
Session Types Revisited: A Decade Later
Ornela Dardha

University of Glasgow
Glasgow, United Kingdom

ornela.dardha@glasgow.ac.uk

Elena Giachino
University of Bologna

Bologna, Italy
elena.giachino@unibo.it

Davide Sangiorgi
University of Bologna

Bologna, Italy
davide.sangiorgi@cs.unibo.it

CCS CONCEPTS
• Theory of computation→ Process calculi; Logic and verifi-
cation; • Software and its engineering → Software verification
and validation.

KEYWORDS
session types, linear types, process calculus, encoding

This short paper is a retrospection of our original work titled Ses-
sion Types Revisited [11] published at PPDP’12. We thank the
PPDP Steering Committee for awarding us the “PPDP 10 Year Most
Influential Paper Award". In the following, we recall our main con-
tributions, highlight the impact in the literature and we conclude
by presenting some ideas for future developments.

1 INTRODUCTION
Session types [21, 22, 42] are a formalism used in communication-
based programming andwere originally designed for process calculi.
In the last nearly 30 years, session types have flourished into an
active research area. In addition to concurrency, session types have
been studied for other programming paradigms, including OOP,
functional, or web services [5, 7, 15, 16, 32, 43, 44]. A key concept
in session types theory is duality, which describes complementary
behaviours and is a distinctive feature of session types with no
clear analogue for e.g., in 𝜆- or 𝜋-calculus standard type systems.
However, duality as previously defined in the literature [18, 42] can
lead to communication type mismatch, in particular in the presence
of (non-tail) recursive types. Consequently, several new definitions
for duality have been published to fix this issue [2, 3, 19].

Example 1 (Equality Test: Session Types). Let us now illustrate
session types and the use of duality with a simple example: the
equality test. Consider a 𝑠𝑒𝑟𝑣𝑒𝑟 and a 𝑐𝑙𝑖𝑒𝑛𝑡 , which communicate
over a session channel with endpoints 𝑥 and 𝑦, owned by the server
and the client, respectively and exclusively. (We will look at pro-
cesses in the next section, once we have introduced their syntax).
These endpoints must have dual types to guarantee communication
safety. If the type of 𝑥 is

𝑆 ≜ ?Int.?Int.!Bool.end

—the server listening on channel endpoint 𝑥 receives (?) an integer,
followed by another integer, and then sends (!) back a boolean,
corresponding to the equality test of the integers received—then
the type of 𝑦 should be

𝑆 = !Int.!Int.?Bool.end

—the client listening on channel endpoint 𝑦 sends an integer, fol-
lowed by another integer, and then receives a boolean—namely, it
is exactly the dual type of 𝑆 , formally denoted by 𝑆 .

Session types and terms are added to the syntax of standard 𝜋-
calculus types and terms, leading to a split into two separate syntac-
tic categories, one for sessions and the other for standard 𝜋-calculus
[18, 22, 42, 46]. Typing features, such as subtyping, polymorphism,
recursion are then added to both syntactic categories. Additionally,
the syntax of processes contains both standard 𝜋-calculus processes
and session processes, like branching and selection (given in §2).
This introduces redundancy not only in the syntax, but also in the
theory, and can make the proofs of properties heavy: if a new type
construct is added, a related property must be checked for both stan-
dard 𝜋-types and session types. Note, by “standard” type systems
we mean type systems originally studied in depth in sequential
languages such as the 𝜆-calculus and then transplanted onto the
𝜋-calculus as types for channel names (rather than types for terms
as in the 𝜆-calculus). Such type systems may include constructs for
products, records, variants, polymorphism, linearity, and so on.

In Session Types Revisited [11] our aim was to understand the
extent to which the above redundancy and the duality in session
types were necessary. We explored linear channel types [28]—to
type channels that are used exactly once; and variant types [37, 38]
to type branching and selection processes. By following Kobayashi
[27], we defined a continuation-passing style encoding of binary
session types into linear and variant types. We proved our encoding
is sound and complete with respect to typing and operational se-
mantics. By exploiting this encoding, session types and their theory
can be derived from the theory of the standard typed 𝜋-calculus.
For instance, properties such as subject reduction and type safety
become straightforward corollaries. To test the robustness of our
encoding, we extended it to accommodate subtyping [18], poly-
morphism [17, 38] and higher-order communication [33]. We also
presented an optimisation of linear channels enabling the reuse
of the same channel for the continuation of the communication.
Finally, in our encoding, dual session types are mapped onto linear
types that are identical, except for the outermost input or output
capability, thus completely bypassing the issues with duality that
we encounter in the session types literature.

