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Abstract

In this paper we propose an integration of structural subtyping with boolean
connectives and semantic subtyping to define a Java-like programming language
that exploits the benefits of both techniques. Semantic subtyping is an approach
for defining subtyping relation based on set-theoretic models, rather than syntactic
rules. On the one hand, this approach involves some non trivial mathematical
machinery in the background. On the other hand, final users of the language need
not know this machinery and the resulting subtyping relation is very powerful and
intuitive. While semantic subtyping is naturally linked to the structural one, we
show how our framework can also accommodate the nominal subtyping. Several
examples show the expressivity and the practical advantages of our proposal.

1 Introduction
A type system for a programming language is a set of deduction rules that enable

type derivations for the terms of the language. The subtyping relation on types is a key
notion as type systems often depend on it. There are two main approaches for defining
the subtyping relation: the syntactic approach and the semantic one. The syntactic
approach is more common; it is defined by means of a formal system of deduction
rules. One proceeds as follows: first define the language, then the set of syntactic types
and finally the subtyping relation by deduction rules. In the semantic approach, instead,
one starts from a model of the language and an interpretation of types as subsets of this
model; the subtyping relation is then defined as inclusion of sets denoting types. This
approach has received less attention than the syntactic one because it is more technical:
it is not trivial to define the interpretation of types as subsets of a model, or to define
a model at all. However, the semantic approach presents several advantages: it allows
a natural definition of boolean operators and the meaning of types is more intuitive for
the programmer, who does not need to know the theory behind the curtain (as usual in
sophisticated programming environments).

The first use of the semantic approach goes back to two decades ago [1, 2]. More
recently, Hosoya and Pierce [3, 4] have adopted this approach to define XDuce, an
XML-oriented language which transforms XML documents into other XML docu-
ments, satisfying certain properties. Subtyping relation is established as inclusion of
sets of values, the latter being fragments of XML documents. The type system con-
tains booleans, products and recursive types. There are no function types and terms in
the language. Benzaken, Castagna and Frisch [5, 6, 7] extend the XDuce with first-
class functions and arrow types defining a higher-order language, named CDuce, and
adopting the semantic approach to subtyping. The starting point of their framework is
a higher-order λ−calculus with pairs and projections. The set of types is extended with
intersection, union and negation types interpreted in a set-theoretic way. More recently
the type system of CDuce was also extended to include polymorphism [8].
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This approach can also be applied to π-calculus [9]. Castagna et al. [10] defined
the Cπ language, a variant of the asynchronous π-calculus where channel types are
augmented with boolean connectives.

Amadio and Cardelli [11] define subtyping for recursive types for the λ-calculus.
Types are interpreted as collections of values and subtyping corresponds to subcollec-
tions. They introduce the notion of bottom and top types. Types are partially ordered
by using the inclusion relation and every type t is in relation of subtyping with bottom
and top, as the intuition conveys. In this work, Amadio and Cardelli extend this order-
ing to recursive types: if one assumes that the inclusion of recursive variables implies
inclusion of the bodies of recursive types, one can deduce the inclusion of recursive
types themselves. They show that subtyping in the presence of recursive types is de-
cidable, but did not provide a complexity analysis. Later on Kozen et al. [12] show that
the type inclusion problem is solvable in time O(n2). They reduce the problem to the
emptiness problem for automata.

Aiken and Wimmers [13] present an algorithm for solving systems of type inclusion
constraints, where the type language includes 0 and 1, being the least and universal
types, respectively, intersection and union types, function types, pairs and recursive
types. This algorithm stands at the basis of an inclusion-based type inference system
for the λ-calculus with constants.

Ancona and Lagorio [14] study the subtyping relation for infinite types defined
coinductive by using union and object type constructors. Types are interpreted as sets of
values, by exploiting the notions of membership and contractive derivations. Subtyping
is defined coinductively and is shown to be sound w.r.t. set inclusion of values. This
technique eliminates the circularity and the need for a bootstrap model. This differs
from our work in both the interpretation of types and the definition of subtyping. A
recent alternative semantic approach to subtyping for record types is by Ancona and
Corradi [15], who concentrate on the use of coinductively defined types to model cyclic
record values.

Bonsangue et al. [16] develop a coalgebraic approach to coinductive types. The
paper defines a set-theoretic interpretation of coinductive types with union types, and
defines the semantic subtyping relation as inclusion of maximal traces, which is syn-
tactic unfoldings of type definitions. Morevover, a technique is proposed to define
subtyping as inclusion of merely finite traces. The technique proposed in this work
is completely different from ours. In addition, our approach based on set-inclusion of
values is applied to a specific framework, that of an object-oriented language. Other
relevant related works on coinductive definitions of subtyiping are [17, 18] and the
recent survey [19].

Finally, semantic subtyping is adopted in a flow-typing calculus [20]. Flow-typing
allows a variable to have different types in different parts of a program and thus is
more flexible than the standard static typing. Type systems for flow-typing incorporate
intersection, union and negation types in order to typecheck terms, like for example,
if-then-else statements. Consequently, semantic subtyping is naturally defined on top
of these systems.

Contributions. In the present paper, we address the semantic subtyping approach
(§ 3) by applying it to an object-oriented core language; the result will be an object-
oriented system with boolean connectives and structural subtyping. To this aim, we use
the syntax of Featherweight Java (FJ) [21], which is a functional fragment of Java (§ 2).
We give the syntax of types (§ 2.1) and terms (§ 2.2), and the operational semantics
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(§ 6) of our calculus. We define a type system (§ 4) that uses a subtyping relation, as
we discuss in the following, and prove its safety by the usual subject reduction (Thm 2,
§ 7) and progress (Thm 3, § 7).

From a technical point of view, the development is not trivial. It follows [7], but
with the difference that we do not have higher-order values. Therefore, we cannot
directly reuse their results. Instead, we define and construct from scratch the semantic
model, called bootstrap model (§ 3.3), which induces the subtyping relation used in the
type system of our language. We prove some important theoretical results regarding
this model (the details are given in the Appendix). After having built the bootstrap
model and defined the subtyping relation it induces, we define a new and more natural
interpretation of types, as sets of (pseudo-)values (§ 5). The reason is that we want
to have an interpretation of types that relies on the calculus used, rather than on a
mathematical model, like the bootstrap model. We then study the subtyping relation it
induces and give our main contribution: the bootstrap model and the interpretation of
types as sets of (pseudo-)values induce the same subtyping relation (Thm 1, § 5.1). The
mathematical technicalities in the framework are not simple, but they are transparent
to the final user. Thus, the overhead is hidden to the programmer. Incidentally, the
full development of the theory of semantic subtyping is the main contribution of this
paper w.r.t. the extended abstract [22]; in particular, § 3 was only sketched in loc.cit.,
whereas here we provide full details and proofs of our results.

The benefits of our approach reside in that the programmer now has a language
with an easy-to-write and very expressive set of types. Indeed, standard programming
features in Java can be easily programmed in our framework (§ 8.1, § 8.3). Moreover,
there are several benefits that make semantic subtyping very appealing in an object-
oriented setting. For example, it allows us to easily handle powerful boolean type
constructors (§ 2.1) and model both structural and nominal subtyping (§ 8.4).

