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Abstract. We propose an integration of structural subtyping with boolean con-
nectives and semantic subtyping to define a Java-like programming language that
exploits the benefits of both techniques. Semantic subtyping is an approach to
defining subtyping relation based on set-theoretic models, rather than syntactic
rules. On the one hand, this approach involves some non trivial mathematical
machinery in the background. On the other hand, final users of the language need
not know this machinery and the resulting subtyping relation is very powerful and
intuitive. While semantic subtyping is naturally linked to the structural one, we
show how the framework can also accommodate the nominal subtyping. Several
examples show the expressivity and the practical advantages of our proposal.

1 Introduction

Type systems for programming languages are often based on a subtyping relation on
types. There are two main approaches for defining the subtyping relation: the syntactic
approach and the semantic one. The syntactic approach is more common: the subtyping
relation is defined by means of a formal system of deductive rules. One proceeds as fol-
lows: first define the language, then the set of syntactic types and finally the subtyping
relation by inference rules. In the semantic approach, instead, one starts from a model
of the language and an interpretation of types as subsets of the model. The subtyping
relation is then defined as inclusion of sets denoting types. This approach has received
less attention than the syntactic one as it is more technical and constraining: it is not
trivial to define the interpretation of types as subsets of a model. On the other hand, it
presents several advantages: it allows a natural definition of boolean operators, also the
meaning of types is more intuitive for the programmer, who need not be aware of the
theory behind the curtain.

The first use of the semantic approach goes back to two decades ago [3,10]. More
recently, Hosoya and Pierce [15,16] have adopted this approach to define XDuce, an
XML-oriented language which transforms XML documents into other XML docu-
ments, satisfying certain properties. Subtyping relation is established as inclusion of
sets of values, the latter being fragments of XML documents. Castagna et al [8,13]
extend the XDuce with first-class functions and arrow types defining a higher-order
language, named CDuce, and adopting the semantic approach to subtyping. The start-
ing point of their framework is a higher-order A—calculus with pairs and projections.
The set of types is extended with intersection, union and negation types interpreted in
a set-theoretic way. This approach can also be applied to m-calculus [25]. Castagna et



al. [9] defined the Crr language, a variant of the asynchronous r-calculus where channel
types are augmented with boolean connectives. Finally, semantic subtyping is adopted
in a flow-typing calculus [23]. Flow-typing allows a variable to have different types
in different parts of a program and thus is more flexible than the standard static typ-
ing. Type systems for flow-typing incorporate intersection, union and negation types
in order to typecheck terms, like for example, if-then-else statements. Consequently,
semantic subtyping is naturally defined on top of these systems.

In the present paper, we address the semantic subtyping approach by applying it to
an object-oriented core language. Our starting point is Featherweight Java (FJ) [17],
which is a functional fragment of Java. From a technical point of view the development
is challenging. It follows [13], but with the difference that we do not have higher-order
values. Therefore, we cannot directly reuse their results. Instead, we define from scratch
the semantic model that induces the subtyping relation, and we prove some important
theoretical results. The mathematical technicalities, however, are transparent to the final
user. Thus, the overheads are hidden to the programmer. The benefits reside in that the
programmer now has a language with no additional complexity (w.r.t. standard Java)
but with an easier-to-write, more expressive set of types. There are several other reasons
and benefits that make semantic subtyping very appealing in an object-oriented setting.
For example, it allows us to very easily handle powerful boolean type constructors and
model both structural and nominal subtyping. The importance, both from the theoretical
and the practical side, of boolean type constructors is widely known in several settings,
e.g. in the A-calculus. Below, we show two examples where the advantages of using
boolean connectives in an object-oriented language become apparent.

Boolean constructors for modeling multimethods. Featherweight Java [17] is a core
language, so several features of full Java are not included in it; in particular, an impor-
tant missing feature is the possibility of overloading methods, both in the same class
or along the class hierarchy. By using boolean constructors, the type of an overloaded
method can be expressed in a very compact and elegant way, and this modeling comes
for free after having defined the semantic subtyping machinery. Actually, what we are
going to model is not Java’s overloading (where the static type of the argument is con-
sidered for resolving method invocations) but multimethods (where the dynamic type is
considered). To be precise, we implement the form of multimethods used, e.g., in [5,7];
according to [6], this form of multimethods is “very clean and easy to understand [...] it

would be the best solution for a brand new language”.

