to deadlock-freedom in
session type systems [9,15,21,22]. The logical approach to session types has been
extended in many ways, including features such as dependent types [39], fail-
ures and non-determinism [11], sharing and races [6]. All this work relies on the
acyclicity condition. However, rejecting cyclic process structures is unnecessar-
ily strict: they are a necessary, but not sufficient, condition for the existence of
deadlocked communication operations. As we will show in Ex. 1 (Fig. 1), there
are deadlock-free processes that can naturally be implemented in a cyclic way,
but are rejected by Caires and Pfenning’s type system.

Our contribution is to define a new logic, priority-based linear logic (PLL),
and formulate it as a type system for priority-based CP (PCP), which is a more
expressive class of processes than Wadler’'s CP [41]. This is the first Curry-
Howard correspondence that allows cyclic interconnected processes, while still
ensuring deadlock-freedom. The key idea is that PLL includes conditions on
inter-channel dependencies based on Kobayashi’s type systems [29,30,32]. Our
work can be viewed in three ways: (i) as a new linear logic in which cyclic proof
structures can be derived; (ii) as an extension of Caires-Pfenning type systems so
that they accept more processes, while maintaining the strong logical foundation;
(iii) as a logical foundation for Kobayashi-style type systems.

An example of a deadlock-free cyclic process is Milner’s well-known scheduler
[35], described in the following Ex. 1.

Ezample 1 (Cyclic Scheduler, Fig. 1). A set of agents Ag, ..., A,_1, for n > 1,
is scheduled to perform a certain task in cyclic order, starting with agent Aj.
For all 7 € {1,...,n — 1}, agent A; sends the result of computation to a collector
process P;, before transmitting further data to agent A(i11) moa n- At the end
of the round, Ay sends the final result to Py. Here we define a finite version of
Milner’s scheduler, which executes one round of communication.

Sched £ ...(l/a,ibi)...(llcid(i+1) mod n)(AO | A1 | | An—l | Po | P1 | | Pn—l)
Ao & cong).do(z).ag[myg].closey
A; £ di(xi).ai[mi].ci[ni].closei xS {1, ey, — 1}
P 2 bi(y:).Q i€{0,...,n—1}

Prefix ¢p[ng] denotes an output on ¢g, and dg(zg) an input on dg. For now, let
m and n denote data. Process close; closes the channels used by A;: the details
of this closure are irrelevant here (however, they are as in processes () and R in
Ex. 2). Process Q; uses the message received from A;, in internal computation.
The construct (vab) creates two channel endpoints ¢ and b and binds them
together. The system Sched is deadlock-free because Ay, ..., A, _1 each wait for a
message from the previous A; before sending, and Ay sends the initial message.
Sched is not typable in the original type systems by Caires-Pfenning and
Wadler. To do that, it would be necessary to break Ay into two parallel agents
£ congl.close,, and A = do(z0).ao[mo).closeq, 4, This changes the design
of the system, yielding a different one. Moreover, if the scheduler continues into
a second round of communication, this redesign is not possible because of the
potential dependency from the input on dy to the next output on ¢y. However,
Sched is typable in PCP; we will show the type assignment at the end of § 2.

There is a natural question at this point: given that the cyclic scheduler is
deadlock-free, is it possible to encode its semantics in CP, thus eliminating the
need for PCP? It is possible to define a centralised agent A that communicates
with all the collectors P;, resulting in a system that is semantically equivalent to
our Sched. However, such an encoding has a global character, and changes the
structure of the overall system from distributed to centralised. In programming
terms, it corresponds to changing the software design, as we pointed out in Ex.1,
and ultimately the software architecture, which is not always desirable or even
feasible. The aim of PCP is to generalise CP so that deadlock-free processes
can be constructed with their natural structure. We would want any encoding
of PCP into CP to be structure-preserving, which would mean translating the
Cvctk rule (given in Fig. 2) homomorphically; this is clearly impossible.

Contributions and Structure of the Paper In § 2 we define priority-based
linear logic (PLL), which extends classical linear logic (CLL) with priorities at-
tached to propositions. These priorities are based on Kobayashi’s annotations
for deadlock freedom [32]. By following the propositions-as-types paradigm, we
define a term assignment for PLL proofs, resulting in priority-based classical
processes (PCP), which extends Wadler’s CP [41] with Mix and CvcLe rules
(Fig.2). In §3 we define an operational semantics for PCP. In §4 we prove CYCLE-
elimination (Thm. 1) for PLL, analogous to the standard Cur-elimination theo-

rem for CLL. Consequently, the results for PCP are subject reduction (Thm. 2),
top-level deadlock-freedom (Thm. 3), and full deadlock-freedom for closed pro-
cesses (Thm. 4). In §5 we discuss related work and conclude the paper.

2 PCP: Classical Processes with Mi1X and CYCLE

Priority-based CP (PCP) follows the style of Wadler’s Classical Processes (CP)
[41], with details inspired by Carbone et al. [14] and Caires and Pérez [11].

Types We start with types, which are based on CLL propositions. Let A, B
range over types, given in Def. 1. Let o, x € NU{w} range over priorities, which
are used to annotate types. Let w be a special element such that o < w for all
o € N. Often, we will omit w. We will explain priorities later in this section.

Definition 1 (Types). Types (A, B) are given by:
AB:=1°|1°|AR°B | A9°B | @ {l;: Ai}icr | &°{li : Ai}icr | A I°A

1° and 1° are associated with channel endpoints that are ready to be closed.
A®° B (respectively, A9° B) is associated with a channel endpoint that first
outputs (respectively, inputs) a channel of type A and then proceeds as B.
@°{l; : A;}ier is associated with a channel endpoint over which we can select a
label from {I;};cr, and proceed as A;. Dually, &°{l; : A;};cr is associated with
a channel endpoint that can offer a set of labelled types. 7° A types a collection
of clients requesting A. Dually, !° A types a server repeatedly accepting A.
Duality on types is total and is given in Def. 2. It preserves priorities of types.

Definition 2 (Duality). The duality function (-)* on types is given by:

(Ag°B)* = At @e Bt (Lo)r=1°

(A@° Byt = At w° B (10)" = 1°
(&o{li : Ai}’iEI>L = @o{li : AiL}ieI 70 AJ_ — 1041
(@4l : Askier)” = &°{li : At Yier oA+ = 704+

Processes Let P,(Q range over processes, given in Def. 3. Let z,y range over
channel endpoints, and m, n over channel endpoints of type either 1° or 1°.

Definition 3 (Processes). Processes (P,Q) are given by:

P,Q :=z[y].P (output) 0 (inaction)
x(y).P (input) P|Q (composition)
x<l;.P (selection) (vzly)P (session restriction,)
x> {l; : Pi}ier (branching) z[].0 (empty output)
r—yd (forwarding) x().P (empty input)

Process z[y].P (respectively, 2(y).P) outputs (respectively, inputs) y on channel
endpoint x, and proceeds as P. Process x<l;.P uses x to select [; from a labelled
choice process, typically being x> {l; : P;};cr, and triggers P;; labels indexed by

the finite set I are pairwise distinct. Process x — y forwards communications
from z to y, the latter having type A. Processes also include the inaction process
0, the parallel composition of P and @, denoted P | @, and the double restriction
constructor (vax4y)P: the intention is that x and y denote dual session channel
endpoints in P, and A is the type of 2. Processes x[].0 and z().P are the empty
output and empty input, respectively. They denote the closure of a session from
the viewpoint of each of the two communicating participants.

Notions of bound/free names in processes are standard; we write £n(P) to
denote the set of free names of P. Also, we write P{Z/z} to denote the (capture-
avoiding) substitution of x for the free occurrences of z in P. Finally, we let Z,
which is different from x, denote a sequence x1,...,x, for n > 0.

Typing Rules Typing contexts, ranged over by I'J A, 0, are sets of typing
assumptions x: A. We write I', A for union, requiring the contexts to be disjoint.
A typing judgement P F I" means “process P is well typed using context I

Before presenting the typing rules, we need some auxiliary definitions. Our
priorities are based on the annotations used by Kobayashi [32], but simplified to
single priorities & la Padovani [37]. They obey the following laws:

(i) An action of priority o must be prefixed only by actions of priorities strictly
smaller than o.
(ii) Communication requires equal priorities for the complementary actions.

Definition 4 (Priority). The priority function pr(-) on types is given by:
pr(Ae°B) =pr(AR°B) =0 pr(L°) =pr(1°) =o
pr(@°{l; : A;}ier) = pr(&°{l; : A;}icr) =0 pr(7°A)=pr(l°A) =0
Definition 5 (Lift). Let t € N. The lift operator 1 (-) on types is given by:
(A 0)) o+t) (Tt B) Tt 0 = q(ot+t)
(A ®° B) Tt A) o+t) (Tt B) Tt 10 = | (o+1)
P&l = Aidier) = &l 1 Abier (70 A) = 7T (1 4)
(@l s Aikier) = @l 11" Ajbier (Lo 4) = 1o+ (11 4)

We assume w +t = w for all t € N.
The operator 1t is extended component-wise to typing contexts: 1t I

/—\/\

The typing rules are given in Fig.2. Ax states that the forwarding process = — y*
is well typed if and y have dual types, respectively A+ and A. Mix types the
parallel composition of two processes P and @ in the union of their disjoint typing
contexts. CycLE is our key typing rule; it states that the restriction process is
well typed, if the endpoints = and y have dual types, respectively A and A*.
By Def. 2, A and A' also have the same priorities, enforcing law (ii) above. In
classical logic this rule would be unsound, but in PLL it allows deadlock-free
cycles. Rule () states that inaction is well typed in the empty context. Rules 1
and L type channel closure actions from the viewpoint of each participant. Rule
2 (respectively ®) types an input process z(y).P (respectively, output process
x[y].P), with y bound and z of type A®° B (respectively, A®° B). The priority

PHFI QFA PrIz:Ay: At

AX _— ——F— CYCLE
royt F oAty A Plorna MX (vzty)P - T

PHI o<pr(I)