The importance, both from the theoretical and the practical side, of boolean type
constructors is widely known in several settings, e.g., in the λ-calculus. Below, we
show two examples where the advantages of using boolean connectives in an object-
oriented language become apparent.

Boolean constructors for modelling multimethods. Featherweight Java [21] is a
core language, so several features of full Java are not included in it; in particular, an
important missing feature is the possibility of overloading methods, both in the same
class or along the class hierarchy. By using boolean constructors, the type of an over-
loaded method can be expressed in a very compact and elegant way, and this modeling
comes for free after having defined the semantic subtyping machinery. Actually, what
we are going to model is not Java’s overloading (where the static type of the argument
is considered for resolving method invocations) but multimethods (where the dynamic
type is considered). To be precise, we implement the form of multimethods used, e.g.,
in [23, 24]; according to [25], this form of multimethods is “very clean and easy to
understand [...] it would be the best solution for a brand new language”.

As an example, consider the following class declarations:1

class A extends Object { class B extends A {
. . . . . .
int length (string s){ . . . } int length (int n){ . . . }

} }

1Here and in the rest of the paper we use ‘. . .’ to avoid writing the useless part of a class, e.g. constructors
or irrelevant fields/methods.
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As expected, method length of A has type string→ int. However, such a method in B
has type (string→ int)∧∧∧ (int→ int),2 which can be simplified as (string∨∨∨ int)→ int.

The use of negation types. Negation types are used by the compiler for typechecking
terms of a language. They allow a clear definition of a type-case constructor, and more
generally of pattern matching. But negation types could also be used directly by the
programmer, even though their use is not of primary importance for programming usual
tasks.

As an example, suppose we want to represent an inhabitant of Christiania, that
does not want to use money and does not want to deal with anything that can be given
a price. In this scenario, we have a collection of objects, some of which may have
a getValue method that tells their value in ¤. We want to implement a class Hippy
which has a method barter that is intended to be applied only to objects that do not
have the method getValue. This is very difficult to represent in a language with only
nominal subtyping; but also in a language with structural subtyping, it is not clear how
to express the fact that a method is not present. In our framework we offer an elegant
solution by assigning to objects that have the method getValue the type denoted by

[getValue : void→ real]

Within the class Hippy, we can now define a method with signature

void barter(¬¬¬[getValue : void→ real] x)

that takes in input only objects x that do not have a price, i.e., a method named getValue.
One could argue that it is difficult to statically know that an object does not have method
getValue and thus no reasonable application of method barter can be well typed. How-
ever, it is not difficult to explicitly build a collection of objects that do not have method
getValue, by dynamically checking the presence of the method. This is possible thanks
to the instanceof construction (described in § 8.3). Method barter can now be applied
to any object of that list, and the application will be well typed.

In the case of a language with nominal subtyping, one can enforce the policy that
objects with a price implement the interface ValuedObject. Then, the method barter
would take as input only objects of type ¬¬¬ValuedObject.

While the example is quite simple, it should exemplify those situations in which we
want to statically refer to a portion of a given class hierarchy and exclude the remainder.
The approach we propose is more elegant and straightforward than possible solutions
offered by current object-oriented paradigms.

Structural subtyping. An orthogonal issue, typical of object-oriented languages,
is the nominal vs. structural subtyping question. In a language where subtyping is
nominal, A is a subtype of B if and only if it is declared to be so, meaning if
class A extends (or implements) class (or interface) B; these relations must be de-
fined by the programmer and are based on the names of classes and interfaces de-
clared. Java/C++/C# programmers are used to nominal subtyping, but other languages
[26, 27, 28, 29, 30, 31, 32] are based on the structural approach. In the latter, subtyping
relation is established only by analyzing the structure of a class, i.e. its fields and meth-
ods: the structural type of (the instances of) a class A is a subtype of the structural type

2To be precise, the actual type is ((string∧∧∧¬¬¬int)→ int)∧∧∧ (int→ int) but string∧∧∧¬¬¬int ' string, where
' denotes ≤ ∩ ≤−1 and ≤ is the (semantic) subtyping relation.
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of (the instances of) a class B if and only if the fields and methods of A are a superset
of the fields and methods of B, and their types in A are subtypes of their types in B
(indeed, for fields we do not need type invariance because fields are immutable, since
we are considering Featherweight Java that is functional). Even though the syntactic
subtyping is more naturally linked to the nominal one, the former can also be adapted
to support the structural one, as shown in [27, 29].

In this paper we follow the reverse direction and give another contribution. The
definition of structural subtyping as set inclusion perfectly fits with the definition of
semantic subtyping. However, with minor modifications, it is also possible to include in
the framework the choice of using nominal subtyping without changing the underlying
theory. It is not our aim to enter into the nominal vs. structural type question; both can
be found in the literature (actually, structural typing is less used in real programming
languages) and have their benefits. Thus, we take a neutral position on this aspect and
allow them both in our setting; so, programmers can decide, from case to case, the kind
of subtyping that better copes with their needs.

2 The calculus
In this section, we present the syntax of the calculus, starting with the types and

then moving to the language terms, which are substantially the ones in FJ.

2.1 Types

Our types are defined by properly restricting the type terms inductively defined by
the following grammar:

τ ::= α | µ Type term

α ::= 0 | B | [l̃ : τ] | α∧∧∧ α | ¬¬¬α Object type (α-type)

µ ::= α→ α | µ∧∧∧ µ | ¬¬¬µ Method type (µ-type)

Definition 1 (Types). The set of types, denoted by T , is the largest set of well-formed
regular trees produced by the syntax of type terms, where regular means that the tree
has a finite number of non-isomorphic subtrees and well-formed means that the binary
relation . defined as

τ1 ∧∧∧ τ2 . τ1 τ1 ∧∧∧ τ2 . τ2 ¬¬¬τ . τ

does not contain infinite chains.

Types can be of two kinds: α-types (used for declaring fields and, in particular,
objects) and µ-types (used for declaring methods). Arrow types are needed to type the
methods of our calculus. Since our language is first-order and methods are not first-
class values, arrow types are introduced by a separate syntactic category, ranged over
by µ. Indeed, even if later on we shall given an interpretation to arrow-types as sets of
(pseudo-)values, this will be only a technical device to let our typing machinery work;
no object will ever use methods as values (as customary in the OO paradigm).

Type 0 denotes the empty type. Type B denotes the basic types: integers, booleans,
void, etc.3. Type [l̃ : τ] is a record type, denoted with ρ, where l̃ : τ indicates the
sequence l1 : τ1, . . . , lk : τk, for some k ≥ 0. Labels l range over an infinite countable

3The type void is different from 0 since the former is inhabited by only one value, whereas the latter is
not inhabited by any any value.
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set L. When necessary, we will write a record type as [ã : α, m̃ : µ] to emphasize the
fields of the record, denoted by the labels ã, and the methods of the record, denoted by
m̃. Given a type ρ = [ã : α, m̃ : µ], ρ(ai) is the type assigned to the field ai and ρ(m j) is
the type assigned to the method m j. In each record type ai , a j for i , j and mh , mk

for h , k. To simplify the presentation, we are modeling a form of multimethods where
at most one definition for every method name is present in every class. However, the
general form of multimethods can be recovered by exploiting the simple encoding of
§ 8.2.