As an example, consider the following class declarations:'

class A extends Object { class B extends A {
int length (string s){ ... } int length (int n){ ...}
} }
! Here and in the rest of the paper we use °..." to avoid writing the useless part of a class, e.g.

constructors or irrelevant fields/methods.



As expected, method length of A has type string — int. However, such a method in B
has type (string — int) A (int — int),? which can be simplified as (string Vv int) — int.

The use of negation types. Negation types can be used by the compiler for typechecking
terms of a language. But they can also be used directly by the programmer. Suppose we
want to represent an inhabitant of Christiania, that does not want to use money and
does not want to deal with anything that can be given a price. In this scenario, we have
a collection of objects, some of which may have a getValue method that tells their value
in €. We want to implement a class Hippy which has a method barter that is intended
to be applied only to objects that do not have the method getValue. This is very difficult
to represent in a language with only nominal subtyping; but also in a language with
structural subtyping, it is not clear how to express the fact that a method is not present.

In our framework we offer an elegant solution by assigning to objects that have the
method getValue the type denoted by

[getValue : void — real]
Within the class Hippy, we can now define a method with signature
void barter(—[getValue : void — real] x)

that takes in input only objects x that do not have a price, i.e., a method named getValue.
One could argue that it is difficult to statically know that an object does not have method
getValue and thus no reasonable application of method barter can be well typed. How-
ever, it is not difficult to explicitly build a collection of objects that do not have method
getValue, by dynamically checking the presence of the method. This is possible thanks
to the instanceof construction (described in Section 5.3). Method barter can now be
applied to any object of that list, and the application will be well typed.

In the case of a language with nominal subtyping, one can enforce the policy that
objects with a price implement the interface ValuedObject. Then, the method barter
would take as input only objects of type ~ValuedObject.

While the example is quite simple, we believe it exemplifies the situations in which
we want to statically refer to a portion of a given class hierarchy and exclude the remain-
der. The approach we propose is more elegant and straightforward than the classical
solution offered by an object-oriented paradigm.

Structural subtyping. An orthogonal issue, typical of object-oriented languages, is the
nominal vs. structural subtyping question. In a language where subtyping is nominal,
A is a subtype of B if and only if it is declared to be so, meaning if class A extends (or
implements) class (or interface) B; these relations must be defined by the programmer
and are based on the names of classes and interfaces declared. Java programmers are
used to nominal subtyping, but other languages [12,14,18,19,20,22,24] are based on the
structural approach. In the latter, subtyping relation is established only by analyzing the
structure of a class, i.e. its fields and methods: a class A is a subtype of a class B if and

2 To be precise, the actual type is ((stringA—int) — int)A(int — int) but stringA—int =~ string,
where =~ denotes < N <~! and < is the (semantic) subtyping relation.



only if the fields and methods of A are a superset of the fields and methods of B, and
their types in A are subtypes of their types in B. Even though the syntactic subtyping
is more naturally linked to the nominal one, the former can also be adapted to support
the structural one, as shown in [14,19]. In this paper we follow the reverse direction
and give another contribution. The definition of structural subtyping as inclusion of sets
fits perfectly the definition of semantic subtyping. So, we integrate both approaches in
the same framework. In addition to that, with minor modifications, it is also possible to
include in the framework the choice of using nominal subtyping without changing the
underlying theory. Thus, since both nominal and structural subtyping are thoroughly
used and have their benefits, in our work, we can have them both and so it becomes a
programmer’s decision on what subtyping to adopt.

Plan of the paper. In Section 2 we present the syntax of types and terms. In Section 3
we define type models, semantic subtyping relation and present also the typing rules.
In Section 4 we present the operational semantics and the soundness of the type sys-
tem. Proofs of theorems and auxiliary lemmas can be found in [11]. Section 5 gives a
discussion on the calculus and Section 6 concludes the paper.