2 SESSION TYPES REVISITED
Session Types and Terms. Session types are given on the left

of the encoding of types in Figure 1—they are the domain of the
encoding. 𝑆 ranges over session types and 𝑇 over types, which
include session types, standard channel types denoted ♯𝑇 , data types
and any other type construct needed for mainstream programming.
Session types are: end, the type of a terminated channel; ?𝑇 .𝑆 and
!𝑇 .𝑆 (used in Example 1) indicating, respectively receive and send
a value of type 𝑇 and continuation 𝑆 . Branch and select are sets of
labelled session types, with labels ranging over a set of indices 𝐼 .
Branch &{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼 indicates an external choice, namely what is
offered, and it is a generalisation of the input type. Dually, select

Dardha et al.

⟦end⟧ ≜ ∅[]
⟦?𝑇 .𝑆⟧ ≜ ℓi [⟦𝑇⟧, ⟦𝑆⟧]
⟦!𝑇 .𝑆⟧ ≜ ℓo [⟦𝑇⟧, ⟦𝑆⟧]

⟦&{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼⟧ ≜ ℓi [⟨𝑙𝑖_⟦𝑆𝑖⟧⟩𝑖∈𝐼]
⟦⊕{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼⟧ ≜ ℓo [⟨𝑙𝑖_⟦𝑆𝑖⟧⟩𝑖∈𝐼]

⟦𝑥 !⟨𝑣⟩.𝑃⟧𝑓 ≜ (𝝂𝑐) 𝑓𝑥 !⟨⟦𝑣⟧𝑓 , 𝑐⟩.⟦𝑃⟧𝑓 ,{𝑥 ↦→𝑐 }
⟦𝑥?(𝑦) .𝑃⟧𝑓 ≜ 𝑓𝑥 ?(𝑦, 𝑐).⟦𝑃⟧𝑓 ,{𝑥 ↦→𝑐 }
⟦𝑥 ⊳ 𝑙 𝑗 .𝑃⟧𝑓 ≜ (𝝂𝑐) 𝑓𝑥 !⟨𝑙 𝑗_𝑐⟩.⟦𝑃⟧𝑓 ,{𝑥 ↦→𝑐 }

⟦𝑥 ⊲ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼⟧𝑓 ≜ 𝑓𝑥 ?(𝑦) . case𝑦 of {𝑙𝑖_(𝑐) ⊲ ⟦𝑃𝑖⟧𝑓 ,{𝑥 ↦→𝑐 }}𝑖∈𝐼
⟦(𝝂𝑥𝑦)𝑃⟧𝑓 ≜ (𝝂𝑐)⟦𝑃⟧𝑓 ,{𝑥,𝑦 ↦→𝑐 }

Figure 1: Encoding of session types (left) and session terms (right)

⊕{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼 indicates an internal choice, only one of the labels in 𝐼

will be chosen, and it is a generalisation of the output type.
Session processes ranging over 𝑃,𝑄 are given on the left of the

encoding of processes in Figure 1—they are the domain of the encod-
ing. The output process 𝑥 !⟨𝑣⟩.𝑃 sends a value 𝑣 on channel endpoint
𝑥 and proceeds as process 𝑃 ; the input process 𝑥?(𝑦) .𝑃 receives on
𝑥 a value to substitute the placeholder𝑦 in the continuation process
𝑃 . The selection process 𝑥 ⊳ 𝑙 𝑗 .𝑃 on 𝑥 selects label 𝑙 𝑗 and proceeds
as process 𝑃 . The branching process 𝑥 ⊲ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼 on 𝑥 offers a
range of labelled alternative processes. (𝝂𝑥𝑦)𝑃 is the session re-
striction construct; it creates a session channel, more precisely its
two endpoints 𝑥 and 𝑦 and binds them in 𝑃 . Inaction 0 and parallel
composition 𝑃 | 𝑄 are standard and we omit them here.