The boolean connectives∧∧∧ and¬¬¬ have their intuitive set-theoretic meaning. We use
1 to denote the type ¬¬¬0 that corresponds to the universal type. We use the abbreviation
α\\\α′ to denote α ∧∧∧ ¬¬¬α′ and α ∨∨∨ α′ to denote ¬¬¬(¬¬¬α ∧∧∧ ¬¬¬α′). The same holds for the
µ-types.

Notice that every finite tree obtained by the grammar of types is both regular and
well-formed; so, it is a type. Problems can arise with infinite trees; this leads us to
restrict ourselves to the regular and the well-formed ones. Indeed, since we want our
types to be usable in practice, we restrict ourselves to regular trees that can be easily
written down in a finite way, e.g. by using recursive type equations. Moreover, as we
want types to denote sets, we impose some restrictions to avoid ill-formed types. For
example, the solution to α = α ∧∧∧ α contains no information about the set denoted by
α; or α = ¬¬¬α does not admit any solution. Such situations are problematic when we
define the model. To rule them out, we only consider infinite trees whose branches
always contain an atom, where atoms are the basic types B, the record types [l̃ : τ] and
the arrow types α → α. This intuition is what the definition of relation . formalizes.
Since such a relation is strongly normalizing, it provides us with an induction principle
on the set of types that we will use throughout the paper without any further reference
to relation .. The restriction to well-formed types is required to avoid meaningless
types; the same choice is used in [7] and in [33], where the same notion is called
contractiveness.

In this paper, we express regular trees as the solution of recursive type definitions;
this is in line with the aims of our work, that is lying down the theoretical basis for the
system proposed. In a concrete implementation, we should replace this approach with
a syntactic construct, like rec X.α.

2.2 Terms

The syntax of our calculus is based on FJ [21] rather than, for example, the object-
oriented calculus in [34], because of the widespread diffusion of Java. There is a cor-
respondence between FJ and the pure functional fragment of Java, in a sense that any
program in FJ is an executable program in Java. Our syntax is essentially the same
as [21], apart from the absence of the cast construct, that we left out for the sake of
simplicity: it is orthogonal to the aims of the current work and it can be added to the
language without any major issue. Moreover, differently from FJ, we have complex
types associated to field and method declarations, whereas in FJ everything is associ-
ated to class names. This is necessary because we deal with types resulting from the
boolean combination of basic types. However, we shall show in §8.4 that complex
types can be assigned symbolic names, to ease programming.

We assume a countable set of names, among which there are some key names:
Object that indicates the root class, this that indicates the current object, and super
that indicates the parent object. We will use the letters A, B,C, . . . for indicating classes,
a, b, . . . for fields, m, n, . . . for methods and x, y, z, . . . for variables. K will denote the
set of constants of the language and we will use the meta-variable c to range over K .
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Generally, to make examples clearer, we will use mnemonic names to indicate classes,
methods, etc.; for example, Point, print, etc.

The syntax of the language is given by the following grammar:

Class declaration L ::= class C extends C {α̃ a; K; M̃ }

Constructor K ::= C (α̃ x) { super(x̃); t̃his.a = x̃; }
Method declaration M ::= α m (α x) { return e; }
Expressions e ::= x | c | e.a | e.m(e) | new C(̃e)

A program is a pair (L̃, e) consisting of a sequence of class declarations L̃, inducing
a class hierarchy (as specified by the inheritance relation), and an expression e, that
has to be evaluated therein. A class declaration L provides the name of the class, the
name of the parent class it extends, its fields (each equipped with a type specification),
the constructor K and its method declarations M. The constructor initializes the fields
of the object by assigning values to the fields inherited by the super-class and to the
fields declared in the present class. A method is declared by specifying the return
type, the name of the method, the formal parameter (made up by a type specification
given to a symbolic name) and a return expression, i.e. the body of the method. To
increases readability of our theoretical development, we use unary methods. This does
not compromise the expressivity of the language: passing tuples of arguments can
be modeled by passing an object that instantiates a class, defined in an ad-hoc way
by having as fields all the needed arguments. Finally, expressions e are variables,
constants, field accesses, method invocations and object creations.

In this work we assume that L̃ is well-defined, in the sense that “it is not possible
that a class A extends a class B and class B extends class A”, or “a constructor called
B cannot be declared in a class A” and other obvious rules like these. All these kinds
of checks could be carried out in the type system, but we prefer to assume them and
focus our attention on the new features of our framework. The same sanity checks are
assumed also in FJ [21].

To conclude, we want to remark that we could easily add the rnd construct of
CDuce to the syntax of our expressions. Precisely, rnd(α) returns a value of type α;
this could be used to model nondeterministic methods and, in particular, user inputs.
This addition would not change the theory we are going to develop.

3 Semantic Subtyping
Having defined the raw syntax, the next step is to introduce the typing rules, which

typically involve a subsumption rule that uses a notion of subtyping. It is therefore
necessary to define subtyping. As we have already said, in the semantic approach τ1
is a subtype of τ2 if all the τ1-values are also τ2-values, i.e., if the set of (well-typed)
values of type τ1 is a subset of the set of (well-typed) values of type τ2. However, in
this way, subtyping is defined by relying on the notion of well-typed values; hence, we
need the typing relation to determine typing judgements for values; but the typing rules
use the subtyping relation which we are going to define (in the so called ”subsumption”
rule). So, there is a circularity. To break this circle, we follow the path of [7] and adapt
it to our framework.

The idea is to first interpret types as subsets of some abstract “model” and then
establish subtyping as set-inclusion. By using this abstract notion of subtyping, we can
then define the typing rules. Having now a notion of well-typed values, we can define
the “real” interpretation of types as sets of values. This interpretation can be used to
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define another notion of subtyping. But if the abstract model is chosen carefully, then
the real subtyping relation coincides with the abstract one, and the circle is closed.

A model consists of a set D and an interpretation function J KD : T → P(D). Such
a function should interpret boolean connectives in the expected way (conjunction cor-
responds to intersection and negation corresponds to complement – see Definition 2)
and should capture the meaning of type constructors (see Definitions 3, 4 and 5). No-
tice that, given an intuitive meaning of types, there may be several models (defined in
Definition 6) that satisfy this requirement, and it is not guaranteed that they all induce
the same subtyping relation, nor that the induced subtyping is decidable. Aiming at a
decidable subtyping, we shall only consider models for which values are finite trees (as
defined in § 3.2).

Then, we only need one model that respects the intuitive meaning of type construc-
tors and boolean connectives, and whose values are finite trees. We shall construct such
a model in § 3.3 and call it the bootstrap model. Then, set inclusion in the bootstrap
model induces a (decidable) subtyping relation, τ1 ≤B τ2 ⇐⇒ Jτ1KB ⊆ Jτ2KB, to be
used for typing terms and breaking circularity.