2 The calculus

In this section, we present the syntax of the calculus, starting first with the types and
then the language terms, which are substantially the ones in FJ.

2.1 Types

Our types are defined by properly restricting the type terms inductively defined by
the following grammar:

Tu= alu Type term
a:i=0|B|[:7]|leAa]|na Object type (a-type)
Hi= a—->aluAu|-u Method type (u-type)

Types can be of two kinds: a-types (used for declaring fields and, in particular, objects)
and u-types (used for declaring methods). Arrow types are needed to type the methods
of our calculus. Since our language is first-order and methods are not first-class values,
arrow types are introduced by a separate syntactic category, viz. u. Type 0 denotes the
empty type. Type B denotes the basic types: integers, booleans, void, etc. Type [/ : 7]
denotes a record type, where [ : 7 indicates the sequence [, : 7y,...,l : Ty, for some
k > 0. Labels [ range over an infinite countable set £. When necessary, we will write a
record type as [a : @, m T ] to emphasize the fields of the record, denoted by the labels
a, and the methods of the record, denoted by m. Given a type p = [a : @, m T 1], p(a;) is
the type assigned to the field a; and p(m;) is the type assigned to the method m;. In each
record type a; # a; fori # jand my, # my for h # k. To simplify the presentation, we are
modeling a form of multimethods where at most one definition for every method name
is present in every class. However, the general form of multimethods can be recovered
by exploiting the simple encoding of Section 5.2. The boolean connectives A and = have



their intuitive set-theoretic meaning. We use 1 to denote the type =0 that corresponds to
the universal type. We use the abbreviation @\’ to denote @ A ~a’ and a V o’ to denote
=(ma A =a’). The same holds for the u-types.

Definition 1 (Types). The pre-types are the regular trees (i.e., the trees with a finite
number of non-isomorphic subtrees) produced by the syntax of type terms.

The set of types, denoted by T, is the largest set of well-formed pre-types, i.e. the
ones for which the binary relation » defined as

TIATI> T TIANTI>T) T T
does not contain infinite chains.

Notice that every finite tree obtained by the grammar of types is both regular and
well formed; so, it is a type. Problems can arise with infinite trees, which leads us
to restrict them to the regular and the well-formed ones. Indeed, if a tree is not-regular,
then it is difficult to write it down in a finite way; since we want our types to be usable in
practice, we require regular trees that can be easily written down, e.g. by using recursive
type equations. Moreover, as we want types to denote sets, we impose some restrictions
to avoid ill-formed types. For example, the solution to @ = @A« contains no information
about the set denoted by «a; or @ = = does not admit any solution. Such situations are
problematic when we define the model. To rule them out, we only consider infinite trees
whose branches always contain an atom, where afoms are the basic types B, the record
types [/ : 7] and the arrow types @ — «. This intuition is what the definition of relation »
formalizes. The restriction to well-formed types is required to avoid meaningless types;
the same choice is used in [13]. A different restriction, called contractiveness, is used
for instance in [4], where non-regular types are also allowed.

2.2 Terms

Our calculus is based on FJ [17] rather than, for example, the object-oriented cal-
culus in [1], because of the widespread diffusion of Java. There is a correspondence
between FJ and the pure functional fragment of Java, in a sense that any program in FJ
is an executable program in Java. Our syntax is essentially the same as [17], apart from
the absence of the cast construct and the presence of the rnd primitive. We have left out
the first construct for the sake of simplicity; it is orthogonal to the aim of the current
work and it can be added to the language without any major issue. The second construct
is a nondeterministic choice operator. This operator is technically necessary to obtain
a completeness result. Indeed, we interpret method types not as function but as rela-
tions, following the same line of [13]; thus, a nondeterministic construct is needed to
account for this feature. In addition, rnd can be used to model side-effects. We assume
a countable set of names, among which there are some key names: Object that indicates
the root class, this that indicates the current object, and super that indicates the par-
ent object. We will use the letters A, B, C, ... for indicating classes, a, b, ... for fields,
m,n, ... for methods and x,y, z, ... for variables. K will denote the set of constants of
the language and we will use the meta-variable c to range over K. Generally, to make
examples clearer, we will use mnemonic names to indicate classes, methods, etc.; for
example, Point, print, etc.