Standard 𝜋-Types and Terms. Standard 𝜋-types are given on
the right of the encoding of types in Figure 1—they are image of
the encoding. Let 𝜏 indicate standard 𝜋-types, to differentiate from
𝑇, 𝑆 presented above. We will use a tilde ·̃ to indicate a sequence
of elements. The type ∅[] is assigned to a channel without any
capability. Linear types ℓi [𝜏] and ℓo [𝜏] are assigned to channels
used exactly once to receive and to send values of type 𝜏 , respectively.
The variant type ⟨𝑙𝑖_𝜏𝑖 ⟩𝑖∈𝐼 is a labelled form of disjoint union of
standard types 𝜏𝑖 ranging in a set of indices 𝐼 .

Standard 𝜋-processes ranging over 𝑃,𝑄 are given on the right
of the encoding of processes in Figure 1—they are the image of the
encoding. The output process 𝑥 !⟨𝑣⟩.𝑃 and input process 𝑥?(𝑦) .𝑃
are similar to the session counterpart, with the only difference
that here we need a tuple of values 𝑣 or placeholders 𝑦; Process
case 𝑣 of {𝑙𝑖_(𝑥𝑖) ⊲ 𝑃𝑖 }𝑖∈𝐼 offers different behaviours depending on
which labelled value, called variant value 𝑙_𝑣 it receives. Restriction
process (𝝂𝑥)𝑃 creates a new name 𝑥 and binds it with scope 𝑃 .
Differently from session 𝜋-calculus, here we have only one name 𝑥 .
Inaction and parallel composition are standard.

Encoding of Types and Terms. The encoding of types is given
on the left of Figure 1. The encoding of end is a channel with no
capabilities ∅[], meaning that it cannot be used further. Type ?𝑇 .𝑆
is encoded as the linear input channel type carrying a pair of values
whose types are the encodings of 𝑇 and of 𝑆 . The encoding of !𝑇 .𝑆
is similar. However, notice that the dual of the continuation 𝑆 is
sent, since it is the type of a channel as used by the receiver process.
The branch and the select types are encoded as linear input and
linear output channels carrying variant types having labels 𝑙𝑖 and
types respectively, the encoding of 𝑆𝑖 and the encoding of 𝑆𝑖 for
all 𝑖 ∈ 𝐼 . Again, the reason for duality of the continuation is the
same as for the output type. All the other types are encoded in a
homomorphic way, for e.g., ⟦♯𝑇⟧ ≜ ♯⟦𝑇⟧.

The encoding of terms is given on the right of Figure 1. The
encoding of terms is parametrised by a function 𝑓 from names to
names. Since we are using linear channels, once a channel is used,
it cannot be used again for communication. To enable structured
communications like session types do, the channelmust be renamed:
a new channel is created and is sent to the communicating partner
in order to use it to continue the rest of the session. This procedure
is repeated at every step of communication and the function 𝑓 is
updated to the new name created. This is the continuation-passing
principle. In the encoding of the output process, a new channel 𝑐 is
created and is sent together with the encoding of the payload 𝑣 on
the renamed channel 𝑓𝑥 ; the encoding of the continuation process
𝑃 is parametrised in 𝑓 , where name 𝑥 is updated to 𝑐 . Similarly,
the input process listens on channel 𝑓𝑥 and receives a value to
substitute 𝑦 as well as a fresh channel 𝑐 to substitute 𝑥 in the
encoded continuation process where 𝑓 is updated with {𝑥 ↦→ 𝑐}.
Selection process 𝑥 ⊳ 𝑙 𝑗 .𝑃 is encoded as the process that first creates
a new channel 𝑐 and then sends on 𝑓𝑥 a variant value 𝑙 𝑗_𝑐 , where 𝑙 𝑗
is the original selected label and 𝑐 is the new channel to be used for
the continuation of the session. The encoding of branching is the
input process receiving on 𝑓𝑥 a value, typically being a variant value,
which is the guard of the case process. According to the chosen
label, one of the corresponding processes ⟦𝑃𝑖⟧𝑓 ,{𝑥 ↦→𝑐 } for 𝑖 ∈ 𝐼 ,
will be chosen. Note that the name 𝑐 is bound in any continuation
process ⟦𝑃𝑖⟧𝑓 ,{𝑥→𝑐 } . The encoding of a session restriction process
(𝝂𝑥𝑦)𝑃 is a process (𝝂𝑐)⟦𝑃⟧𝑓 ,{𝑥,𝑦 ↦→𝑐 } with the new name 𝑐 used
to substitute both 𝑥 and 𝑦 in the encoding of 𝑃 . The encoding of
other process constructs, like inaction and parallel composition, is
a homomorphism, for e.g., ⟦𝑃 | 𝑄⟧𝑓 ≜ ⟦𝑃⟧𝑓 | ⟦𝑄⟧𝑓 .