3.1 Set-theoretic interpretations and models

First of all, any set-theoretic interpretation must respect the set-theoretic meaning
of the boolean constructors; this is formalized in the following definition.

Definition 2 (Set-theoretic interpretation). A set-theoretic interpretation of types in T
is given by a set D and a function J·K : T → P(D) such that, for any τ1, τ2, τ ∈ T , the
following hold:

J0K = ∅ Jτ1 ∧∧∧ τ2K = Jτ1K ∩ Jτ2K J¬¬¬τK = D \ JτK

Notice that the above definition implies Jτ1 ∨∨∨ τ2K = Jτ1K∪Jτ2K, Jτ1\\\τ2K = Jτ1K\Jτ2K
and J1K = D. Every set-theoretic interpretation J·K : T → P(D) induces a binary
relation ≤JK ⊆ T 2 defined as follows: τ1 ≤JK τ2 ⇐⇒ Jτ1K ⊆ Jτ2K. This relation
is the semantic subtyping relation. Thanks to negation, the problem of deciding the
subtyping between two types is reduced to the problem of identifying the empty sets,
that is: Jτ1K ⊆ Jτ2K⇐⇒ Jτ1K\Jτ2K = ∅⇐⇒ Jτ1K∩(D\Jτ2K) = ∅⇐⇒ Jτ1 ∧∧∧¬¬¬τ2K = ∅.

Next, we are going to define the requirements for a set-theoretic interpretation to
correctly represent the meaning of the type constructors. First, we require that, for
every basic type B, there is a set of values ValB (⊆ K) for that type. Conversely, we
also require that every sets of basic values correspond to a basic type. In particular,
for every constant c, there is a basic type Bc such that ValBc = {c}; so, the set of
constants that inhabit the basic type Bc is composed only by the singleton constant c.
For example, B1 is the type that contains only 1 as value. By using union, we can then
combine these types to obtain fine-grained type specification: e.g., B1 ∨∨∨ B2 ∨∨∨ B3 can
be used to declare that a field can only be assigned values 1, 2 or 3.

For a record type ρ = [l̃ : τ], the intuition is that it should represent all objects that,
in the field li, have values of type τi, and that may have other fields as well. Formally it
should be the set of relations R ⊆ L× D such that ∀d ∈ D ∀i .((li, d) ∈ R ⇒ d ∈ JτiK).
Also, the record type [a : 0] should be interpreted as the empty set, as our intuition
suggests that no object of this type can be instantiated. Thus we add the requirement
that dom(R) ⊇ {̃l}.

Definition 3. Given a record type [l̃ : τ], we define J[l̃ : τ]K as:

J[l̃ : τ]K = {R ⊆ (L × D) | dom(R) ⊇ {̃l} ∧ ∀d ∈ D ∀i .((li, d) ∈ R ⇒ d ∈ JτiK)}
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Now we move to arrow types. For a type α1 → α2, the intuition is that it should
represent the set of functions f such that ∀d ∈ D.(d ∈ Jα1K ⇒ f (d) ∈ Jα2K). We
consider binary relations instead of functions because this simplifies the equations sat-
isfied by the types and can be used also to model nondeterministic methods (this is
similar to [7]); such a feature would arise e.g. in an extension of the language with
side effects. Before defining the interpretation of an arrow type, we introduce the
notion of type error: it is not possible to invoke an arbitrary method on an arbitrary
argument. Said differently, this notion is used to avoid that the invocation of any well-
typed method on any well-typed argument, is itself well-typed. To assure this, we
will use Ω as a special element to denote this type error. So, we will interpret a type
α1 → α2 as the set of binary relations Q ⊆ D × DΩ (where DΩ = D ] {Ω}), such that
∀(q, q′) ∈ Q.(q ∈ Jα1K⇒ q′ ∈ Jα2K).

Definition 4. Let D be a set and X, Y subsets of D, then we define:

X → Y =
{
Q ⊆ D × DΩ | ∀(q, q′) ∈ Q.(q ∈ X ⇒ q′ ∈ Y)

}
Let us now show how Ω is needed to model this kind of type error. If we replace

DΩ with D in the definition above, then X → Y would always be a subset of D → D.
By applying Definition 4, D→ D is interpreted as the set of relations QD ⊆ D×D such
that ∀(q, q′) ∈ QD.(q ∈ D ⇒ q′ ∈ D). For every relation Q of X → Y with X,Y ⊆ D,
it is easy to see that for all pairs (q, q′) ∈ Q, it holds that q ∈ X ⊆ D ⇒ q′ ∈ Y ⊆ D.
Namely, every pair in Q belongs also to QD. This would imply that any arrow type
would be a subtype of 1 → 1. Then, by using the subsumption rule, the invocation
of any well-typed method on any well-typed argument would be well-typed, violating
the type-safety property of the calculus. With the definition given above, we have
X → Y ⊆ D→ D if and only if D ⊆ X, because of contra-variance of arrow types.

At this point, we can give the formal definition of an extensional interpretation
associated with a set-theoretic interpretation.

Definition 5 (Extensional interpretation). Let J·K : T → P(D) be a set-theoretic inter-
pretation of T . We define its associated extensional interpretation as the set-theoretic
interpretation E ( ) : T → P(ED) (where ED= K ]P(L×D)]P(D×DΩ)) such that:

E (B) = ValB ⊆ K

E
(
[l̃ : τ]

)
= J[l̃ : τ]K ⊆ P(L × D)

E (α1 → α2) = Jα1K→ Jα2K ⊆ P(D × DΩ)

For a set-theoretic interpretation J·K to be a model, we will require it to behave the
same way as its extensional interpretation, as far as subtyping is concerned.

Definition 6 (Model). A set-theoretic interpretation J·K : T → P(D) is a model if it
induces the same subtyping relation as its associated extensional interpretation:

∀τ1, τ2 ∈ T . Jτ1K ⊆ Jτ2K⇐⇒ E (τ1) ⊆ E (τ2)

The observation we have done before on the problem of emptiness permits us to
write the condition on types given in the definition of model as:

∀τ ∈ T . JτK = ∅⇐⇒ E (τ) = ∅

9



3.2 Well-founded model

Among all possible models, we focus our attention to those that capture a very
important property, namely that values are finite m-ary trees whose leaves are constants.
For example, let us consider the recursive type α = [a : α]. Intuitively, a value u has
this type if and only if it is an object new C(u′), where u′ has also type α; hence, u′

should be of the form new C(u′′), where u′′ has again type α; and so on. Thus, such
a value would be an infinite tree new C(new C(new C(· · · ))), that is excluded since
values are the result of some non diverging computation based on the strict call-by-
value evaluation strategy. Furthermore, notice that the syntax of our calculus rules out
a class declaration like

class C extends B {
C a;
C() {this.a = this; }

}

In particular, the form of constructors that we assume (the same as in [21]) requires a
value for every field of the class (see the comment to rule (class) from Table 1 later on)
and this is not the case here. Finally, since we are working with a functional fragment of
Java, no assignment will eventually assign this to a. As a consequence, values cannot
be cyclic (in the sense that they have pointers to themselves) and the type α = [a : α]
cannot not contain values. Clearly this does not imply that all recursive types are trivial.
In § 8.1 we will see that it is possible to satisfy the property we have just introduced
and still use recursive types, e.g., to create lists.