The syntax of the language is given by the following grammar:

Class declaration L == class C extends C {@a; K; M}
Constructor K :=C (BNB; aa) super(E); this.a = a; }
Method declaration M :=am(aa){returne; }

Expressions e :=x|c|eal|em(e)|new C(e) | rnd(a)

A program is a pair (L,e) consisting of a sequence of class declarations (inducing a class
hierarchy, as specified by the inheritance relation) L where the expression e is evaluated.
A class declaration L provides the name of the class, the name of the parent class it
extends, its fields (each equipped with a type specification), the constructor K and its
method declarations M. The constructor initializes the fields of the object by assigning
values to the fields inherited by the super-class and to the fields declared in the present
class. A method is declared by specifying the return type, the name of the method, the
formal parameter (made up by a type specification given to a symbolic name) and a
return expression, i.e. the body of the method. For simplicity, we use unary methods
without compromising the expressivity of the language: passing tuples of arguments
can be modeled by passing an object that instantiates a class, defined in an ad-hoc
way for having as fields all the arguments needed. On the other hand, we exploit this
simplification in the theoretical development of our framework. Finally, expressions e
are variables, constants, field accesses, method invocations, object creations and random
choices among values of a given type. In this work we assume that L is well-defined,
in the sense that “it is not possible that a class A extends a class B and class B extends
class A”, or “a constructor called B cannot be declared in a class A” and other obvious
rules like these. All these kinds of checks could be carried out in the type system, but
we prefer to assume them to focus our attention on the new features of our framework.
The same sanity checks are assumed also in FJ [17].

3 Semantic subtyping
3.1 Models

Having defined the raw syntax, we should now introduce the typing rules. They
would typically involve a subsumption rule, that invokes a notion of subtyping. It is
therefore necessary to define subtyping, As we have already said, in the semantic ap-
proach 7y is a subtype of 7, if all the 7;-values are also 7,-values, i.e., if the set of values
of type 7, is a subset of the set of values of type 7. However, in this way, subtyping
is defined by relying on the notion of well-typed values; hence, we need the typing re-
lation to determine typing judgments for values; but the typing rules use the subtyping
relation which we are going to define. So, there is a circularity. To break this circle, we
follow the path of [13] and adapt it to our framework. The idea is to first interpret types
as subsets of some abstract “model” and then establish subtyping as set-inclusion. By
using this abstract notion of subtyping, we can then define the typing rules. Having now
a notion of well-typed value, we can define the “real” interpretation of types as sets of
values. This interpretation can be used to define another notion of subtyping. But if the
abstract model is chosen carefully, then the real subtyping relation coincides with the



- type(Object) = [1;
— type(C) = p, provided that:
e (Cextends D in Z;
o type(D) = p';
o for any field name a
* if p’(a) is undefined and a ¢ C, then p(a) is undefined;
* if p’(a) is undefined and a € C with type @”, then p(a) = @”’;
% if p’(a) is defined and a ¢ C, then p(a) = p’(a);
« if p’(a) is defined, a € C with type o’ and @” < p’(a), then p(a) = .
We assume that all the fields defined in p” and not declared in C appear at the beginning
of p, having the same order as in p’; the fields declared in C then follow, respecting their
declaration order in C.
e for any method name m:
= if p’(m) is undefined and m ¢ C, then p(m) is undefined;
% if p’(m) is undefined and m € C with type @ — S, then p(m) = a« — ;
* if p’(m) is defined and m ¢ C, then p(m) = p’(m);
« if pm) = AL,z — B, m € C with type ¢« — S and
p=a—p AN a\a— B < p(m), then pm) = p.
type(C) is undefined, otherwise.