Example 2 (Equality Test: Encoding). Let us now illustrate the
encoding of session types and terms on the equality test from
Example 1. The encoding of the server’s channel endpoint 𝑥 of type
𝑆 is

⟦𝑆⟧ = ℓi [Int, ℓi [Int, ℓo [Bool, ∅[]]]]

Dually, the encoding of the client’s channel endpoint 𝑦 of type 𝑆 is

⟦𝑆⟧ = ℓo [Int, ℓi [Int, ℓo [Bool, ∅[]]]]

Here we notice, how the encoding of dual types boils down to dual
capabilities ℓi [·] and ℓo [·] only at the outermost level, while the
payloads are identical.

Since we introduced the syntax of processes, we are now in the
position to design the 𝑠𝑒𝑟𝑣𝑒𝑟 and a 𝑐𝑙𝑖𝑒𝑛𝑡 processes.

Let 𝑠𝑒𝑟𝑣𝑒𝑟 ≜ 𝑥?(𝑣1) .𝑥?(𝑣2).𝑥 !⟨𝑣1 == 𝑣2⟩.0 be the server process
communicating on endpoint 𝑥 of type 𝑆 . Then,

⟦𝑠𝑒𝑟𝑣𝑒𝑟⟧{𝑥 ↦→𝑠 } = 𝑠?(𝑣1, 𝑐) .𝑐?(𝑣2, 𝑐 ′).(𝝂𝑐 ′′)𝑐 ′!⟨𝑣1 == 𝑣2, 𝑐
′′⟩.0

Session Types Revisited: A Decade Later

Let 𝑐𝑙𝑖𝑒𝑛𝑡 ≜ 𝑦!⟨3⟩.𝑦!⟨5⟩.𝑦?(𝑒𝑞) .0 be the client process communicat-
ing on endpoint 𝑦 of type 𝑆 . Then,

⟦𝑐𝑙𝑖𝑒𝑛𝑡⟧{𝑦 ↦→𝑠 } = (𝝂𝑐)𝑠!⟨3, 𝑐⟩.(𝝂𝑐 ′)𝑐!⟨5, 𝑐 ′⟩.𝑐 ′?(𝑒𝑞, 𝑐 ′′) .0
Lastly, the whole server-client closed system is encoded as

⟦(𝝂𝑥𝑦) (𝑠𝑒𝑟𝑣𝑒𝑟 | 𝑐𝑙𝑖𝑒𝑛𝑡)⟧∅
= (𝝂𝑠)⟦(𝑠𝑒𝑟𝑣𝑒𝑟 | 𝑐𝑙𝑖𝑒𝑛𝑡)⟧{𝑥,𝑦 ↦→𝑠 }
= (𝝂𝑠)

(
⟦𝑠𝑒𝑟𝑣𝑒𝑟⟧{𝑥 ↦→𝑠 } | ⟦𝑐𝑙𝑖𝑒𝑛𝑡⟧{𝑦 ↦→𝑠 }

)
where the initial renaming function is the identity function simply
denoted as ∅ above.

3 IMPACT
The publication of our work [11] opened the pathway to new re-
search, both in theory and practice of session types. The main
applicability of the encoding is to transport the properties of the
standard typed 𝜋-calculus into session typed languages. This is
possible due to the soundness and completeness of the encoding
with respect to both typing and semantics, aka operational cor-
respondence. We have already seen how the encoding bypasses
the issues with duality, so we now discuss other areas of impact,
without pretensions to being exhaustive.

New Session Types Theory. Building upon the original work,
the authors extended it to include recursive types, together with
detailed examples and proofs [8, 9, 12]. Following the original work,
several variations of encodings have emerged, most notably mini-
mal session types [1] and the encoding of multiparty session types
(MPST) into linear types [39]. Padovani [35] extends the linear 𝜋-
calculus with composite types and uses our encoding to develop a
type inference algorithm for session types with composite types.
The resulting type inference algorithm is simple thanks to our en-
coding and its impact on the duality relation. Graversen et. al. [20]
also use the encoding to generate type inference for session types
based on constraint generation and solving.