0~ ¢ z[].OF z:1° 1 z().PFx:1° 1T
PrIy:Az:B o<pr(I) - PrTIy:Az:B o<pr(I)
z(y).PFT,2:A%°B zly| P+ T z:A®° B
Vie (P v a:A;) o< pr(D) PrILz:A; jel o<pr(l)
.’El>{l7;ZPi}iej'_F,zl&o{liiAi}iej $<lj.P|_F,LEZEBO{liZAi}i€[
P y:A o<pr(?) | PrTIy:A o<pr(l))
lz(y). P70z 1°A xly]. P Lz: 7 A
PLT PHLy:7A,2:7" A o<k o<k o<pr(l)
PHIz:7?A P{%/y,%/z} - T x:1° A

Fig.2. Typing rules for PCP.

o is strictly smaller than any priorities in the continuation process P, enforcing
law (i) above. This is captured by o < pr(I') in the premises of both rules,
abbreviating “for all z € dom(I"),0 < pr(I'(2))”. Rules & and & type external
and internal choice, respectively, and follow the previous two rules. Rule ! types
a server and states that if P communicates along y following protocol A, then
lz(y).P communicates along x following protocol !° A. The three remaining rules
type different numbers of clients. Rule 7 is for a single client: if P communicates
along y following A, then ?z[y].P communicates along x following 7° A. Rule W
is for no client: if P does not communicate along any channel following A, then
it may be regarded as communicating along z following 7° A, for some priority
o. Rule C is for multiple clients: if P communicates along y following 7 A, and z
following protocol ?% A, then P{%/y,%/z} communicates along a single channel
z following 7° A, where o < x and o < /. The last two conditions are necessary
to deal with some cases in the proof of Cycre-elimination (Thm. 1).
Lifting preserves typability, by an easy induction on typing derivations.

Lemma 1. If P+ 1T then PH1'T.

. . . . PET
‘We will use this result in the form of an admissible rule: PEAtr 0

The Design of PCP We have included Mix and CycLg, which allow derivation
of both the standard Cut and the Murricut by Abramsky et al. [2].
F AL A, FAAL AR
Mix

LA AL A AL AL }MULTICUT
1. A CYCLE

Conversely, Mix is the nullary case of MurricuT, and CycLE can be derived from
Ax and MurricuT:

— AX
FILA AL AL A CYCLE
cT MuLricuT

Having included Mix, we choose CycLE instead of MurticuT, as CYCLE is more
primitive.

In the presence of Mix and CycLE, there is an isomorphism between A ® B
and A’ B in CLL. Both A® B —o A B and A B — A ® B, are derivable,
where C — D = C* % D in CLL. Equivalently, both (At B1)» (A® B)
and (A+ ® B1) 9 (A ® B) are derivable. For simplicity, let pr(A) = pr(B) = w;
by duality also pr(At) = pr(B*) = w.

A A FBL, B FAY A -BYB At A FBLB
7 — Mix 1 pt IX TR X
AL, B+ A B A, B-,A B F AL, B+ A B
o1 <w 01 <w 02 < w
® 1 o1 pl ® T 51 S ®
FAtet BY A B A" BY A B AL BY, Ag™ B
o 1 <o 1 o 1 1 Mix
02 < 01 FA ®1B7A®2B,A ,A,B ,B .
¥ C
F Ats°t BL An2 B - AL @ BY A B YCLE
(A8 BT)9° (A8 B) F (At @ BY)®° (A®™ B)

The above derivations without priorities show the isomorphism between AR B
and A’® B in CLL, which does not hold in our PLL, in particular as o; # o0s.
The distinction between ® and g, preserves the distinction between output and
input in the term assignment. However, to simplify derivations, both typing rules
(Fig.2) have the same form. The usual tensor rule, where there are two separate
derivations in the premise rather than just one, is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [32] and the tool TyPiCal [28]. We have opted for
priority checking over priority inference, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

Ezample 2 (Cyclic process: deadlock-free). Consider the following process
P 2 (Vxlyl)(uxgyg)[ml(v).xg(w).R | yl[n].yg[n/].Q]

where R £ 21().v().2z2().w().0and Q@ = y;[].0 | n[].0 | y2[].0 | n’[].0. First, we
show the typing derivation for the left-hand side of the parallel, z1(v).xo(w).R:

o+0 Ry < Rg3 < kg < K1

4
RbExy: 1Py 178 xg: 172 w: 1M 01 < Kyq
To(w) R F zp: LR v: LF3 gg: LF1 g01 | F2 02 <o
21(v).x2(w). R b @o: L5 0901 | K2 g0 | K3 9902 | K4 (1)

Now, the typing derivation for the right-hand side of the parallel, y; [n].y2[n'].Q,
and recall that kg4 < k3 < Ko < K1:

y1[]-0F yp: 174 1 n[].0 F n: 173 1 y2[]-0 F yy: 172 1 n'[].0Fn’: 1%
y1[].0 | n[].0 | y2[].0 | n/[].OF y1: 174 /n: 173 y9: 152 n': 151 03 < K4
yan'].Q F yp: 174 158 yo: 151 @08 152 04 < 03
y1[n].y2n’].Q F ya: 151 @93 152 g0 153 ®°4 174

Mix?

(2)

Finally, the typing derivation for process P is as follows:

(1) (2)

Mix
z1(v).z2(w).R | y1[m].y2[n’].Q F
To: LF1o@OL [F2 g 1F30902 | Fa g 171 @93 172 g1 173 Q%4 1M
01 = 03
CYCLE
(ngyg)[xl(v).xg(w).R | 11 [n].yg[n’}.Q} -
x1: L 02 IR gy 188 ®04 14 02 = 04
CYCLE

(l/xlyl)(unyz)[xl(v).xg(w).R | v1 [n].yg[n’].Q] F0
The system of equations
02 < 01 04 < 03 01 = 03 09 = 04

can be solved by the assignment o; =03 =1 and 0o, =04 = 0.

Ezample 3 (Cyclic process: deadlocked!). Now consider the process

P’ = (vz1y1)(veoys) (21 (v).22(w).R | y2[n'].y1[n].Q]

where R = z1().v().22().w().0 and @ = y1[].0 | n[].0 | y2[].0 | n’[].0. Notice
that the order of actions on channels y; and yo is now swapped, thus causing a
deadlock! If we tried to construct a typing derivation for process P’, we would
have for the right-hand side of the parallel the following:

y1[]-0F yp: 174 1 n[].0F n: 173 1 y2[]-0 F yyp: 172 1 n'[].0Fn': 1™
y1[1.0 [n[.0 [52[].0 [0'[J.0F yp: 154 n: 155 gp: 172 n': 1% oy < Ky Mix?
yin].Q Fn': 151 gy 152 gy 158 @04 154 03 < 04 @
ya[n']y1[n].Q by : 158 @0 154 g9 171 ®03 172

Then, the system of equations
02 < 07 03 < 04 01 = 03 09 = 04

has no solution because it requires oo < o3 and o3 < 02, which is impossible.

Ezample 1 continued (Cyclic Scheduler).

Sched £ ...(Vaibi)...(ucid(i+1) mod n)(AO | A1 | | An—l | Po | Pl | | Pn—l)
AO £ Co [no].do(xo).ao[mo].closeg
Ai £ dz(l‘l)éh [m,]cz [ni}.close,; RS {1, ey M — 1}

By applying the typing rules in Fig. 2 we can derive Sched + 0, since it is a
closed process, and assign the following types and priorities:

co:1®°1 do: L9211 gp:1@2=D+11 for A,
di: Le¥=2 | a;:1®* 11 ¢i:1®%1 for A;,0<i<n
bo: Lg2(n=D+L | .. | 2=l | for Py and P, 0 <i<n

The priorities of types L and 1 could be easily assigned as Ex.2. As the priority
of diy1 is 2(i + 1) — 2 = 2i, we can connect it to a; with a CycLE.

3 Operational Semantics of PCP

In this section we define structural equivalence, the principal S-reduction rules
and commuting conversions. The detailed derivations can be found in [18].

We define structural equivalence to be the smallest congruence relation sat-
isfying the following axioms. SC-Ax-Swr allows swapping channels in the for-
warding process. SC-Ax-CvcLE states that cycle applied to a forwarding process
is equivalent to inaction. This allows elimination of unnecessary cycles. Axioms
SC-M1x-Nir, SC-Mi1x-ComMm and SC-Mix-Asc state that parallel composition
uses the inaction as the neutral element and is commutative and associative.
SC-CycLe-ExT is the standard scope extrusion rule. SC-CvycLE-Swp allows swap-
ping channels and SC-CycLeE-ComM states the commutativity of restriction?.

SC-Ax-Swp roythri Aty A = y—mﬂAL Fa:At y: A
SC-AX-CYCLE (et)=y 0 = 0F 0

SC-Mix-NiL O|P-I' = P+T

SC-Mix-Comm P|QFHT,A = Q|PHT,A

SC-Mix-Asc Pl|(Q|RFTI,A6 = (P|Q)|RFT,AG

SC-CyoLe-Exr (vady)(P|Q)FT,A = P| (vay)QFT,A z,y ¢ tn(P)
SC-CycLe-Swp (vady)PHT = (vyA 2)PHT
SC-CycLe-Comm (vady)(vzBw)P T = (v2Bw)(vady)P+T

The core of the operational semantics consists of S-reductions. In m-calculus
terms these are communication steps; in logical terms they are CycrLe-elimination
steps. Bgre is given in Fig.3 to illustrate priorities. It simplifies a cycle connecting
x of type A®° B and y of type A9° B, which corresponds to communication be-
tween an output on x and an input on y, respectively. Both actions have priority
o, which is strictly smaller than any priorities in their typing contexts, respecting
the fact that they are top-level prefixes. The remaining S-reductions are sum-
marised below. SaxcvyeLs simplifies a CycLE involving an axiom. 8y, closes and
eliminates channels. Bgg, similarly to Bgs, simplifies a communication between
a selection and a branching. 8y, simplifies a cycle between one server of type 1° A
and one client of type 7° A. The last two rules differ in the number of clients
involved: rule Byw considers no clients, whether S\ considers multiple clients.