We now formalize the intuition above, i.e. that values are finite m-ary trees whose
leaves are constants.

Definition 7 (Structural interpretation). A set-theoretic interpretation J·K : T → P(D)
is structural if:

• P f (L × D) ⊆ D, where P f (·) denotes the finite powerset;

• for any τ̃, it holds that J[l̃ : τ]K ⊆ P f (L × D);

• the binary relation � on P f (L × D) × D defined as {(l1, d1) , . . . , (ln, dn)} � di,
for i ∈ {1, . . . , n}, does not admit infinite descending chains.

Definition 8 (Well-founded model). A model J·K : T → P(D) is well-founded if it
induces the same subtyping relation as a structural set-theoretic interpretation.

3.3 Bootstrap model

Now that we have all the necessary ingredients, we have to show that a well-
founded model exists, and use it as the bootstrap model. In order to achieve this, we
need some preliminary notions, which will also be used later on in our formal develop-
ment. As already mentioned earlier, there are three kinds of atomic types: basic types
(basic), record types (rec) and functional types (fun). We use Tbasic, Trec and Tfun for
basic, record and functional types, respectively. We use T to indicate the set of atomic
types and we let t range over this set. Then, T = Tbasic ] Trec ] Tfun.

Definition 9 (Finitely extensional interpretation). A set-theoretic interpretation J·K :
T → P(D) is finitely extensional if the following hold:

• D = E f D

10



• JtK = E(t) ∩ D, for every atomic type t.

where, for every set D, we let E f D be K ] P f (L × D) ] P f (D × DΩ) and P f is the
powerset of finite subsets.

By a simple induction on types, it is easy to prove that, in every finitely extensional
interpretation J·K : T → P(D), it holds that JτK = E(τ) ∩ D, for every type τ ∈ T . The
advantage of the above definition is that it easily permits us to construct a model, by
exploiting the following lemma.

Lemma 1. Every finitely extensional interpretation is a model.

Proof (Sketch). The proof follows the same lines as [7]. In order to show that a finitely
extensional interpretation is a model we need to identify the empty sets of a set-
theoretic interpretation and its associated extensional one. Namely, E(τ) = ∅ ⇐⇒
E(τ) ∩ D = ∅. The proof is completed by using a series of equivalences starting from
the predicate E(τ)∩D = ∅. The details of such equivalences are the same as in [7]. �

We are now ready to construct a structural and finitely extensional interpretation,
which will be used in the remainder of our work as the bootstrap model. To construct
such a model, let us define a setB such thatB = E fB. This means thatB is the solution
of the equationB = K]P f (L×B)]P f (B×BΩ), where again P f denotes the powerset
of finite subsets. Hence, by construction, it turns out that B is the set of finite terms
generated by the following grammar:

d ::= c | {(l, d) , · · · , (l, d)} |
{(

d, d′
)
, · · · ,

(
d, d′

)}
d′ ::= d | Ω

We now define a set-theoretic interpretation

JτKB = {d ∈ B | d : τ}

Here, judgement d′ : τ is inductively defined on the lexicographic order of the pairs
〈d′, τ〉, by exploiting the inductive structure of the elements of B and the induction
principle for types. Its defining clauses are the following ones (it is assumed to be false
in every non-depicted case):

c : B iff c ∈ ValB
{(l1, d1), · · · , (ln, dn)} : [l′1 : τ1, · · · , l′m : τn] iff {l′1, · · · , l

′
m} ⊆ {l1, · · · , ln} and

∀i, j.(li = l′j ⇒ di : τ j)
{(d1, d′1), · · · , (dn, d′n)} : α→ α′ iff ∀i. (di : α⇒ d′i : α′)

d : τ1 ∧∧∧ τ2 iff d : τ1 and d : τ2
d : ¬¬¬τ iff not d : τ

Notice that this induction is well-founded since d is finite and τ is well-formed.

Proposition 1. J KB is a structural and finitely extensional interpretation; thus, it is a
well-founded model.

Proof. The set-theoretic interpretation JτKB = {d ∈ B | d : τ} is constructed in a way
such that JτK = E(τ) ∩ B; this fact, together with B = E fB, entails that it is finitely
extensional (see Definition 9). Hence, by Lemma 1 it is a model. Moreover, it is easy
to see that it is structural, hence it is a well-founded model (see Definition 8). �
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4 The Type System
The type system for our language uses the subyping relation just defined to derive

typing judgements of the form Γ `B e : τ. In particular, this means to use ≤B in the
subsumption rule. In the following we just write ≤ instead of ≤B.

Let us assume a sequence of class declarations L̃. First of all, we have to determine
the (structural) type of every class C in L̃. To this aim, we have to take into account the
inheritance relation specified in the class declarations in L̃. We write “a ∈ C” to mean
that there is a field declaration of name a in class C within the hierarchy L̃. Similarly,
we write “a ∈ C with type α” to also specify the declared type α. Similar notations
also hold for method names m.

Definition 10.

• type(Object) = [ ];

• type(C) = ρ, provided that:

– C extends D in L̃;

– type(D) = ρ′;

– for any field name a

∗ if ρ′(a) is undefined and a < C, then ρ(a) is undefined;
∗ if ρ′(a) is undefined and a ∈ C with type α′′, then ρ(a) = α′′;
∗ if ρ′(a) is defined and a < C, then ρ(a) = ρ′(a);
∗ if ρ′(a) is defined, a ∈ C with type α′′ and α′′ ≤ ρ′(a), then ρ(a) = α′′.

We assume that all the fields defined in ρ′ and not declared in C appear at
the beginning of ρ, having the same order as in ρ′; the fields declared in C
then follow, respecting their declaration order in C.

– for any method name m:

∗ if ρ′(m) is undefined and m < C, then ρ(m) is undefined;
∗ if ρ′(m) is undefined and m ∈ C with type α → α′, then ρ(m) = α →
α′;

∗ if ρ′(m) is defined and m < C, then ρ(m) = ρ′(m);
∗ if ρ′(m) =

∧n
i=1 αi → α′i , m ∈ C with type α → α′ and

µ = α→ α′ ∧∧∧
∧n

i=1((αi \ α)→ α′i) ≤ ρ′(m), then ρ(m) = µ.

• type(C) is undefined, otherwise.