Table 1. Definition of function type(_)

abstract one, and the circle is closed. A model consists of a set D and an interpretation
function [], : 7 — P(D). Such a function should interpret boolean connectives in
the expected way (conjunction corresponds to intersection and negation corresponds to
complement) and should capture the meaning of type constructors. Notice that there
can be several models and it is not guaranteed that they all induces the same subtyping
relation. For our purposes, we only need to find one suitable model that we shall call
bootstrap model [_] . The construction of this model is beyond the scope of this paper,
and for a detailed presentation we refer the reader to [11]. Then, set inclusion in the
bootstrap model induces a subtyping relation: 7; <g 7, &= [711]4 C [72]g-

3.2 Typing Terms

In the typing rules for our language we use the subtyping relation just defined to de-
rive typing judgments I +g e : 7. In particular, this means to use <g in the subsumption
rule. In the following we just write < instead of <g. Let us assume a sequence of class
declarations L. First of all, we have to determine the (structural) type of every class C
in L. To this aim, we have to take into account the inheritance relation specified in the
class declarations in L. We write “a € C” to mean that there is a field declaration of
name a in class C within the hierarchy L. Similarly, we write “a € C with type a” to
also specify the declared type «. Similar notations also hold for method names m.

Table 1 inductively defines the partial function type(C) on the class hierarchy L
(of course this induction is well-founded since Lis finite); when defined, it returns a
record type. In particular, the type of a method is a boolean combination of arrow types
declared in the current and in the parent classes. This follows the same line as [13] in
order to deal with habitability of types. The condition p(m) < p’(m) imposed in the
method declaration is mandatory to assure that the type of C is a subtype of the type



of D; without such a condition, it would be possible to have a class whose type is not
a subtype of the parent class. If it were the case, type soundness would fail, as the
following example shows.

class C extends Object { class D extends C {
real m(real x) {return x} compl m(int x) {return x X i}
real F() {return this.m(3)} real G() {return this.F ()}

As usual int < real < compl. At run time, the function G returns a complex number,
instead of a real. The example shows that, when the method m is overloaded, we have
to be sure that the return type is a subtype of the original type. Otherwise, due to the
dynamic instantiation of this, there may be a type error. A similar argument justifies the
condition " < p’(a) imposed for calculating function zype for field names.

Let us now consider the typing rules given in Table 2. We assume I” to be a typing
environment, i.e., a finite sequence of a-type assignments to variables. Most rules are
very intuitive. Rule (subsum) permits to derive for an expression e of type a; also a type
a», if @ is a subtype of @,. Notice that, for the moment, the subtyping relation used in
this rule is the one induced by the bootstrap model. In rule (const), we assume that, for
any basic type B, there exists a fixed set of constants Valg C K such that the elements
of this set have type B. Notice that, for any two basic types B and B,, the sets Valg,
may have a non empty intersection. Rule (var) derives that x has type «, if x is assigned
type @ in I'. Let us now concentrate on rules (field) and (m-inv). Notice that in these two
rules the record types are singletons, as it is enough that inside the record type there is
just the field or the method that we want to access or invoke. If the record type is more
specific (having other fields or methods), we can still get the singleton record by using
the subsumption rule. The rules m-inv models methods as invariant in their arguments.
This is not restrictive, as we can always use subsumption to promote the type of the
argument to match the declared type of the method. For rule (new), an object creation
can be typed by recording the actual type of the arguments passed to the constructor,
since we are confining ourselves to the functional fragment of the language. Moreover,
like in [13], we can extend the type of the object, by adding any record type that cannot
be assigned to it - as long as this does not lead to a contradiction, i.e. a type semantically
equivalent to 0. This possibility of adding negative record types is not really necessary
for programming purposes: it is only needed to ensure that every non-zero type has at
least one value of that type. This property guarantees that the interpretation of types as
sets of values induces the same subtyping relation as the bootstrap model. Rule (rnd)
states that rnd(e) is of type a. Finally, rule (m-decl) checks when a method declaration
is acceptable for a class C; this can only happen if type(C) is defined. Rules (class) and
(prog) check when a class declaration and a program are well-typed and are similar to
the ones in FJ.