(Dead) Lock Freedom. The encoding can be used to verify live-
ness properties such as (dead)lock freedom and progress. Carbone
et. al. [6] show that progress is a compositional form of deadlock
freedom and by using our encoding and a very expressive standard
𝜋-calculus type system [26] they manage to type more session pro-
cesses than the literature. Padovani [34] defines a new technique
building on Kobayashi’s work [26] to verify (dead)lock freedom
for the linear 𝜋-calculus with cyclic networks. He then uses the
encoding to bring this technique onto the session typed 𝜋-calculus.
Dardha and Pérez [13, 14] give a detailed account of deadlock free-
dom in the 𝜋-calculus by comparing session types, linear logic and
standard 𝜋-types via our encoding.

Session Types Implementation. The encoding has been used
as a technique for implementing session types into mainstream
programming languages with subtyping, recursive types and type
inference. Padovani [36] implemented FuSe, a library for session
types in OCaml. Scalas and Yoshida [41] implemented lchannels,
a library for session types in Scala. Building on the encoding of
MPST into linear types, Scalas et. al. [39] use it to implement MPST
for Akka/Scala [40]. These works use the continuation-passing en-
coding by exploring the native channel types in the corresponding

languages, but perform runtime checks for linearity. Imai et. al. [23]
implemented another session library for OCaml, but with static
checks. Kokke and Dardha [29] use the encoding to implement
deadlock-free session types in Linear Haskell. Finally, our encoding
facilitated the implementation of session types in Go [31].

4 FUTURE DEVELOPMENTS
We speculate that the encoding of MPST will also take off in the
same way as that of binary session types, in particular it will be
used for implementations in mainstream programming languages.
In addition to new implementations leveraging the binary/MPST
encodings, we will also see mechanisations of session types us-
ing proofs assistants such as Agda or Coq. Based on Padovani’s
work [35] and the mechanisation of the linear 𝜋-calculus and its
type inference in Agda [47, 48], Dardha and collaborators are cur-
rently working on the mechanisation of type inference for session
types in Agda. We think that connections between the encodings
and linear logic will start to emerge, possibly building on the the
Curry-Howard isomorphisms between session types and linear
logic [4, 10, 45], which has gained momentum in the last decade.
Lastly, we think connections between the encoding and typestates—
a formalism similar to session types developed in the context of
object-oriented programming [24, 30]—may emerge, possibly lever-
aging connections between the 𝜋-calculus and objects [37].

REFERENCES
[1] Alen Arslanagic, Anda-Amelia Palamariuc, and Jorge A. Pérez. 2021. Minimal

Session Types for the 𝜋 -calculus. In PPDP. ACM, 12:1–12:15. https://doi.org/10.
1145/3479394.3479407

[2] Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouzapas. 2014.
On Duality Relations for Session Types. In TGC (LNCS, Vol. 8902). Springer, 51–66.
https://doi.org/10.1007/978-3-662-45917-1_4

[3] Giovanni Bernardi and Matthew Hennessy. 2014. Using Higher-Order Contracts
to Model Session Types (Extended Abstract). In CONCUR (Lecture Notes in Com-
puter Science, Vol. 8704). Springer, 387–401. https://doi.org/10.1007/978-3-662-
44584-6_27

[4] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear
Propositions. In CONCUR (LNCS, Vol. 6269). Springer, 222–236. https://doi.org/
10.1007/978-3-642-15375-4_16

[5] Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia
Drossopoulou, and Elena Giachino. 2009. Amalgamating sessions and methods
in object-oriented languages with generics. Theor. Comput. Sci. 410, 2-3 (2009),
142–167.

[6] Marco Carbone, Ornela Dardha, and Fabrizio Montesi. 2014. Progress as Compo-
sitional Lock-Freedom. In COORDINATION (LNCS, Vol. 8459). Springer, 49–64.

[7] Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2007. Structured
Communication-Centred Programming for Web Services. In ESOP (LNCS,
Vol. 4421). Springer, 2–17.

[8] Ornela Dardha. 2014. Recursive Session Types Revisited. In BEAT (EPTCS,
Vol. 162). 27–34. https://doi.org/10.4204/EPTCS.162.4

[9] Ornela Dardha. 2016. Type Systems for Distributed Programs: Components and
Sessions. Atlantis Studies in Computing, Vol. 7. Springer / Atlantis Press. https:
//doi.org/10.2991/978-94-6239-204-5

[10] Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic for Deadlock-
Free Session-Typed Processes. In FOSSACS (LNCS, Vol. 10803). Springer, 91–109.
https://doi.org/10.1007/978-3-319-89366-2_5

[11] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session types
revisited. In PPDP. ACM, New York, NY, USA, 139–150.