1 Note that associativity of restriction is derived from SC-Mix-CoMmM and

SC-CycLE-CoMM.

o< pr(I') o < pr(4)
PrTv:Az:B QF Aw:At y: Bt

i
z].PF T z:A®° B ® y(w).QF A, y: At w° B N
IX
z[v].P | y(w).QF T, A, z: AR° B,y: A*9° B+
(vt ®" By) (z[v].P | y(w).Q) F I A

CYCLE

PrTLv:Az:B QF A w:Al y:B*
P|QFT,Av:Azx:Bw:At,y: B+
— (m}Aw)(VxBy) (P | Q) FIA

Mix

CycLg?

Fig. 3. p-reduction for ® and .

Baxcvors (vyt2)(x—yd | P)FTa: At — P{x/z}FT2: At
B (vzly)(z[].0|yO).P)F T — PFT
Boe (wa®UBidiery) (@ aly Py {l;: Qitier) F I, A —
(vzx Jy)(P | Qj) FIA
ot (A)(' (v).P | 7y[w]Q) F?r,A — (vo w)(P | Q) FoI, A
Biw (vaAy)(lz(v).P| Q) FI[,A — QF A
Bic 'OA Y)(lz(v).P | Q{Yy Yy'}) A —
(A ()P | (e Ay (12" (") P | Q) & T, A
Commuting conversions, following [12,41], allow communication prefixes to
be moved to the conclusion of a typing derivation, corresponding to pulling them
out of the scope of CycLE rules. In order to account for the sequence of CycLEs,
here we use *. Due to this movement, if a prefix on a channel endpoint z with
priority o is pulled out at top level, then to preserve priority conditions in the
typing rules in Fig. 2, it is necessary to increase priorities of all actions after the
prefix on 2. This increase is achieved by using 1°*1(-) in the typing contexts.

k1 () (z().P| Q) F 1A x: Lo —
N z().[(vzY) (P | Q)] F 1ot It AL z: L
kg (uiA@({[v}.P |Q)FIAz:A®° B —
efo]. [(WF5) (P | Q)] F (1941 1), (1941), 22 (14 A) @ (1941 B)
Ko (V%Aﬂ)({(w).P |Q)FI,Az:A%° B —
o(w).[(vT4g) (P | Q)] F (1°F1 I), (171 A), @ (1oF A)9° (1°F1 B)
ke WEY) (<l P Q) F A x:0°{l; : Bitier —
zaly [WEG) (P | Q)] F (1°71 1), (171 A), 2:@°{l; : 1°FL B, Yie
Kg& (l/iA@)(azD{li cPlier | Q) F LA x:&°%{l; : Bi}tier —
x> {l; : (VfA??) (P | Q)Yicr = (171), (1T A), 2:&°{l; - 1°7! B, Yier
ke (VT ﬂ)(?x[w].P | 9) FI,A 2:7°A —
Pafw]. [(vTAY) (P | Q)] F (11 I), (111 A), 22 70 (1041 A)
ko (v AY) (lz(v)-P | QFM, A z:1°A —
(). [(VEAG) (P | Q)] F (1971 1), (1971 A), 22 1° (19+1 4)

10

Finally, we give the following additional reduction rules: closure under struc-
tural equivalence, and two congruence rules, for restriction and for parallel.

CrLose-Equiv P=@Q @ — R R=S impliess P— S
Cong-CycLE P — @ implies (vz?y)P — (vziy)Q
CoNG-MIx P— Q@ implies P|R— Q| R

4 Results for PLL and PCP

4.1 CycLe-elimination for PLL

We start with results for Cycre-elimination for PLL; thus here we refer to A, B
as propositions, rather than types. The detailed proofs can be found in [18].

Definition 6. The degree function 9(-) on propositions is defined by:
-0(1°)=9(L°) =1

- 0(A®°B) =0(A%°B)=0(A)+9(B) + 1

= 0(&°{li : Aitier) = 0(@°{li = Aitier) = D ;e 10(Ag)} + 1
—0(7A)=0(1°A)=0(A) + 1.

Definition 7. A Maxicur is a mazimal sequence of Mix and CycLE rules, end-
ing with a CycLE rule.

Maximality means that the rules applied immediately before a MaxicuT are any
rules in Fig. 2, other than Mix or CvcrLE. The order in which Mix and CycLe
rules are applied within a MaxicuT is irrelevant. However, Prop. 1, which follows
directly from structural equivalence (§3), allows us to simplify a Maxicur.

Proposition 1 (Canonical Maxicur). Given an arbitrary Maxicur, it is
always possible to obtain from it a canonical MaxicuT consisting of a sequence
of only Mix rules followed by a sequence of only CycLE rules.

Definition 8. A single-Mix MaxicuT contains only one Mix rule.

Aq,..., Ay, A are Maxicur propositions if they are eliminated by a MAXICUT.
The degree of a sequence of CycLis is the sum of the degrees of the eliminated
propositions.

The degree of a Maxicur is the sum of the degrees of the CycLEs in it.

The degree of a proof 7, d(m), is the sup of the degrees of its Maxicurs, implying
d(m) =0 if and only if proof ™ has no CyCLEs.

The height of a proof w, h(w), is the height of its tree, and it is defined as
h(m) = sup(h(m))iel + 1, where {m;}icr are the subproofs of .

MaxicuT has some similarities with the derived MurricuT: it generalises MuLTICUT
in the number of Mixes, and a single-Mix MaxicuT is an occurrence of MULTICUT.

The core of CycrLe-elimination for our PLL, as for Cur-elimination for CLL
[10,25], is the Principal Lemma (Lem. 3), which eliminates a CycLE by either (i)
replacing it with another CycLE on simpler propositions, or (ii) pushing it further
up the proof tree. Item (i) corresponds to (the logical part of) S-reductions (§3);
and (ii) corresponds to (the logical part of) commuting conversions (§3).

11

Exceptionally, 8ic reduces the original proof in a way that neither (i) nor
(ii) are respected. In order to cope with this case, we introduce Lem. 2, which is
inspired by Lem B.1.3 in Bréuner [10], and adapted to our PLL. Lem. 2 allows
us to reduce the degree of a proof ending with a single-Mix Maxicut and having
the same degree as the whole proof, and where the last rule applied on the left
hand-side immediate subproof is . Let [n] denote the set {1,...,n}.

Lemma 2 (Inspired by B.1.3 in Brduner [10]). Let 7 be a proof of the
following form, ending with a single-Mi1x MAXICUT:
/

T 7‘:
o< [;r(?F) ’ o< pr(A)
Vien]:o<o; Vien]:o<o;, Vjelk]l:o<k;
FOr %00 Ay, 7o A, A B APV AT L e AR (7 A ey
FOL 7 Ay, L T A, PA L FA 1AL 1w AL 70 AT
Mix
F 0 A, 70 Ay, 7on Ay 1P A1V AL ton AL 90 AL
CYCLE

70, A

where d(m) < d(1) and d(x") < d(). Then, there is a proof 7" of + I, A such
that d(7") < d(T).

Proof. Induction on h(n’), with a case-analysis on the last rule applied in 7/. O

Lemma 3 (The Principal Lemma). Let 7 be a proof of + I', ending with a
canonical MAXICUT:

T1...Tm M
IX
FIA . AL A, Af-, ey A,J;,AJ-
s CYCLE

such that for all i € [m], d(m;) < d(7). Then there is a proof 7 of = 1'T", for
some t = 0, such that d(7') < d(7).

Proof. The proof is by induction on Zie[m] h(m;). Let r; be the last rule applied
in m;, for i € [m] and let C,, be the proposition introduced by r;. Consider the
proposition with the smallest priority. If the proposition is not unique, just pick

one. Let this proposition be (), . Then, 7, is the following proof: Tk

=I7,C,,
We proceed by cases on 7.

— r, is ® on one of the Maxicur propositions Ay, ..., A,, A. Without loss of
generality, suppose r is applied on A, meaning A = E ®° F for some F and F
and o > 0. By ® rule in Fig. 2, o < pr(I"”). Since A is a MaxicuT proposition,
by Def. 2, At = E+>9° F+. Since o < pr(I"”) and pr(A+) = o, it must be that

Al is in another proof, say m: Th

}_ F// El)80 FL
Consider the case where r, is a multiplicative, additive, exponential or 1 rule
in Fig.2. Suppose 7}, is applied on C,., which is not AX. All the mentioned rules

12

require pr(C,,) < pr(I'", E+>9° F+\ C,,), implying pr(C,,) < pr(E+>9° F1) =
pr(F ®° F) = o. This contradicts the fact that o is the smallest priority. Hence,
rn, must be a ’® introducing A*.

We construct proof 74 ending with a single-Mix Maxicur applied on at least A:

T® g

I EF o<pr(I') FIVEXFY o<pr(I™)

FI",EQ°F @ - I Bt 9o FL
(S A E®°F EIJ_ 0 FJ_ Mix
N CYCLE

Then, by structural equivalence, we can rewrite 7 in terms of 74. By applying
Bgs on T4 (only considering the logical part), we obtain a proof 7’4 such that
d(tly) < d(ta) < d(7), because O(E)+0(F') < O(E ®° F'). We can then construct
7' by substituting 7/ for 74 in 7, which concludes this case.

— 1, is ! on one of the MaxicuT propositions Aq,...,A,, A. Without loss of
generality, suppose 7}, introduces A, implying that A = !° A’ for some A’ and

0 > 0. Then m, is the following proof:
m

F?0,A4 o<pr(?0) |

F70,1°4)
where I'" = ?6. Since A is a Maxicur proposition, by duality A+ = 7° At
Since o < pr(I”) and pr(A+) = o, it must be that AL is in another proof. Let it
be 7, for h € [m] and h # k. Then we apply Lem. 2 to 7 and 7, obtaining a
proof which we use to construct 7/, as we did in the previous case. a

Lemma 4. Given a proof 7 of F I', such that d(7) > 0, then for some t > 0
there is a proof ' of =1t " such that d(7') < d(T).

Proof. By induction on h(7). We have the following cases.