Definition 10 inductively defines the partial function type(C) on the class hierarchy
L̃ (of course this induction is well founded since L̃ is finite); when defined, it returns
a record type ρ. In particular, the type of a method is a boolean combination of arrow
types declared in the current and in the parent classes. This follows the same lines as
[7] in order to deal with habitability of types. The condition ρ(m) ≤ ρ′(m) imposed
in the method declaration is mandatory to assure that the type of C is a subtype of the
type of D; without such a condition, it would be possible to have a class whose type is
not a subtype of the parent class. If it were the case, type soundness would fail, as the
following example shows.
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Typing Expressions :

(subsum)
Γ ` e : α1 α1 ≤B α2

Γ ` e : α2
(const)

Γ ` c : Bc
(var)

Γ(x) = α

Γ ` x : α

(field)
Γ ` e : [a : α]

Γ ` e.a : α
(m-inv)

Γ ` e2 : [m : α1 → α2] Γ ` e1 : α1

Γ ` e2.m(e1) : α2

(new)
type(C) = [ã : α, m̃ : µ] Γ ` ẽ : α̃′ α̃′ ≤B α̃

α′ = [ã : α′, m̃ : µ]∧∧∧
∧

i∈I ¬[l̃i : τi] ; 0
Γ ` new C(̃e) : α′

Typing Method Declarations :

(m-decl)
x : α1, this : type(C) ` e : α2

`C α2 m (α1 x){return e}

Typing Class Declarations :

(class)
type(D) = [ã′ : α′, m̃ : µ] K = C(α̃′ x′, α̃ x){super(x̃′); t̃his.a = x̃} `C M̃

` class C extends D {α̃ a K M̃}

Typing Programs :

(prog)
` L̃ ` e : α

` (L̃, e)

Table 1: Typing rules

class C extends Object { class D extends C {
. . . . . .

real m(real x) {return x} compl m(int x) {return x ×
√
−1}

real F() {return this.m(3)} real G() {return this.F()}
} }

As usual int ≤ real ≤ compl. At run time, the function G returns a complex number,
instead of a real one. The example shows that, when the method m is overloaded, we
have to be sure that the return type is a subtype of the original type. Otherwise, due to
the dynamic instantiation of this, there may be a type error. A similar argument justifies
the condition α′′ ≤ ρ′(a) imposed for calculating function type for field names.

Let us now consider the typing rules given in Table 1. We assume Γ to be a typing
environment, i.e., a finite sequence of α-type assignments to variables. Most rules are
very intuitive. Rule (subsum) permits to derive for an expression e of type α1 also a
type α2, if α1 is a subtype of α2. Notice that, for the moment, the subtyping relation
used in this rule is the one induced by the bootstrap model. In rule (const), we assign
type Bc to the constant c; if c belongs to a larger basic type B, then by subsumption
we can also assign to c such a larger type. Rule (var) derives that x has type α, if x is
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assigned type α in Γ.
Rule (field) states that, if an expression e has type [a : α], we can access the field

a of e and the type of the expression e.a is α. Rule (m-inv) states that, if an expression
e2 is of type [m : α1 → α2] and an expression e1 is of type α1, we can invoke method
m of e2 with argument e1 and the type of the expression e2.m(e1) is α2. Notice that in
these two rules the record types are singletons, as it is enough that inside the record
type there is just the field or the method that we want to access or invoke. If the record
type is more specific (having other fields or methods), we can still get the singleton
record by using the subsumption rule. The rules m-inv models methods as invariant in
their arguments. This is not restrictive, as we can always use subsumption to promote
the type of the argument to match the declared type of the method.

For rule (new), an object creation can be typed by recording the actual type of the
arguments passed to the constructor, since we are confining ourselves to the functional
fragment of the language. Of course, if we move to the setting where fields can be
modified, it is unsound to record the actual type of the initial values, since during the
computation a field could be updated with values of its declared type. Moreover, like
in [7], we can extend the type of the object by adding any record type that cannot be
assigned to it, as long as this does not lead to a contradiction (i.e., a type semantically
equivalent to 0). This possibility of adding negative record types is not really necessary
for programming purposes: it is only needed to ensure that every non-zero type has at
least one value of that type. In particular, we want that the union of a type τ and its
negation ¬¬¬τ gives 1. For this to be the case we want that the union of the interpretation
of τ and the interpretation of ¬¬¬τ gives B. By adding the negative record types, rule
(new) permits us to have typing derivations also for types of the form¬¬¬τ. This property
guarantees that the interpretation of types as sets of values induces the same subtyping
relation as the bootstrap model and will be used when proving that the interpretation of
types as sets of values is a set-theoretic interpretation.

Finally, rule (m-decl) checks when a method declaration is acceptable for a class C;
this can only happen if type(C) is defined. Rules (class) and (prog) check when a class
declaration and a program are well-typed and are similar to the ones in FJ. In particular,
notice that rule (class) imposes that every field declared in the class and every field
inherited from the super-class has an assignment in the constructor: this comes from
the fact that the sequences of types α̃′ and α̃ in the constructor declaration are those
occurring in the type of the super-class and in the class declaration, respectively.

Similarly to [7, 10], the type checking relation is decidable.

5 Types as Sets of (Pseudo-)Values
Having defined the type system for our language, we are now ready to give an inter-

pretation of types as sets of values. To close the circle, the first thing to do is to define
values in our calculus. As usual, values are the results of (well-typed) computations,
given by a small step operational semantics that we are going to introduce in the next
section; so, values are those expressions that cannot be reduced further. Formally, they
are produced by the following grammar:

u ::= c | new C(̃u)

that is, values are constants or objects initialized by passing values to their constructor.
However, as the classes in L̃ are finite, with these values we are able to inhabit just

a finite number of record types. Also, since we have not higher-order values, the µ-
types would not be inhabited. This is a major technical difference w.r.t. [7]. In order to
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overcome this issue, we define pseudo-values, that are only used for interpreting types
and deciding the subtyping relation.

In order to define the set of pseudo-values in our calculus, we want to be indepen-
dent of the classes declared by a programmer in L̃. Hence, we assume that, for every
well-formed record type ρ, there exists a class name Cρ such that type(Cρ) is defined to
be ρ. It is important to also notice that in this way we inhabit only the “well-defined”
record types, that is only those that can instantiate (and create an object of) a class
corresponding to the record we are dealing with. For example, new C[a:0](·) does not
create any object, as no value of type 0 exists (thus, it is impossible to instantiate a
class of type [a : 0]).

In order to inhabit method types, we add to the syntax of values an abstraction
construct λ(m,ρ)x.e that intuitively specifies the argument x and the body e of a method
m in a record ρ (that will be inhabited through class Cρ).

Formally, pseudo-values are produced by the following grammar:

v ::= u | λ(m,ρ)x.e

Since abstractions are not part of our original syntax, we also need to add the following
typing rule for them:

µ =
∧

i∈I(αi → α′i)∧∧∧
∧

j∈J ¬¬¬
(
α̂ j → α̂′j

)
; 0

ρ(m) =
∧

i∈I(αi → α′i) ∀i ∈ I . Γ, x : αi ` e : α′i (abstr)
Γ ` λ(m,ρ)x.e : µ

Rule (abstr) states that an abstraction λ(m,ρ)x.e related to method m in the class
typed by ρ is of type µ, with µ =

∧
i∈I(αi → α′i)∧∧∧

∧
j∈J ¬¬¬

(
α̂ j → α̂′j

)
; 0. The positive

part of the conjunction in µ comes from the “real” types of method m given by the
function type(), whereas the negative part of the conjunction follows the same intuition
as the rule (new) given in the previous section.