Typing Expressions :

I're:a; a<a c€Valg
(subsum) (const)
I're:a F'+c:B
I'x)=«a I're:la:al
var) ——— (field) ———
I'-x:a I'rea:a

IF'rey:m:a1 > o] Tre :ap

(m-inv) (rnd)

I'rrnd(o): a

I'vey,m(e)) : ar
type(C) = [a - a,m T r FE:E Eg a
(new) p = [aFTTB, TRl A N -ldl s AN _\[m} ;ﬂ}] p#0

I'+new C(e): p
Typing Method Declarations :

x:ap,this: type(C) +e: o,

(m-decl)
kc ar m (@ x){return e}

Typing Class Declarations :

type(D) = [b: B, m~H] K = CBb;aa)super(b);thisa=a) rcM

(class) —
+ class C extends D {a a K M}

Typing Programs :

FL Fe:a
(prog)

k(L e)
Table 2. Typing Rules

3.3 Closing the circle

To close the circle, one should now interpret types as sets of values. In our calculus, a
natural notion of value includes the constants and the objects initialized by only passing
values to their constructor.

However, as the classes in L are finite, with these values we are able to inhabit just a
finite number of record types. Also, since we have not higher-order values, the u-types
would not be inhabited. This is a major technical difference w.r.t. [13].

To overcome this problem we use the more general notion of pseudo-value. A
pseudo-value is a closed, well-typed expression that cannot reduce further. The inter-
pretation of an a-type is the set of pseudo-values of that type For u-types, we interpret
an arrow type as a set of pairs (a, w) such that it is possible to assign to the normal form
w the return type of u whenever the input argument of the method is assigned input type
of ui.e., type @, which “closes” the normal form w. The details can be found in [11].



type(C) = [a : a,m TH] —é

e
(f-red) ————
(mew C(w)).a; = u; ea—e.a
Fe:a body(m,u,C) = Ax.e
(r-ax) —— (m-ax) = =
rnd(a) — e (new C(u)).m(u) — e[/ " U fpis]
el N el/ e/ N e//
(m-red;) —M (m-red,) —M
e .m(e) — e’ .m(e) e.m(e’) — e.m(e”)
e — ¢
(n-red)
new C(ey,...,e;,...,ex) — new Cley,...,é€,...,e)

Table 3. Operational semantics

Using the above intuitions, we define the interpretation function [-],, and, conse-
quently, the subtyping relation <4,.. A priori, the new relation <4 could be different
from <g. However, since the definitions of the model, of the language and of the typing
rules have been carefully chosen, the two subtyping relations coincide. Hence, we can
prove the following result, the proof of which can be found in [11].

Theorem 1. The bootstrap model [-] z induces the same subtyping relation as [-].,.

4 Operational Semantics and Soundness of the Type System

The operational semantics is defined through the transition rules of Table 3; these
are essentially the same as in FJ. There are only two notable differences: we use function
type to extract the fields of an object, instead of defining an ad-hoc function; function
body also depends on the (type of the) method argument, necessary for finding the
appropriate declaration when we have multimethods.

We fix the set of class declarations L and define the operational semantics as a
binary relation on the expressions of the calculus e — ¢’, called reduction relation. The
axiom for field access (f-ax) states that, if we try to access the i-th field of an object,
we just return the i-th argument passed to the constructor of that object. We have used
the premise type(C) = [a = a,m 7] as we want all the fields of the object instantiating
class C: function type(C) provides them in the right order (i.e., the order in which the
constructor of class C expects them to be). The axiom for method invocation (m-ax)
tries to match the argument of a method in the current class and, if a proper type match
is not found, it looks up in the hierarchy; these tasks are carried out by function body,
whose definition is in the following and the if cases are to be considered in order:

Ax.e if C contains 8 m(a x){return e} and + u : «,
body(m,u,C) = { body(m,u,D) if C extends D in L,
UNDEF otherwise.

Notice that method resolution is performed at runtime, by keeping into account the
dynamic type of the argument; this is called multimethods and is different from what
happens in Java, where method resolution is performed at compile time by keeping into



account the static type of the argument. A more traditional modeling of overloading is
possible and easy to model.

Soundness of the Type System. Theorem 1 does not automatically imply that the defi-
nitions put forward in Sections 3 and 4 are “valid” in any formal sense, only that they
are mutually coherent. To complete the theoretical treatment, we need to check type
soundness, stated by the following theorems. The full proofs can be found in [11].