— If 7 ends in a MaxicuT whose degree is the same as the degree of 7:
T, ... Ty,

FIA L AL A, All, ...,Arf, At
Er CycLE"

Mix™

+1

we can apply the induction hypothesis to the subproofs of 7 right before the last
Mix preceding the sequence of CycLi. This allows us to reduce their degrees to
become smaller than d(7). Then we use Lem. 3.

— Otherwise, by using the inductive hypothesis on the immediate subproofs to
reduce their degree, we also reduce the degree of the whole proof. a

Theorem 1 (CycLe-elimination). Given any proof of = I, we can construct
a CycLE-free proof of + 1t I", for some t > 0.

Proof. Tteration on Lem. 4. ad

CycLe-elimination increases the priorities of the propositions in I". This is solely
due to the (logical part of) our commuting conversions in § 3.

13

4.2 Deadlock-Freedom for PCP

Theorem 2 (Subject Reduction). If P+ I' and P — Q, then Q - ' I,
for some t > 0.

Proof. Follows from the -reductions and commuting conversions in § 3. O
Definition 9. A process is a CycLE if it is of the form (vz?y)P.

Theorem 3 (Top-Level Deadlock-Freedom). If P+ I' and P is a CyCLE,
then there is some @ such that P —* @ and @ is not a CYCLE.

Proof. The interpretation of Lem. 3 for PCP is that either (i) a top-level commu-
nication occurs, corresponding to a S-reduction, or (ii) commuting conversions
are used to push CycrLe further inwards in a process. Consequently, iterating
Lem. 3 results in eliminating top-level CycLEs. a

Eliminating all CycLEs, as specified by Thm. 1, would correspond to a semantics
in which reduction occurs under prefixes, as discussed by Wadler [41]. In order
to achieve this, we would need to introduce additional congruence rules, such as:

P—Q

x(y)-P — z(y).Q
and similarly for other actions. Reductions of this kind are not present in the
m-calculus, and we also omit them in our framework.
However, we can eliminate all CycLes in a proof of -), corresponding to full
deadlock-freedom for closed processes. Kobayashi’s type system [32] satisfies the
same property.

Theorem 4 (Deadlock-Freedom for Closed Processes). If P + (), then
either P = 0 or there is Q such that P — Q.

Proof. This follows from Thm. 2 and Thm. 3, because if Q + () and Q is not a
CvcLE then Q must be a parallel composition of 0 processes. a

5 Related Work and Conclusion

Cvcri and Murricut rules were explored by Abramsky et al. [2,3,4] in the con-
text of x-autonomous categories. That work is not directly comparable with ours,
as it only presented a typed semantics for CCS-like processes and did not give a
type system for a language or a term assignment for a logical system. Atkey et
al. [5] added a Murricut rule to CP, producing an isomorphism between ® and
3, but they did not consider deadlock-freedom.

In Kobayashi’s original type-theoretic approach to deadlock-freedom [29],
priorities were abstract tags from a partially ordered set. In later work abstract
tags were simplified to natural numbers, and priorities were replaced by pairs of
obligations and capabilities [30,32]. The latter change allows more processes to
be typed, at the expense of a more complex type system. Padovani [36] adapted

14

Kobayashi’s approach to session types, and later on he simplified it to a single
priority for linear m-calculus [37]. Then, the single priority technique can be
transferred to session types by the encoding of session types into linear types
[33,19,16,17]. For simplicity, we have opted for single priorities, as Padovani [37].

The first work on progress for session types, by Dezani-Ciancaglini et al.
[22,15], guaranteed the property by allowing only one active session at a time.
Later work [21] introduced a partial order on channels in Kobayashi-style [29].
Bettini et al. [9] applied similar ideas to multiparty session types. The main
difference with our work is that we associate priorities with individual commu-
nication operations, rather than with entire channels. Carbone et al. [13] proved
that progress is a compositional form of lock-freedom and introduced a new tech-
nique for progress in session types by adopting Kobayashi’s type system and the
encoding of session types [19]. Vieira and Vasconcelos [40] used single priorities
and an abstract partial order in session types to guarantee deadlock-freedom.

The linear logic approach to deadlock-free session types started with Caires
and Pfenning [12], based on dual intuitionistic linear logic, and was later for-
mulated for classical linear logic by Wadler [41]. All subsequent work on linear
logic and session types enforces deadlock-freedom by forbidding cyclic connec-
tions. In their original work, Caires and Pfenning commented that it would be
interesting to compare process typability in their system with other approaches
including Kobayashi’s and Dezani-Ciancaglini’s. However, we are aware of only
one comparative study of the expressivity of type systems for deadlock-freedom,
by Dardha and Pérez [20]. They compared Kobayashi-style typing and CLL typ-
ing, and proved that CLL corresponds to Kobayashi’s system with the restriction
that only single cuts, not multicuts, are allowed.

In this paper, we have presented a new logic, priority-based linear logic
(PLL), and a term assignment system, priority-based CP (PCP), that increase
the expressivity of deadlock-free session type systems, by combining Caires and
Pfenning’s linear logic-based approach and Kobayashi’s priority-based type sys-
tem. The novel feature of PLL and PCP is CvcLE, which allows cyclic process
structures to be formed if they do not violate ordering conditions on the priori-
ties of prefixes. Following the propositions-as-types paradigm, we prove a CyCLE-
elimination theorem analogous to the standard Cur-elimination theorem. As a
result of this theorem, we obtain deadlock-freedom for a class of w-calculus pro-
cesses which is larger than the class typed by Caires and Pfenning. In particular,
these are processes that typically share more than one channel in parallel.

There are two main directions for future work. First, develop a type system
for a functional language, priority-based GV, and translate it into PCP, along
the lines of Lindley and Morris’ [34] translation of GV [41] into CP. Second,
extend PCP to allow recursion and sharing [6], in order to support more gen-
eral concurrent programming, while maintaining deadlock-freedom, as well as
termination, or typed behavioural equivalence.

Acknowledgements We are grateful for suggestions and feedback from the
anonymous reviewers and colleagues: Wen Kokke, Sam Lindley, Roly Perera,
Frank Pfenning, Carsten Schiirmann and Philip Wadler.

15

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Abramsky. Proofs as processes. Theoretical Computer Science, 135(1):5-9, 1994.
S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories and the foun-
dations of typed concurrent programming. In M. Broy, editor, Proceedings of the
NATO Advanced Study Institute on Deductive Program Design, pages 35-113, 1996.
S. Abramsky, S. J. Gay, and R. Nagarajan. A type-theoretic approach to deadlock-
freedom of asynchronous systems. In TACS, volume 1281 of LNCS, pages 295-320.
Springer, 1997.

S. Abramsky, S. J. Gay, and R. Nagarajan. A specification structure for deadlock-
freedom of synchronous processes. Theoretical Computer Science, 222(1-2):1-53,
1999.

R. Atkey, S. Lindley, and J. G. Morris. Conflation confers concurrency. In A List
of Successes That Can Change the World—FEssays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday, volume 9600 of LNCS, pages 32-55. Springer,
2016.

S. Balzer and F. Pfenning. Manifest sharing with session types. Proceedings of the
ACM on Programming Languages, 1(ICFP):37:1-37:29, 2017.

A. Barber. Dual intuitionistic linear logic. =~ Technical Report ECS-LFCS-
96-347, University of Edinburgh, 1996. www.lfcs.inf.ed.ac.uk/reports/96/
ECS-LFCS-96-347.

G. Bellin and P. J. Scott. On the pi-calculus and linear logic. Theoretical Computer
Science, 135(1):11-65, 1994.

L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and
N. Yoshida. Global progress in dynamically interleaved multiparty sessions. In
CONCUR, volume 5201 of LNCS, pages 418-433. Springer, 2008.

T. Bréuner. Introduction to linear logic. Technical Report BRICS LS-96-6, Basic
Research Institute in Computer Science, University of Aarhus, 1996.

L. Caires and J. A. Pérez. Linearity, control effects, and behavioral types. In
ESOP, volume 10201 of LNCS, pages 229-259. Springer, 2017.

L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, volume 6269 of LNCS, pages 222—-236. Springer, 2010.

M. Carbone, O. Dardha, and F. Montesi. Progress as compositional lock-freedom.
In COORDINATION, volume 8459 of LNCS, pages 49—64. Springer, 2014.

M. Carbone, S. Lindley, F. Montesi, C. Schiirmann, and P. Wadler. Coherence
generalises duality: A logical explanation of multiparty session types. In CONCUR,
volume 59 of LIPIcs, pages 33:1-33:15. Schloss Dagstuhl—Leibniz-Zentrum fiir
Informatik, 2016.

M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asynchronous session types
and progress for object-oriented languages. In FMOODS, volume 4468 of LNCS,
pages 1-31. Springer, 2007.

O. Dardha. Recursive session types revisited. In BEAT, volume 162 of EPTCS,
pages 27-34, 2014.

O. Dardha. Type Systems for Distributed Programs: Components and Sessions,
volume 7 of Atlantis Studies in Computing. Springer / Atlantis Press, 2016.

O. Dardha and S. J. Gay. A New Linear Logic for Deadlock-Free Session Typed
Processes. In 21st International Conference on Foundations of Software Science
and Computation Structures, FoSSaCS, 2018. (Extended Version) http://www.
dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf.

16

www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf

19

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.
42.

O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP, pages
139-150. ACM, 2012.

O. Dardha and J. A. Pérez. Comparing deadlock-free session typed processes. In
EXPRESS/S0S, volume 190 of EPTCS, pages 1-15, 2015.

M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida. On progress for structured
communications. In TGC, volume 4912 of LNCS, pages 257—-275. Springer, 2009.
M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session
types for object-oriented languages. In ECOOP, volume 4067 of LNCS, pages
328-352. Springer, 2006.

S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session
types. Journal of Functional Programming, 20(1):19-50, 2010.

J. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University
Press, New York, NY, USA, 1989.

K. Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages
509-523. Springer, 1993.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-
pline for structured communication-based programming. In ESOP, volume 1381
of LNCS, pages 122-138. Springer, 1998.