[12] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session types
revisited. Inf. Comput. 256 (2017), 253–286. https://doi.org/10.1016/j.ic.2017.06.002

[13] Ornela Dardha and Jorge A. Pérez. 2015. Comparing Deadlock-Free Session
Typed Processes. In EXPRESS/SOS (EPTCS, Vol. 190). 1–15. https://doi.org/10.
4204/EPTCS.190.1

[14] Ornela Dardha and Jorge A. Pérez. 2022. Comparing type systems for deadlock
freedom. J. Log. Algebraic Methods Program. 124 (2022), 100717. https://doi.org/
10.1016/j.jlamp.2021.100717

[15] Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and
Nobuko Yoshida. 2007. Bounded Session Types for Object Oriented Languages.

https://doi.org/10.1145/3479394.3479407
https://doi.org/10.1145/3479394.3479407
https://doi.org/10.1007/978-3-662-45917-1_4
https://doi.org/10.1007/978-3-662-44584-6_27
https://doi.org/10.1007/978-3-662-44584-6_27
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4204/EPTCS.162.4
https://doi.org/10.2991/978-94-6239-204-5
https://doi.org/10.2991/978-94-6239-204-5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.4204/EPTCS.190.1
https://doi.org/10.4204/EPTCS.190.1
https://doi.org/10.1016/j.jlamp.2021.100717
https://doi.org/10.1016/j.jlamp.2021.100717

Dardha et al.

In FMCO (LNCS, Vol. 4709). Springer, 207–245. https://doi.org/10.1007/978-3-
540-74792-5_10

[16] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. 2006. Session Types for Object-Oriented Languages. In ECOOP
(LNCS, Vol. 4067). Springer, 328–352.

[17] Simon J. Gay. 2008. Bounded polymorphism in session types. Mathematical
Structures in Computer Science 18, 5 (2008), 895–930.

[18] Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the pi
calculus. Acta Inf. 42, 2-3 (2005), 191–225.

[19] Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality of Session
Types: The Final Cut. In PLACES (EPTCS, Vol. 314). 23–33. https://doi.org/10.
4204/EPTCS.314.3

[20] Eva Fajstrup Graversen, Jacob Buchreitz Harbo, Hans Hüttel, Mathias Ormstrup
Bjerregaard, Niels Sonnich Poulsen, and Sebastian Wahl. 2014. Type Inference for
Session Types in the 𝜋 -calculus. InWeb Services, Formal Methods, and Behavioral
Types. Springer, 103–121.

[21] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (LNCS, Vol. 715).
Springer, 509–523. https://doi.org/10.1007/3-540-57208-2_35

[22] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. 1998. Language primitives
and type disciplines for structured communication-based programming. In ESOP
(LNCS, Vol. 1381). Springer, 22–138.

[23] Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2019. Session-ocaml: A session-
based library with polarities and lenses. Sci. Comput. Program. 172 (2019), 135–159.
https://doi.org/10.1016/j.scico.2018.08.005

[24] Mathias Jakobsen, Alice Ravier, and Ornela Dardha. 2021. Papaya: Global Types-
tate Analysis of Aliased Objects. In PPDP. ACM. https://doi.org/10.1145/3479394.
3479414

[25] Naoki Kobayashi. 2002. Type Systems for Concurrent Programs. In 10th Anniver-
sary Colloquium of UNU/IIST. 439–453.

[26] Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Processes. In
CONCUR (LNCS, Vol. 4137). Springer, 233–247.

[27] Naoki Kobayashi. 2007. Type Systems for Concurrent Programs. (2007). Extended
version of [25], Tohoku University.

[28] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and
the pi-calculus. ACM Trans. Program. Lang. Syst. 21, 5 (1999), 914–947.

[29] Wen Kokke and Ornela Dardha. 2021. Deadlock-free session types in linear
Haskell. In Haskell. ACM, 1–13. https://doi.org/10.1145/3471874.3472979

[30] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. 2018. Type-
checking protocols with Mungo and StMungo: A session type toolchain for Java.
Sci. Comput. Program. 155 (2018), 52–75. https://doi.org/10.1016/j.scico.2017.10.
006

[31] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A
static verification framework for message passing in Go using behavioural types.
In ICSE. ACM, 1137–1148. https://doi.org/10.1145/3180155.3180157

[32] Fabrizio Montesi and Nobuko Yoshida. 2013. Compositional Choreographies. In
CONCUR (LNCS, Vol. 8052). Springer, 425–439.