Theorem 2 (Subject reduction). If+ ¢ : w and e — ¢/, thent+ €' : @’ where @’ < a.
Proof. The proof is by induction on the length of e — ¢’.

Theorem 3 (Progress). If + e : a where e is a closed expression, then e is a value or
there exists e’ such that e — €'.

Proof. The proof is by induction on the structure of e.

5 Discussion on the calculus

5.1 Recursive class definitions

It is possible to write recursive class definitions by assuming a special basic value
null and a corresponding basic type unit, having null as its only value. In Java, it is
assumed that null belongs to every class type; here, because of the complex types we
are working with (mainly, because of negations), this assumption cannot be done. This,
however, enables us to specify when a field can/cannot be null; this is similar to what
happens in database systems. In particular, lists of integers can now be defined as:

Linsise = class intList extends Object {
int val;
(a V unit) succ;
intList (int x, (@ V unit) y){this.val = x; this.succ = y}

}

a being the solution of the recursive type equation & = [val : int, succ : (aVunit)]. Now,
we can create the list (1, 2) by writing the value new intList(1, new intList(2, null)).

5.2 Implementing Standard Multimethods

Usually in object oriented languages, multimethods can be defined within a single
class. For simplicity, we have defined a language where at most one definition can be
given for a method name in a class.

It is however possible to partially encode multimethods by adding one auxiliary
subclass for every method definition. For instance, suppose we want to define twice a
multimethod m within class A:

class A extends Object {

a; m (B x){return e}
ap m (B, x){return e;}



We then replace it with the following declarations:
class A/ extends Object { class A extends A/ {

ay; m (B x){return e} ay m (B, x){return e;}

} }

Introducing subclasses is something that must be done with care. Indeed, it is not
guaranteed, in general, that the restrictions for the definition of function type (see Ta-
ble 1) are always satisfied. So, in principle, the encoding described above could turn
a class hierarchy where the function fype is well-defined into a hierarchy where it is
not. However, this situation never arises if different bodies of a multimethod are defined
for inputs of mutually disjoint types, as we normally do. Also, it is not difficult to add
to the language a typecase construct, similar to the one of CDuce, that would allow
more expressivity. We did not pursue this approach in the present paper to simplify the
presentation.

5.3 Implementing Typical Java-like Constructs

We now briefly show how we can implement in our framework traditional program-
ming constructs like if-then-else and (a structural form of) instanceof. Other constructs,
like exceptions, sequential composition and loops, can also be defined.

The expression if e then e; else e, can be implemented by adding to the program
the class definition:

class 7est extends Object {
a m ({true} x){return e}
a m ({false} x){return e,}

}

where {true} and {false} are the singleton types containing only values true and false,
respectively, and « is the type of e; and e;. Then, if e then ¢, else e; can be simulated by
(new Test()).m(e). Notice that this term typechecks, since test has type [m : ({true} —
a)A({false} — )] = [m : ({true}V {false}) — a] =~ [m : bool — «]. Indeed, in [13] itis
proved that (@) — @)A (@ — @) = (@ V@) — a and, trivially, {true} V {false} ~ bool.

The construct e instanceof o checks whether e is typeable at @ and can be imple-
mented in a way similar to the if-then-else:

class InstOf extends Object {
bool m,, (a; x){return true}
bool m,, (—a; x){return false}

bool m,, (o) x){return true}
bool m,, (~ay x){return false}

}

where a1, ..., a; are the types occurring as arguments of an instanceof in the program.
Then, e instanceof « can be simulated by (new InstOf()).mq(e).



5.4 Nominal subtyping vs. Structural subtyping

The semantic subtyping is a way to allow programmers use powerful typing disci-
plines, but we do not want to bother them with the task of explicitly writing structural
types. Thus, we can introduce aliases. We could write

L/

iniList = class.intList extends Object {
int val;
(intList V unit) succ;

intList (int x, (intList V unit) y){this.val = x; this.succ = y}

}

instead of L;,;;; in Section 5.1. Any sequence of class declarations written in this ex-
tended syntax can be then compiled into the standard syntax in two steps:

— First, extract from the sequence of class declarations a system of (mutually recur-
sive) type declarations; in doing this, every class name should be considered as a
type identifier. Then, solve such a system of equations.