N. Kobayashi. TyPiCal: Type-based static analyzer for the pi-calculus. www-kb.
is.s.u-tokyo.ac.jp/ koba/typical.

N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions
on Programming Languages and Systems, 20(2):436-482, 1998.

N. Kobayashi. A type system for lock-free processes. Information and Computation,
177(2):122-159, 2002.

N. Kobayashi. Type systems for concurrent programs. In 10th Anniversary Collo-
quium of UNU/IIST, pages 439-453, 2002.

N. Kobayashi. A new type system for deadlock-free processes. In CONCUR, volume
4137 of LNCS, pages 233-247. Springer, 2006.

N. Kobayashi. Type systems for concurrent programs. Extended version of [31],
Tohoku University, 2007.

S. Lindley and J. G. Morris. A semantics for propositions as sessions. In ESOP,
pages 560-584, 2015.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

L. Padovani. From lock freedom to progress using session types. In PLACES,
volume 137 of EPTCS, pages 3-19, 2013.

L. Padovani. Deadlock and Lock Freedom in the Linear m-Calculus. In CSL-LICS,
pages 72:1-72:10. ACM, 2014.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In PARLE ’9/, volume 817 of LNCS, pages 398-413. Springer,
1994.

B. Toninho, L. Caires, and F. Pfenning. Dependent session types via intuitionistic
linear type theory. In PPDP, pages 161-172. ACM, 2011.

H. T. Vieira and V. T. Vasconcelos. Typing progress in communication-centred
systems. In COORDINATION, volume 7890 of LNCS, pages 236-250. Springer,
2013.

P. Wadler. Propositions as sessions. In ICFP, pages 273-286. ACM, 2012.

P. Wadler. Propositions as types. Communications of the ACM, 58(12):75-84,
2015.

17

www-kb.is.s.u-tokyo.ac.jp/~koba/typical
www-kb.is.s.u-tokyo.ac.jp/~koba/typical

A Structural Equivalence

SC-Ax-Swp

AX Ax
y—wL’Al Fz:At y:A

x—)yA Fo:At y: A

SC-AX-CYCLE

ac—)yA #x:AJ‘,y:A
AJ_

Ax

CYCLE

(vx y):c—>yA|—(Z) o0

SC-Mix-NiIL
0~ 0 P+
0

Mix
| PET

PrT

SC-Mix-CommMm

P-I QFA QFA PFT
_— MiIX _ MiIX
PlQFTL,A = Q|PFT,A

SC-Mix-Asc

Q-A REO PEI QFA
— Mix — X MIx
PFT Q|RF A6 P|QFT,A RFO

Mix Mix
Pl(Q|R)FTI,4,0 (PlQ)IRFI,A0

SC-CycLe-EXT
PHI QFAxz:Ay:At zy¢in(P) QFz:Ay: A+
T Mix ——————— CYCLE
P|QFT,Ax:Ay: A PrHA (vz"y)PHT z,y ¢ £n(P)
T CYCLE T Mix
(way)(P| Q) F [, A = Plwa"y)Qr [, A

SC-CyCLE-SwWP

PrIz:Ay: At PFTa:Ay:A
;—, CYCLE Al CycLe
(vz®y) P+ T (vy* z)P+T

SC-CycLeE-CoMM
PrI,z:Ay: At z:B,w:B* PrI,z:Ay: At 2:Bw:Bt

2
(vety)(wzPw)P+ T Cvere (vzBw)(wzty)P+ T

CycLE?

Fig. 4. Structural equivalence.

18

B Principal 8-Reductions

BAXCYCLE
A 1 AX B
zoyt ATy A PrHIz:A
A n T Mix
z—=y" |PFLx: A" y: A z: A
A A 7 CvcLE .
(wy?2)(z—y™ | P)F [z: A s P} F LA
Bir
1 PRI o< pr(I)
z[].OF z: 1° yO).PFy: 1°, T
z[].0 | y().PFIz:1°,y: L° X
A CYCLE
(va?y)(z[].0 | y().P) - I’ — P-T
Bew
o <pr(I) o < pr(4)
PrTv:Ax:B QF Aw:At y:B*

o ® € o € ®
z[v].PHT,2:A®°B y(w).QF Ay:A-%°B N
z[v].P | y(w).QF I, A z: A®° B,y: A-9° B+ =
(u:vA ®° By) (az[v}.P | y(w).Q) FIA

CYCLE

PFTv:Axz:B QF A w:At y:B*

T — Mix
P|QFT,Ajv:Ax: Bjw:A",y: B
2
— (vviw)(vzPy)(P| Q) F I, A Cvere
Bas
o< pr(I) o < pr(4)
PvrTa:B; jelI Vie I.(Qi+ A,y : Bf)

<l PE T x:®°{l; : Bi}ier @ y>{li : Qitier F Ay:&°{l; : Bi }ier
zaly P ly>{li: Qitier b I A 2:0°{l; : Bi}ier,y:&°{li : BiT}ier
(va® isBidietyy (2 ;. P |y > {li : Qitier) F I, A

CYCLE

PrTz:B; QjFAy:Bf jelI
P|Q;+FTI,A2:Bj,y: Bf
— (uxBJ'y)(P | Qj) FIA

Mix

CYCLE

Fig. 5. [-reductions: axiom, units, multiplicatives and additives.

19

Bz

Pr?v:A o<pr(?) \ QF Aw:At o< pr(4))
lz(v).PF 0 z:1° A 7y[w].Q F A, y: 7° AL M' PrMv:A QF Aw:A* M
IX
z(v).P | 7y[w].Q - 7, Az 1° A y: 2° A . P|QFM,Av:Aw: A . =
5 YCLE YCLE
(v’ Ay) (!x(v).P | ?y[w].Q) A — (VvAw)(P | Q) A
Brw
PRIviA o<pr(?l) | Qr A
lz(v).P 71 z:1°A QF A,y: 7° A+ N
X
lz(v).P | QF I, Az 1° A y: 7° A+ QF A
° A CYCLE —_— W
(va’ y)(!x(v).P|Q) Fer A — QFM A
Bic
Prv:A o<pr(?) QF Ay ALy 20 AL c
lz(v).PF T z: 1° A QYUY Yy Y - Ay: ° AL N
IX
lz(v).P | QLU , ¥y} - I A x: 1°Ay: 7° AL
% a ; " CYCLE
vz Ay) (le(v).P | QY Y/y"}) F 21, A —
P'EI" WA o <pr(?I")
Pl}_?Fl,’U/IA 0<pr(?l—,/) ' !l‘,,(UII).P,,'_?F,,,l‘,/Z!OA Ql_A7y/:?oAJ_’y//:?0AJ_ MIX+CYCLE
I’ (v).P 2T 2’ 1° A (wa" Ay (12" (") P | Q) F T Ay 7 AL M 4 O
IX YCLE

(wa' " Ay (12 (V)P | (wa" Ay) (1" ()P | Q) k2, 2T, A

(wa' "y (1 (o). P | (v "y (1" (0").P" | Q) F T A

Fig. 6. p reductions: exponentials.

20

C Commuting Conversions

K1
PHIZ:A QFAG:At
=] Mix
o< r(FE'Zl P|QFT,AZ:Ay: A, v:A,z: B
P }_p r o by — CYCLE
,xN. n N (vz'y (P | Q) FIA b1
PET: Az 1° FAg: At A o o
POPELnA v QRSTA (P [Q) 1 11 A
z).P|QFT A Z:Ay: At z: L° o< pr(°t), o < pr(1°Tt A)
= CYCLE =
(vz*y)(z().P | Q) F I, A,z: L° — 2().[(wF*Y) (P | Q)] F ot It A e L°
R® ~ B
PrTZ:Av:Ax:B QFAj: At N
- ——= X
o< pr(lE:A) P|QFT,AT:Ay:At v:Az:B G
oA - . - YCLE
P"F,ZE.A,’U.A,I.B ® (V%Ayﬂ/)(PlQ)FF,A,UA,fB 11
ZeA e o ~ AL = °
:c[v].PFEx.A,m.A@NB _ QFAY:A Mix (V%A@)(P | Q) F 4o+ [491 A 1ot A z: 4o+l B
z[v].P | QF I A Z:Ay: At z:AQ°B o< pr(1°tr), o < pr(1°ttA)
= CYCLE pe &
vty (zlv]. P FIAz2:AR°B — 2. [(vTAY) (P FAetl [4o+l A ggotl Age 4ot B
(wz'y) (zl].P | Q) - I A,] Q) -1 1 szt T
K
PFIZ:Aw:Az:B QF A, j: AL A
—— X
o< pr(I,i:A) P|QFT AZ:Ay: A w:Ax:B
= A - . = CYCLE
P}—F,ZL‘.A7U).A,1'.B o (V%A@/)(PlQ)l—F,A,w:A,J}:B .
oA e o ~oAL = ©
:E(w).PI—F,:E.A,x.A’?P _ QFATY:A Mix (l/fAy (P | Q) b 4ol [4o+l A ot A z:49T1 B
z(w).P|QF I AT:Ay: A" 2:Ag°B o< pr(1°™I), o < pr(1°TtA)
= CYCLE = S
(vz*y) (z(w).P | Q) F I A,z:A%° B — z(w). [P (P | Q)] F1°T I 1T Az ot A 4ot B

Fig. 7. Commuting conversions: units and multiplicatives.