[33] Dimitris Mostrous and Nobuko Yoshida. 2007. Two Session Typing Systems for
Higher-Order Mobile Processes. In TLCA (LNCS, Vol. 4583). Springer, 321–335.
https://doi.org/10.1007/978-3-540-73228-0_23

[34] Luca Padovani. 2014. Deadlock and Lock Freedom in the Linear 𝜋 -Calculus. In
CSL-LICS. ACM, New York, NY, USA. https://doi.org/10.1145/2603088.2603116

[35] Luca Padovani. 2015. Type Reconstruction for the Linear 𝜋 -Calculus with Com-
posite Regular Types. Logical Methods in Computer Science Volume 11, Issue 4
(2015). https://doi.org/10.2168/LMCS-11(4:13)2015

[36] Luca Padovani. 2017. A simple library implementation of binary sessions. Journal
of Functional Programming 27 (2017). https://doi.org/10.1017/S0956796816000289

[37] Davide Sangiorgi. 1998. An Interpretation of Typed Objects into Typed pi-
Calculus. Inf. Comput. 143, 1 (1998), 34–73.

[38] Davide Sangiorgi and David Walker. 2001. The Pi-Calculus - a theory of mobile
processes. Cambridge University Press. I–XII, 1–580 pages.

[39] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A
Linear Decomposition of Multiparty Sessions for Safe Distributed Programming.
In ECOOP (LIPIcs, Vol. 74). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
24:1–24:31. https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

[40] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A
Linear Decomposition of Multiparty Sessions for Safe Distributed Programming
(Artifact). Dagstuhl Artifacts Ser. 3, 2 (2017), 03:1–03:2. https://doi.org/10.4230/
DARTS.3.2.3

[41] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming
in Scala. In ECOOP (LIPIcs, Vol. 56). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 21:1–21:28. https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

[42] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An Interaction-based
Language and its Typing System. In PARLE (LNCS, Vol. 817). Springer, 398–413.
https://doi.org/10.1007/3-540-58184-7_118

[43] Antonio Vallecillo, Vasco Thudichum Vasconcelos, and António Ravara. 2006.
Typing the Behavior of Software Components using Session Types. Fundam.
Inform. 73, 4 (2006), 583–598.

[44] Vasco Thudichum Vasconcelos, Simon J. Gay, and António Ravara. 2006. Type
checking a multithreaded functional language with session types. Theor. Comput.
Sci. 368, 1-2 (2006), 64–87.

[45] Philip Wadler. 2012. Propositions as sessions. In ICFP. ACM, 273–286. https:
//doi.org/10.1145/2364527.2364568

[46] Nobuko Yoshida and Vasco Thudichum Vasconcelos. 2007. Language Primitives
and Type Discipline for Structured Communication-Based Programming Revis-
ited: Two Systems for Higher-Order Session Communication. Electr. Notes Theor.
Comput. Sci. 171, 4 (2007), 73–93.

[47] Uma Zalakain and Ornela Dardha. 2021. 𝜋 with Leftovers: A Mechanisation in
Agda. In FORTE (LNCS, Vol. 12719). Springer, 157–174. https://doi.org/10.1007/978-
3-030-78089-0_9

[48] Uma Zalakain and Ornela Dardha. 2021. Co-Contextual Typing Inference for the
Linear 𝜋 -Calculus in Agda (Extended Abstract). In TyDe. http://www.dcs.gla.ac.
uk/~ornela/publications/ZDb21.pdf

https://doi.org/10.1007/978-3-540-74792-5_10
https://doi.org/10.1007/978-3-540-74792-5_10
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1007/978-3-540-73228-0_23
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.2168/LMCS-11(4:13)2015
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1007/978-3-030-78089-0_9
https://doi.org/10.1007/978-3-030-78089-0_9
http://www.dcs.gla.ac.uk/~ornela/publications/ZDb21.pdf
http://www.dcs.gla.ac.uk/~ornela/publications/ZDb21.pdf

	1 Introduction
	2 Session Types Revisited
	3 Impact
	4 Future Developments
	References