It is worth noting that not all values and pseudo-values can be typed. For ex-
ample, there exists no type that can be assigned to new C[x:int](), new C[x:int](1, 2),
new C[x:int](“ f oo”), where C[x:int] is the name of a class with a field x of type int; a
similar situation arises for λ(m,[m:α→α])x.y, λ(m,[ ])x.x and λ(m,[m:int→string])x.x. Hence, in
what follows, we shall only consider typeable values and pseudo-values; in particular,
let V denote the set of typeable pseudo-values. Then, the interpretation of a type τ as
a set of pseudo-values is

JτKV = {v ∈ V | `B v : τ}

From now on, we shall simply call pseudo-values the typeable pseudo-values.

5.1 Closing the circle

As we already discussed, the bootstrap model J·KB induces the following subtyping
relation:

τ1 ≤B τ2 ⇐⇒ Jτ1KB ⊆ Jτ2KB
In the typing rules for our language, we used ≤B to derive typing judgements of the
form Γ `B e : τ. Similarly, the typing judgements for the language allow us to define
a new natural set-theoretic interpretation of types, the one based on (pseudo-)values
JτKV, and then a new (“real”) subtyping relation:

τ1 ≤V τ2 ⇐⇒ Jτ1KV ⊆ Jτ2KV
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(f-ax)
type(C) = [ã : α, m̃ : µ]

(new C(̃u)).ai → ui
(m-ax)

body(m, u,C) = λx.e

(new C(̃u)).m(u)→ e[u/x ,
new C(̃u)/this]

(m-red1)
e′ → e′′

e′.m(e)→ e′′.m(e)
(m-red2)

e′ → e′′

e.m(e′)→ e.m(e′′)
(f-red)

e→ e′

e.a→ e′.a

(n-red)
ei → e′i

new C(e1, . . . , ei, . . . , ek)→ new C(e1, . . . , e′i , . . . , ek)

Table 2: Operational semantics

The new relation ≤V might in principle be different from ≤B. However, since the
definitions of the model, of the language and of the typing rules have been carefully
chosen, the two subtyping relations coincide, as Theorem 1 shows. Because of this
result, from now on we shall be sloppy and avoid the subscripts B andV in `B, ≤B and
≤V; we shall simply write ` and ≤.

Theorem 1. The bootstrap model J·KB induces the same subtyping relation as J·KV.

The proof of this theorem is the main technical challenge in every paper on seman-
tic subtyping. It requires a lot of work that, partly, mimics what is done, e.g., in [7].
All details adapted to our framework are in the Appendix.

6 The Operational Semantics
The operational semantics for our language is defined through the reduction rules in

Table 2; these are essentially the same as in FJ. There are only two notable differences:
we do not need to define an ad-hoc function to extract the fields of an object, but we
simply use function type already defined; function body also depends on the (type of
the) method argument, necessary for finding the appropriate declaration when we have
multimethods.

We fix the set of class declarations L̃ and define the operational semantics as a
binary relation on the expressions of the calculus e → e′, called reduction relation.
The axiom for field access (f-ax) states that, if we try to access the i-th field of an
object, we just return the i-th argument passed to the constructor of that object. We
have used the premise type(C) = [ã : α, m̃ : µ] as we want all the fields of the object
instantiating class C: function type(C) provides them in the right order (i.e., the order in
which the constructor of class C expects them to be). The axiom for method invocation
(m-ax) tries to match the argument of a method in the current class and, if a proper type
match is not found, it looks up in the hierarchy; these tasks are carried out by function
body, whose definition is the following (the cases must be considered in order):

body(m, u,C) =


λx.e if C contains α′m(α x){return e} and ` u : α,
body(m, u,D) if C extends D in L̃,
UNDEF otherwise.

Function body(m, u,C) controls whether method m is declared in class C and if argu-
ment u passed to m has the appropriate type, viz. the type of the formal argument of the
method. Otherwise, the parent class of C is checked. If method look-up does not give
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any result, function body(m, u,C) is not defined. Notice that method resolution is per-
formed at runtime, by keeping into account the dynamic type of the argument; hence,
multimethods are supported, differently from what happens in Java, where overloading
resolution is performed at compile time by keeping into account the static type of the
argument. We choose the first way because, in our view, is more intuitive. A more
traditional modelling of overloading is possible and easy to model.

Moreover, as already noted in § 2.1, we use simplified multimethods, where at
most one declaration for every method name is present in every class. This simpli-
fies the definition of functions body and type. However, richer forms of multimethods
can be assumed in our framework, at the price of complicating the definitions of such
functions. In particular, function body can be rendered in the general setting by follow-
ing [35]. In our view, a better alternative is the encoding of the more general setting
provided in § 8.2.

To complete the definition of the operational semantics, we need the structural rules
(f-red), (m-red1), (m-red2) and (n-red), to transform the target of a method invocation
or of a field access into a value.

7 Soundness of the Type System
Theorem 1 does not automatically imply that the definitions put forward in § 3,

4 and 5 are “valid” in any formal sense, only that they are mutually coherent. To
complete the theoretical treatment, we need to check type soundness, stated by the
following theorems. We proceed in the standard way, by stating the theorems of subject
reduction and progress, that can be proved by exploiting a few auxiliary lemmata.

Lemma 2. If D is an ancestor of C in the class hierarchy, then type(C) ≤ type(D).

Proof. By induction on the distance between C and D. The base case is trivial. For
the inductive case, we have that C extends C′ that has D as one of its ancestors. By
inductive hypothesis, type(C′) ≤ type(D); thus, it suffices to prove that type(C) ≤
type(C′). This easily follows from the definition of function type. �

Lemma 3 (Strengthening). Let Γ1 and Γ2 by type environments, such that dom(Γ1) ⊆
dom(Γ2) and, for every x ∈ dom(Γ1) : Γ2(x) ≤ Γ1(x). If Γ1 ` e : α then Γ2 ` e : α.

Proof. By induction on the derivation tree for Γ1 ` e : α. �

Lemma 4 (Substitution). If Γ ` e : α, with Γ = Γ′, x : α′ and Γ′ ` e′ : α′, then
Γ′ ` e[e′/x] : α.

Proof. By induction on the structure of e. For the base case, let us first assume that
e = x; in this case, the thesis trivially follows by the facts that α = α′ and e[e′/x] = e′.
On the contrary, if e , x, then e[e′/x] = e and the thesis holds. For the inductive step,
let us consider the possible forms of e:

e = e′′.a: by the typing rule for field access, we have that Γ ` e′′ : [a : α]. By inductive
hypothesis, Γ′ ` e′′[e′/x] : [a : α] and hence Γ′ ` (e′′.a)[e′/x] : α, since a , x.

e = e1.m(e2): by the typing rule for method invocation, we have that Γ ` e1 : [m : α̂→
α] and Γ ` e2 : α̂. By inductive hypothesis, Γ′ ` e1[e′/x] : [m : α̂ → α] and
Γ′ ` e2[e′/x] : α̂; hence Γ′ ` (e1.m(e2))[e′/x] : α, since m , x.

e = new C(̃e): by the typing rule for object creation, we have that type(C) =

[ã : α, m̃ : µ], Γ ` ẽ : α̃′, for α̃′ ≤ α̃, and α = [ã : α′, m̃ : µ] ∧
∧

i ¬[l̃i : τi] ; 0.
By inductive hypothesis, Γ′ ` ẽ[e′/x] : α̃′; hence Γ′ ` (new C(̃e))[e′/x] : α, since
C , x.
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Theorem 2 (Subject reduction). If ` e : α and e→ e′, then ` e′ : α.