21

Rg
o< pr([,Z:A)
PHI,z:A x:B; jel
— D ~
zal; P T Az ®%{l; : Bitier QFAG:A"
2l P|QFI,AF:AG: A% 2:0°{l; : Bi}icr

W) (x ;. P | Q) F I A,z:@°{l; : Bitier

Mix

CYCLE

Pl—F,f:g,x:Bj QFA,zj:ZH Jjel
P|QFTI,AT:A§: A z:B,
W) (P | Q) F I, A,2:B;

WP (P | Q) F1°T [11°7 A a:1°*! B,
o <pr(1°'I), o <pr(1°'4)

Mix

CYCLE

o+1

~ ®
— 2l [P (P Q)] F 1o It Az @°{l; 1 1°7! B, Yier
R&
o< pr(I,z:A)
Vie (P FT,Z: A,z : By)
= & -
x> {l; s PiYier F I3 A, 2:&%{l; : Bitier QF A j: At N
= = X
x> {li: Plicr | QF T, AT A, §: A 2:&°{l; : Bi}icr
i CYCLE
(VI g]’)(mb {ll : Pi}ie[| Q) [F7A71‘:&0{li : Bi}ig[
Pll—F,%:g,a::Bl PhI—F,%':g,x:Bh
QF A, j: At QF A j: A+
=~] Mix == =] Mix
P |QFTAZ:Ay: A~ x: By P,|QFT A Z:Ajy: A, xz:By,
= CYCLE = CYCLE
wz'y) (P | Q) F I A,z: By o (W'Y (P | Q) F I A, z: By, it
WP (P | Q) F1° DA Awid* ™ By - wE) (P | Q) F 1 I Azt By
o < pr(1°*'r), o < pr(1°+'A)
— &
— > {li : W) (P | Q) bier F 1o I A 2 &°{L; - 1°7! B Yies

Fig. 8. Commuting conversions: additives.

22

R?
o<pr(l,z:A)
PHIT:Aw:A
0

2z[w|.PFLT:Az: A QF Aj: A"

< 5 Mix
?x[w].P|QF A T:Ay: A x:7° A

(U%X@ (?x[w].P | Q) FIA,z:7°A

CYCLE

PrIZ:Aw:A QF A §:A"
P|QFT,AT:AG:A" w:A
(V:?A@(P | Q) FLLAw:A

WP (P Q) F1°H 117 A w1 A
o < pr(1*'I), o <pr(1°'4)

— ?x[w].[(yigy (P | Q)] = To+1 I, To+1 Az ?° (T0+1 A)

Mix

CYCLE

o+1

?

o< pr(l,z:7°A)

PRIT: ?r‘;;l,v:A
— ! —_
lz(v).PHIZ: 7 A z:I°A QFAy: 1o AL

—— — Mix
lz(v).P | QFETAZ: A g:1°PALz: I°A

= CYCLE
Wz) (lz(v).P | Q) F T, A,z I°A

PHINF: A 0:A QFAg: 1AL
PlQFM,AT: A7 :1PAL v:A

Mix

— CYCLE
Wz (P | Q) A v:A

Wz AP (P Q) 1M 21 1o A it A
o < pr(1°7170), o < pr(1°71A4)
|

— L)L [E" (P Q) F 1T I Aa (1 4)

o+1

Fig.9. Commuting conversions: exponentials.

23

D Omitted Proofs

We start with some auxiliary definitions and results.

Definition 6. The degree of a proposition A, denoted by O(A), is defined by

0(1°) =0(L°) =1

940 B) = D(A%° B) = 9(A) + 0(B) + 1

— 0(&°{li : Aitier) = 0(D°{li = Aitier) = 2 ;e 10(A)} +1
~a(7°A) = A(1° A) = d(A) + 1.

Definition 7. A Maxicut is a mazimal sequence of Mix and CycLi rules, ending with a CycLE rule.

Because of maximality, the rules applied immediately before a MaxicuT are any of the rules given
in Fig. 2, except Mix and CvycLiE. The order in which the Mix and CvycLE rules are applied within
the Maxicur is irrelevant, however the following proposition holds and can be applied to simplify the
structure of a Maxicur.

Proposition 1 (Canonical Maxicur). Given an arbitrary Maxicut, it is always possible to obtain
from it a canonical Maxicur consisting of a sequence of only Mix rules followed by a sequence of only
CvycLE rules.

Proof. Immediately from structural equivalence given in § 3.
Proposition 2. For all propositions A, d(A) = 9(AL).
Proof. Directly from Def. 6. O

Definition 8. A single Mix MaxicuT consists of one Mix rule followed by a sequence of CycLE Tules.

The degree of a Maxicut p, d(p), is the sum of the degrees of the CycLEs present in it.

The degree of a proof m, d(m), is the sup of the degrees of its Maxicurs, meaning that d(w) = 0 if
and only if proof m has no CYCLEs.

Aq,..., Ay, A are Maxicur propositions if they are eliminated by a MAXICUT.

The height of a proof m, h(r), is the height of its tree, and it is defined as h(w) = sup(h(m;))
where {m; }icr are the subproofs of .

iEI+1’

Proposition 3. Let 7 be a proof of & I'. For any t > 0 we can construct a proof " of = 1t I such
that h(7) = h(7") and all Maxicurs in 7 are left unchanged, implying d(7) = d(7').

Proof. Straightforward from Def. 5 and Lem. 1. O

The Cycre-elimination theorem for our priority-based linear logic (PLL), by following the same
idea of the Cut-elimination theorem for classical linear logic, eliminates a CycLE either by (i) replacing
it with another CycLe on simpler propositions, or (ii) pushing it further up the proof tree. The first
situation generally corresponds to (only considering the logical part) of our S-reduction rules given in
§ B. Usually, in the literature they are referred to as key-cases [10,25]. The second situation corresponds
to (only considering the logical part) of our commuting conversion rules given in § C.

However, not all the key-cases S-reductions are the same. Let’s now consider the reductions involving
I, given in § B, Fig. 6. Rules 7 and Biw reduce the original proofs to proofs where the propositions

24

being CycLed are indeed simpler, as mentioned in (i). However, rule 8¢ reduces the original proof to a
proof where the proposition remains unchanged and the CycLE is not pushed upward in the tree. This
reduction does not respect either (i) or (ii) stated above. This case is called a pseudo key-case [10].

In order to take care of pseudo key-cases, we present the following lemma inspired by Lemma B.1.3
in Brauner [10] and adapted to our priority-based linear logic. This lemma allows us to reduce the
degree of a proof ending with a single Mix MaxicuTt having the same degree as the proof and where
the last rule on the left hand-side immediate subproof is !.

Notation 1 We will use [n] to denote the set of {1,...,n} forn > 0.

Lemma 2 (Inspired by Lemma B.1.3 in Briuner [10]). Let (A)" denote a list of n occurrences
of A. Let T be a proof of the following form, ending with a single Mix MAXICUT:

!

m
. :
2 o< pr(A)
o< pr(?I) Vie [n] 10 < o;
Vi€ ln]:o0<o; Vj € [k] 10 < K
R0, 700 Ay, ., o0 Ay, A A e AL L e AL (7R ALK
b AR B ns k_l
FOL 7 Ay, T A, PA L FA AL, ten AL 70 4L ©
FI0LA, 7 Ay, 7o A, A o1 AL, ten AL 2o 4L X

A CYCLE

where d(m) < d(1) and d(x") < d(r). Then there is a proof 7' of + I, A such that d(7") < d(7).
Proof. We start with calculating d(7) = 9(7°* Ay) +...+0(7°" A,) +0(1° A).
The proof is by induction on h(rn’). Let 7’ be the last rule applied in 7’. We proceed by cases for 1.
1. Case " = Ax. Then, k=1, and A = 1° A and n = 0. We have that 7’ is the following proof:

X

F oA, 7°2A4+L A
Then, 7/ is the following proof:
F?IA o<pr(?D) |
E20,7°A

and trivially d(7') = d(7) < d(7).
2. Case ' = ?. One of the k occurrences of 7% AL in the conclusion of 7’ is introduced by ?. We
distinguish two cases.
— k = 1. This case corresponds to (only considering the logical part) of 87 reduction rule in § B,

Fig. 6. Then, 7’ is the following proof:

T 7_‘_//

FOL 700 Ay 7 Ay A A 1AL L e AL AL

FOLLA, 0 A, L 7on Ay A, T AL 1on AL AT
T A

Mix

CYCLE

and
d(7") = sup(d(m),d(="),0(7° Ay) + ...+ 0(7° A,) + 9(A)) < d(7)

25

— k > 1, meaning that 7 is the following proof:

"

T
i o<pr(4), Vie[n]:o <.oi, Vjielkl:o<k; (1)
: lek] Viekl\l:rk <kj r <pr(d) Yien]:r <o; (2)
o< pr(?F) F A 101 Ai_ . lon AJ_ (?nj AJ_)kfl AJ_
Vie[n]:o<o; : 7’ ° ’ ?
0, 7 Ay, PO A A FA A I Ay (AL A
FOr 7 Ay, 7on A, 94 FA, 100 AL, o0 AL 70 AT C
F LA, 70 Ay, L, 7on Ay, 1A 10 AL len AL 70 AL Mix

A CYCLE

Notice that in (2) we have conditions on x; to be the smallest priority compared with any other
priority in the remainder of the environment. (2) is required in order to apply ?. On the other
hand, (1) has the same conditions for o, except for o < k; for all j € [k]. (1) is part of the
hypothesis of the theorem, and it comes from the premise of rule C. Notice that (1) and (2) are
not in conflict: they are both satisfiable with a solution of o = ;.

This case of the proof shows us why (1) is necessary. Due to ? (or even W) we have in the
premise of C different priorities (here k; for j € [k]). To deal with this situation, we require
that the priority of the contracted proposition in the conclusion of C, is < (here o) than any of
the priorities of the propositions being contracted in the premise, which is always satisfiable.
Then, 7’ is the following proof:

s
. "
o< pr(?I) . : ’
Vi€ [n]:o<o; o<pr(d) Vien:o<o; Vjel[k]l:o<k;j
o0, 701 Ay, 7on A A A oY A 1o AL (785 AL)R=10 AL
991 Ay, L, 700 A, o
For A, L 7 A, A FA, 100 AL, 100 AL 70 4L AT C
™
: F0LA, 7 Ay 7on A 1P A 100 AL ton AL 90 AT AT Mix
: CYCLE
F 20, 70 Ay 7o AL A LA T Ay, T A AL P A AR
IX
F LT A, 700 Ay, 7o Ay, 200 Ay L 7on A 190 AL 1o AL AL AL .