— Second, replace every occurrence of every class name occurring in a type position
(i.e., not in a class header nor as the name of a constructor) with the corresponding
solution of the system.

For example, the system of equations (actually, made up of only one equation) asso-
ciated with L] . is intList = [val : int,succ : (intList V unit)]; if we assume that a
denotes the solution of such an equation, the class declaration resulting at the end of the
compilation is exactly L;,;s; in Section 5.1.

But nominal types can be more powerful than just shorthands. When using struc-
tural subtyping, we can interchangeably use two different classes having the very same
structure but different names. However, there can be programming scenarios where also
the name of the class (and not only its structure) could be needed. A typical example is
the use of exceptions, where one usually extends class Exception without changing its
structure. In such cases, nominal subtyping can be used to enforce a stricter discipline.

We can integrate this form of nominal subtyping in our semantic framework. To do
that, we add to each class a hidden field that represents all the nominal hierarchy that
can be generated by that class. If we want to be nominal, we will consider also this
hidden field while checking subtyping. In practice, the (semantic) ‘nominal’ type of a
class is the set of qualified names of all its subclasses; this will enable us to say that C is
a ‘nominal’ subtype of D if and only if C’s subclasses form a subset of D’s ones. Notice
that working with subsets is the key feature of our semantic approach to subtyping. This
is the reason why we need types as sets and, e.g., cannot simply add to objects a field
with the class they are instance of.

It remains to describe how we can use nominal subtyping in place of the the struc-
tural one. We propose two ways. In declaring a class or a field, or in the return type of
a method, we could add the keyword nominal, to indicate to the compiler that nomi-
nal subtyping should always be used with it. However, the only place where subtyping
is used is in function body, i.e. when deciding which body of an overloaded method
we have to activate on a given sequence of actual values. Therefore, we could be even



more flexible, and use the keyword nominal in method declarations, to specify which
method arguments have to be checked nominally and which ones structurally. For ex-
ample, consider the following class declaration:

class A extends Object {
int m (C x, nominal C y){ return 0; }

}

Here, every invocation of method m will check the type of the first argument structurally
and the type of the second one nominally. Thus, if we consider the following class

declarations
class C extends Object { }

class D extends Object { }

the expressions (new A()).m(new C(),new C()), (new A()).m(new D(),new C()) and
(new A()).m(new Object(), new C()) typecheck, whereas (new A()).m(new C(), new D())
and (new A()).m(new C(), new Object()) do not.

6 Conclusions and Future Work

We have presented a Java-like programming framework that integrates structural
subtyping, boolean connectives and semantic subtyping to exploit and combine the ben-
efits of such approaches. There is still work to do in this research line.

This paper lays out the foundations for a concrete implementation of our framework.
First of all, a concrete implementation calls for algorithms to decide the subtyping re-
lation; then, decidability of subtyping is exploited to define a typechecking algorithm
for our type system. This can be achieved by adding algorithms similar to those in
[13]. A preliminary formal development can be found in the first author’s M.S the-
sis [11]. These are intermediate steps towards a prototype programming environment
where writing and evaluating the performances of code written in the new formalism.

Another direction for future research is the enhancement of the language consid-
ered. For example, one can consider the extension of FJ with assignments; this is an
important aspect because mutable values are crucial for modeling the heap, a key fea-
ture in object oriented programming. We think that having a state would complicate the
issue of typing, because of the difference between the declared and the actual type of an
object. Some ideas on how to implement the mutable state can come from the choice
made in the implementation of CDuce. The fact that we have assumed nondeterministic
methods can also help in modeling a mutable state: as we have said, the input-output be-
havior of a function can be seen as nondeterministic since, besides its input, the function
has access to the state.

Another possibility for enhancing the language is the introduction of higher-order
values, in the same vein as the Scala programming language [21]; since the framework
of [13] is designed for a higher-order language, the theoretical machinery developed
therein should be easily adapted to the new formalism.
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