0, A, 790 Ay, 7om Ay, 10V AR o AL A AL
70, A

CYCLE

We make the following remark. As in the previous case for k = 1, where (87 was applied, we
would have wanted for the case for k > 1 to apply Bic in order to obtain 7/. However, this is
a pseudo key-case and i does not decrease the degree of 7. This lemma deals with the fact
that fic behaves differently from any other S-reduction rule.

Now we calculate the degree of /. We have that:

d(r') = sup (d(m), d(r"), D(1° A), (7 Ay) + ...+ (7" A,) + A(A)) < d(r)

3. Case r’ = W. One of the k occurrences of 7% AL in the conclusion of 7’ is introduced by W. We
distinguish two cases.

26

— k = 1. This case corresponds to (only considering the logical part) of Biw reduction rule in § B,
Fig. 6.
7 is the following proof:

T
o< p.r(?F) L
Vi€ [n]:o<o; :
B0, 7t Ay, .., 7o A A | A 1o AL L ten AL -
B0, 701 Ay, 0 A 1P AT AL AL 1o AL 70 AL
CO0LA, 70 Ay, 7o A, A, o1 AL, ton AL 7o gL X
CYCLE
F7r A
Then, 7’ is the following proof:
7TN

+ Av 101 A{',..., 1on Ai‘
FI0A, P Ay 7o Ay, 10T AL 1o AL
F?0 A

W

CYCLE

Calculating the degree of 7/, we have that:
d(r") = sup (d(n"), O(7° Ay) +...+0(7°" A,)) < d(7)

— k> 1, meaning 7 is the following proof:

"

. ()
: o < pr(4), ViEn:o.<oi, Vj e k] o< K
0< pr(?r) l(—A) lo1 AL [} lon AL (?nj AL[)k]—l !
Vi€ [n]:o<o; ’ L - W
F 2, 701 Ag ., 700 Ay A FA AL e AR (0 AR
—1
For T Ay, on A, A FA 1o AL, ton AL o4t ©
T T = Mix
A, 700 Ay, L 7o A, P A 1o AL ten 4 L 90 4L
A CYCLE
Let 7" be the following proof:
i
. i
o< p.r(?F) . : ,
Vie[n]:o<o; o<pr(4), Vie[n:o<o;, Vjelkl:o<k;
k20, 701 A, 20 A A A 1o AL L ten AL (7R AL YRS
" AR B nsy k_2
FOr 7 A, 7 A, 94 FA, 100 AL 10 AL 70 AT ©
L Mix
FOL, A, 70 Ay, 7on A P A oV AL 1en AL 70 AL
A CYCLE

and use the induction hypothesis to obtain 7'.

27

4. Case r' = C. One of the k occurrences of 7% AL in the conclusion of 7’ is introduced by C. Then
7 is the following proof:

"

- m
W"GTRF]”:(ZQ N °° pr(kAA)’, !°1vi§ ,[7}.,.185421:(?ZJ:L[ﬁ oS .
F 2, 701 Ay, 7om A, A A PLAT, L e Ay (7 AR
For 7 Ay, 7 A, O A FA AL Al Al O
F LA, 1 Ay, 7on A, 1P AL 10 AL Tlen AL 70 AL Mix

= CYCLE

Since C is applied in 7/, then it means that the remaining propositions in (7% A+)* have priorities
smaller or equal than the propositions in (7% A+)**1, Hence, by transitivity, o remains the smallest
priority among k; for alli € {1...k+1}. We can view 7 as the proof where we have C* applications
on the premise F A, 1ot Af .. 1on AL (795 AL)k+1 Then, we apply the induction hypothesis as
h(7") < h(7").

5. None of the k occurrences of ?%i A+ in the conclusion of 7’ is introduced by /. We distinguish two
subcases.

— All the k occurrences of the propositions 7% A+ for j € {1,...,k} in the end-sequent of 7’ are
inherited from the same immediate subproof. Let 7’ be a one-premise rule. The situation is
analogous if 7’ is Mix, which is the only two premise rule in our system. If r’ is introducing
a logical connective among the propositions in A, 1°t Af, ..., 1°» AL then the priority of the
connective introduced is the smallest among the other ones in the judgement. This also implies
that it is strictly smaller than ;. Vj € [k]. Note that © is the part of the typing context before
7’ is applied; after 7/ is applied © becomes A, 1°t Af ..., 1°» AL We have the following 7 proof:

"

0
T z
: - om; ALYk
o< pr(?I) 0, (7 A7) 7,/
Vi € [TL] :0<0; EA, Allv"'a on Aﬁ;’(?’i_j Al)k
F 20, 701 Ay 0 A A o<pr(4), Vie[n:o<o;, Vjelkl:o<k;
’ 3ty ot nHy E1
For 7 A, 7 A, 94 FA, 100 AL, 100 AL 70 AT ©
Mix
20, A 700 Ay L 70m A 1P A 10T AL L 1o AL 70 AL
CYCLE

F LA

28

which we transform into the following 7':

i
: -
o< p.r(?F) .
Vi€ n]:o<o; Vjelkl:o<k;
F 70, 70 Ay, 70 Ay, A - O, (7% AN
) PR} ny k—1
For Ay, 7 A, PA' Lo a4t ©
C O, T Ay Ton A, P A AL X
FIrL6, 71 Ay, .. 7 A Cyore
b) b b n /
FO0A, 700 Ay, 700 Ay, 100 AL e AL T
FT A CYCLE

We have that
d(t") = sup (d(Tf), d(r”), o(1°A), (7° Ay) + ... +0(7°" An)) < d(7)

— Not all k occurrences of the propositions ?% A+ for j € {1,....,k} in the end-sequent of 7’
are inherited from the same subproof. We have the following 7 proof, where (' = Mix) and
A, Ay = A 11 Af L 1en AL and let k=p+ ¢

1)
T s :
: Ay (770 AL E Ag, (7 AtYa
o < pr(?0) L T) J_Q(: l)k Mix
Vie[n]:o<o,~ |_A>!01A1a"'a !OTLAna(?HJA)
B 20 701 Ay 0 A A o<pr(A), ViE[n]:O<Oi, Vje[k]:ognj

) LA ny k)*l

For 7oAy, 7on A, A FA, 101 AL, o0 AL 70 AT ©
“ Mix
F20, A 700 Ay, 700 Ay 10 A 100 AL 1on AL 0 AL
A CYCLE
which we transform into 7’ as follows:
T
: !
o< p'r(?F) Lo
Vi€ [n]:0<o; E Ay, (7 AT)P T
'771—1, ?01A17..-, ?O"AnaA Vh€{17"'7p}:0</€h 1 :
' — :
E2L, 7°v Ay, T A, 1°A F A, 7°AL © F Ay, (7% AL)d
Mix ’
F2r, A7 Ay, .., 7o Ay, 194, 70 AL Vie{p+1,...k}:0<k
CYCLE * A ge-1
20, (A \Cvews 7° Ap, .., 70 Ay), 1P A 70 AL F Ay, 7°AL

M
- 7T, Ag, (A1 \owors 7% Ay, .y 70 A,), 10 A, 70 AL, 70 AL =

0 A 10A 70 AL 70 AL
70, A, 10 A, 70 AL
oA

CYCLE % Ag

CYCLE

29

In 7/ we use labels CycLEx A; and CycLE* Asg, respectively to denote the cycle between propo-
sitions 7°1 Ay, ..., 7°» A, and A; resulting in Ay \cyors 7% A1, ..., 7°" A,,, where for simplicity
we use \cyere to denote the judgement after CycrLe has occurred; and the CvcoLe between Ag
and A; \cyors 7°! 41, ..., 7°» A, finally resulting in A.

We have that

d(t") = sup (d(r), d(m1), d(m2), O(CycLE* Ay), d(CycLe * Ag), 9(1°A)) < d(7)

where both (CycLE * A1) and O(CycLE x Ag) are smaller or at most equal to (7 A1) +...+

o(7° A,,), which is strictly smaller than d(7). O
Lemma 3 (The Principal Lemma). Let 7 be a proof of - I, ending with a canonical MAXICUT:
T Tm
S A Ay A AL AL AL X
e CYCLE

such that for all i € [m], d(m;) < d(7). Then, there is a proof 7" of = 1' T, for some t > 0, such that
(") < d(r).

Proof. The proof is by induction on 3¢, h(m;).

Note that n > 0 and m > 1. Let 7 end with a canonical MaxicuT p.

If m = 1, meaning that there is only one premise, then there cannot be a Mix rule after the single
premise m; and the Maxicur p is simply a sequence of cycles. If m > 1, then the MaxicuT p contains
also a non-empty sequence of Mix rules.

The assumption that the degrees of all m; are strictly smaller than the degree of 7 implies that
the degree of the final MaxicuT p on propositions Ay, ..., A,, A is bigger than the degree of any other
MaxicuT in any proof ;.

By definition, the degree of the proof 7 is the sup of the degrees of its MaxicuTs, which in turn is the
sum of the degrees of the cycles present in it. This implies that d(7) = d(p) = 0(A1)+...+0(A,)+I(A).

Let r; be the last rule applied in m;, for all ¢ € [m]. Since we are considering MaxicuTs, then by
definition, rules r;, for all ¢ € [m] are any rule except Mix and Cvcre. Let C,, be the proposition
introduced by the rule r;.

We now consider the set of all propositions {C', }icn (on the processes side, these propositions type
top-level prefixes or forwarders). Among these propositions we now consider the ones with the smallest
priority. Notice that there might be more than one proposition satisfying the minimality condition
on priority (on the process side, this corresponds to having different processes in parallel which are
independent and can potentially communicate). If this is the case, then we just pick any proposition.
Let this proposition be C,,, then 7 is the following proof:

SR
ke, "
We now proceed by cases on 7.

1. Case r, = Ax. Then 7y, is
ol o &X
=Gy, Cr,
implying that C,, is one of the Maxicur propositions, because by the definition of Maxicur we
know that at least one cycle is applied. Without loss of generality, let C,, = A.

30

— In the sequence of CycrLis in the Maxicur there is a Cycre on A. Then, by structural equiv-
alence, we can transform the proof 7 and apply CycLe immediately after Ax, and obtain the

following proof max_cvors:

— AX
AL A a
F0 YCLE

We have d(max—cvoue) = O(A). Then, we can remove the above CycLe and Ax, by replacing
Tax—cyous With the following 7}, which corresponds to (only considering the logical part) of
SC-Ax-CycLe rule given in § A, Fig. 4:

OF0 0

where d(7},) = 0 because 7}, has no Cycres. Then, we construct 7/ as follows:
{771 e ﬂ'm} \ TAx—CYCLE

F T, Ay, A, AL, AL
FT

Mix

*)

CYCLE

whose degree is strictly smaller than the degree of 7. Notice that in order to build 7/ we
have removed g, together with one Mix and one CvcLE from the Maxicur. Moreover, using
SC-MIx-NiL rule given in § A, Fig. 4, we have eliminated 7, from 7’.

— We consider the case where CycrLe is applied on A in 7, and A+ in one of the proofs in
{m1...7m} \ 7. This implies that m > 1 and one of the 4; is AL, and there is CvcLe on A
from 7, and A; T in a different proof than 7. Then, 7 is the following proof:

AX =T
FA- A {m ...} \ Tk
Mix
F F,Alv (X3} AiflvAa Ai+17 "'7ATL7 AvAi_a s Ai*lLv AJ_vA'H»lLa EES) A#v AJ_
e Cvycrentl

Then, we construct 7 as follows, which corresponds to (only considering the logical part) of
BAaxCvors given in §Bv Fig. 5:

{m ...} \ 7

F Fa Ala "'7Ai—17 AvAi-‘rla ey An)AlLa ey Ai—lj_a AL7A1'+1J_a ey A'ylz
£ CycLE"

Mix

whose degree is strictly smaller than the degree of 7.
The case where CycLE is applied on A+ in 7, is completely symmetrical.
2. Case 1, = ® introducing one of the Maxicut propositions A1, ..., A,, A. Without loss of generality,

suppose 7 is applied on proposition A. This implies that A = F ®° F for some propositions £ and
F and a natural number o. By the condition of the ® rule, we have that o < pr(I"’). Since A is a
MaxicuT proposition, by duality we have that A+ = EL>° FL (at this point we know that AL is
a’®). Since o < pr(I") and pr(A') = o, then it must be the case that A is in another proof, which
implies that m > 1. Let the proof containing A+ be 7, for h € [m] and h # k (at this point we
know that A and A' are in parallel).

31

Let 7, be the following proof:

If r;, is the Ax rule, then this falls in the previous case. We now consider the case where r, is a
logical rule, hence E ®° F' is in another sequent.

We will prove that 7, is applied on A+, and as a consequence it is a * rule. (This is equivalent to
proving that A+ is a top prefix).

Suppose 7y, is applied on C,, # AL. For any logical rule to be applied, it is required that pr(C,,) <
pr(I"”, E+>9° F+\ C,,), which implies that

pr(C,,) < pr(E+°FL) =pr(E®°F) =0

But this contradicts the fact that pr(E ®° F) is the smallest. Hence, 7, must be a *® on A+ (at this
point we know that also A+ is on top).

We now construct the following proof 74 which ends with a single Mix Maxicur p4 applied on at
least A:

T ﬂ-.’?
I E,F - EL L
o<pr(I"E) o< pr(I)

T EF © F I ELeeFL
- F/,F”,E(X)o F, EJ_ 0 FJ_
[

Mix

CYCLE

Suppose that p4 is applied on s > 0 propositions in I, I, in addition to A. Then,
d(pa) =0(A1)+ ...+ 0(As) + 0(A) = 0(A1) + ...+ 0(4s) + O(E) + O(F) + 1
We can rewrite 7 as follows:

({m ce T b\ {ﬂ'k,’frh}), TA
FAL A, AL AR
I

Mix

CYCLE

Then, we can rewrite the degree of 7 as
d(r) = d(p) = 0(A1) + ... + O(An—s) + d(pa)

We now construct 7/ as follows, which corresponds to (only considering the logical part) of Bgs
given in § B, Fig. 5:
T® T

FI B F IV EL P

I, " E,F,EL Ft
}_ I"///

Mix

CYCLE

32

Let the last Maxicur of 7/ be p/y. Then,

d(ply) = 0(A1) + ... + 0(As) + O(E) + O(F) < d(pa) < d(7)

We know that m > 1. If m = 2, meaning that the only premises of 7 are 7 and 7y, then we let 7/

be 7/ and this concludes the case.
Otherwise, if m > 2 we construct 7’ as follows:

({m1 - mm} \ {me, mr}), T4

F L Agiyy o An, AL AL
FI

Mix

CYCLE

Let p’ be the final Maxicur of 7/. We observe that p’, which is not a single Mix Maxicur, is
composed by the final Maxicur p/4 of 74 and by the sequence of Mix and CycLE rules on propositions

Ay, ..., A,_s at the bottom of 7. We have that

(') = d(p') = 0(Ast1) + ... + 0(An) +d(py) < d(p) = d(7)

. Case rp = ® introducing a proposition different than any propositions A;,
the Maxicut. Then 7 is the following proof:

Tkpr

FI'E,F o<pr(I",E)
FI'EQCF @ {m ...} \ T
FI" EQ°F Ay, ..., Ap, A, AL, . AL AL
FI" EQ°F

Mix

CYCLE

where I' = I'"', E ®° F for some propositions E, F' and priority o.
We construct proof 7o as follows, where the last MAXIcUT is pa:

Tkepr

FIEF {m .. mm) \ T
F " B, F, Ay, .., An, A, AL, . AL AL
FI"E,F

Mix

CYCLE

..., Apn, A involved in

We have that d(pz) = (A1) +...+0(A,) +9(A) = d(7). This means that p, is the biggest Maxicur

in 75 and hence d(m3) = d(p2) = d(7).

Also
WTkge) + > h(m) < Y h(m)

ie[m]\{k} 1€[m]

and by assumption d(m;), for all i € [m] (including d(mx) and d(7g,,)) are strictly smaller than
d(12). In particular, for m = 1 the above inequation becomes h(7my,,) < h(m). Then, by induction
hypothesis there is a proof 75 of - 1 (F " E,F), for some ¢t > 0, whose degree is strictly smaller

than d(72).

33

By applying the auxiliary Prop. 3 on the proof 75, where priority is increased by ¢ already, we can
obtain a proof 7§ for b tmax (et (1 B F), such that h(r}) = h(r4) and d(74) = d(75) < d(7).
We now obtain 7/ as follows:

7

- Tmax (t,o—i—l') (F”, E,F) o< pr(Tmax (t,0o+1) F”,E)
- Tmax (t,o+1) F//’Tmax (t,o+1) E®° Tmax (t,o+1) F

This corresponds to applying the logical part of kkg given in § C, Fig.7 to the induction hypothesis
of this case.
Then, we have

d(r') = d(r3) <d(7)

and this concludes the case.
. Case r = ! introducing one of the MaxicuT propositions Ay, ..., A,, A. Without loss of generality,
suppose 7, introduces proposition A, implying that A = 1° A’ for some A’ and natural number o.

Then, 7y is the following proof:
m

F?6, 4" o< pr(70) '
-0, 10 A/

where " = 76.

Since A = 1° A’ is a MaxicuT proposition, by duality we have that A+ = ?° At (at this point we
know that A+ is a ?). Since o < pr(I") and pr(A') = o, then it must be the case that A is in
another proof (which implies that m > 1). Let the proof containing A+ be 7, for h € [m] and h # k
(at this point we know that A and A+ are in parallel). Then, 7 is the following proof:

m

70,4 o< pr(?0)
F70, 10 A o {m o\ TR
FIV Ay Ay, P A AL AL o A
I

Mix

CYCLE

Then, we apply Lem. 2 on 7, and 7, obtaining a proof which we use to construct 7/, as we did in
Item 2 of this lemma.

. Case r, = ! introducing a proposition different from any of the MaxicuT propositions Ay, ..., A,, A.
Thus, all MaxicuT propositions are query propositions, namely A4; = 7°t A},... A, = 7°» A and
A= 7 A’. Then 7 is the following proof:

M

F?0,E o< pr(?0)

|
F?0,1°E "o} \ T
Mix
FI" 1°E Ay, ...7An,A7Af-, ...,Aﬂ;AJ—
7 P E CyYCLE

34

where IV =70 and I' = I'”, |° E for some proposition E and priority o. We construct proof 7, as
follows, where the last MaxicuT is ps:

M

FF.’,E {m ...} \ T
I B Ay, Ay, A AL AR AL
-7, E

Mix

CYCLE

and proceed as in Item 3.

6. Case r; = '@ introducing one of the MaxicuT propositions, then we proceed as in Item 2; otherwise,
if ’@ introduces a proposition different than any of the MaxicuT propositions, we proceed as in
Item 3.

7. Case rp = & (or ry, = @) introducing one of the Maxicur propositions, then we proceed as in Item 2;
otherwise, if & (or @) introduces a proposition different than any of the Maxicur propositions, we
proceed as in Item 3. O

Lemma 4. Given a proof 7 of F I', such that d(7) > 0, then for some t > 0 there is a proof 7’ of
AT such that d(7') < d(T).

Proof. By induction on h(7). We have the following cases.

— If 7 ends in a Maxicur whose degree is the same as the degree of 7:

T1...Tm
Mix™
FL AL Ay, A AL, AL AL
e CycLent!

then we can apply the induction hypothesis on the subproofs of 7 right before the last Mix preceding
the sequence of Cvcres, and this lets us reduce their degrees to smaller than d(7). Then we use
Lem. 3. Notice that 1t is performed twice on I': once by using the induction hypothesis and once
by applying Lem. 3.

— Otherwise, by using the inductive hypothesis on the immediate subproofs to reduce their degree,
we also reduce the degree of the whole proof. O

Theorem 1 (Cycre-elimination). Given any proof of + I', we can construct a cycle-free proof of
F 1t I, for somet > 0.

Proof. Tteration on Lem. 4. O

35

	A New Linear Logic for Deadlock-Free Session-Typed Processes