Proof. The proof is by induction on the derivation for e→ e′. There are the following
base cases.

• e = (new C(̃u)).a and e′ = ui, where type(C) = [ã : α, m̃ : µ] and a = ai. By
the typing rule for field access, we have that ` new C(̃u) : [a : α]. By the
typing rule for new, ` new C(̃u) : [ã : α′, m̃ : µ] ∧

∧
j ¬[l̃ j : τ j], for α̃′ ≤ α̃. By

subsumption, the two typing judgements for new C(̃u) are compatible only if
[ã : α′, m̃ : µ] ∧

∧
j ¬[l̃ j : τ j] ≤ [a : α], i.e., α′i ≤ α. Thus, ` e′ : α′i and, again by

subsumption, ` e′ : α, as desired.

• e = (new C(̃u)).m(u) and e′ = e′′[u/x ,
new C(̃u)/this], where body(m, u,C) = λx.e′′.

Since e is typeable, it must be that ` new C(̃u) : [m : α̂ → α] and ` u : α̂.
The first typing judgement entails that ` new C(̃u) : α′, for [m : α̂ → α] ≥
α′ = [ã : α′′, m̃ : µ] ∧

∧
j ¬[l̃ j : τ j] ; 0; moreover, type(C) = [ã : α′, m̃ : µ] and

` ũ : α̃′′, for α̃′′ ≤ α̃′. Second, let C = D0 extends D1 extends . . . extends Dn =

Ob ject be the path in the class hierarchy from C to Ob ject, for some n ≥ 0. Now,
body(m, u,C) = λx.e′′ entails that there exists i ∈ {0, . . . , n − 1} such that Di

contains the method definition αi m(α̂i x){return e′′}, for ` u : α̂i; moreover, Di

is the class closest to C in the hierarchy that satisfies this fact. By typeability, it
holds that `Di αi m(α̂i x){return e′′} and, hence, x : α̂i, this : type(Di) ` e′′ : αi.
Since α′ ≤ type(C), by Lemma 2 and by Lemma 4 applied to this and to x, we
have that ` e′′[u/x,

new C(̃u)/this] : αi. To conclude, it suffices to show that αi ≤ α.
This fact holds because α′ ≤ [m : α̂ → α] and the µ for m contains the conjunct
(α̂i \ α̂i−1) \ · · · \ α̂0 → αi, where α̂ j → α j is the type declared for m in D j.

For the inductive step, we reason by case analysis on the last rule used in the inference.
We have four possible cases.

• e = e1.a, e1 → e2 and e′ = e2.a. By the typing rule for field access, ` e1 : [a : α],
for some α, and, by induction, ` e2 : [a : α]. Again by the typing rule for field
access, ` e′ : α.

• e = e1.m(u), e1 → e2 and e′ = e2.m(u). By the typing rule for method invocation,
` e1 : [m : α̂ → α] and ` u : α̂. By induction, ` e2 : [m : α̂ → α]. Again by the
typing rule for method invocation, ` e′ : α.

• e = e0.m(e1), e1 → e2 and e′ = e0.m(e2). By the typing rule for method invoca-
tion, ` e0 : [m : α̂→ α] and ` e1 : α̂. By induction, ` e2 : α̂. Again by the typing
rule for method invocation, ` e′ : α.

• e = new C(e1, . . . , ei, . . . , ek), ei → e′i and e′ = new C(e1, . . . , e′i , . . . , ek). By the
typing rule for new, ` ei : αi. By induction, ` e′i : αi. Again by the typing rule
for new, ` e′ : α. �

Theorem 3 (Progress). If ` e : α and e is a closed expression, then e is a value or there
exists e′ such that e→ e′.
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Proof. The proof is by induction on the structure of e. Since e is closed, the only
possible base case is when e is a basic value, and in this case the claim trivially holds.
For the inductive step, we reason by case analysis on the form of e.

• e = e0.a. By the typing rule for field access, ` e0 : [a : α]; by induction, either
e0 is a value (and in this case it must be e0 = new C(̃u), for some C and ũ) or
e0 → e′0, for some e′0. In the second case, we easily conclude that e → e′, by
letting e′ = e′0.a. In the first case, by the typing rule for new, ` new C(̃u) :
[ã : α′, m̃ : µ]∧

∧
j ¬[l̃ j : τ j], where type(C) = [ã : α, m̃ : µ], ` ũ : α̃′ and α̃′ ≤ α̃.

Moreover, [ã : α′, m̃ : µ] ∧
∧

j ¬[l̃ j : τ j] ≤ [a : α] implies that there exists i such
that a = ai; thus, e→ e′, where e′ = ui.

• e = e0.m(e1). By the typing rule for method invocation, ` e0 : [m : α̂ → α].
Like in the previous case, the interesting part is when e0 is a value (in particular,
e0 = new C(̃u), for some C and ũ); with a similar reasoning, we can say that
type(C) = [ã : α, m̃ : µ], that ` ũ : α̃′ for α̃′ ≤ α̃, that ` e1 : α̂ and m = mi, for
some i.

Let us first consider the case when e1 is not a value. By induction, there exists a
e′1 such that e1 → e′1; hence, e→ e′, by letting e′ = e0.m(e′1).

So, let us now assume that e1 = u. By definition of function type, it must be that
µi = (α̂0 → α0)∧

∧n
i=1(α̂i\α̂0 → αi) ≤

∧n
i=1(α̂i → αi) = α′(m), where C extends

D in L̃ and type(D) = α′. Also, by subtyping, µi ≤ α̂ → α. It now suffices to
prove that body(m, u,C) = λx.e′′, for some e′′ and x. First, notice that C cannot
be Ob ject, otherwise ` e : α could not hold for any α. Then, we work by a
second induction over the distance between D and Ob ject in the class hierarchy
defined by L̃. The base case is when D is Ob ject: then, α′i(m) = α̂0 → α0

and, hence, α̂ ≤ α̂0. By subsumption, ` u : α̂0 and hence body(m, u,C) =

λx.e′′, where C contains the method declaration α0 m(α̂0 x){return e′′}. For the
inductive step, if α′(m) = 0 → 1, we work like in the case when D = Ob ject;
otherwise, by (second) induction, we know that body(m, u,D) = λx.e′′. If C does
not contain any declaration for method m, this suffices to conclude; otherwise, let
α0 m(α̂0 x){return e′′′} be such a declaration. If ` u : α̂0, then body(m, u,D) =

λx.e′′′; otherwise, body(m, u,D) = λx.e′′. This suffices to conclude.

• e = new C(̃e). If ẽ is a sequence of values, then e is a value. Otherwise, there is
an i such that ei is not a value; by induction, we have that ei → e′i and hence we
conclude by letting e′ = new C(e1, . . . , e′i , . . . , ek). �

8 Discussion on the calculus
8.1 Recursive class definitions

It is possible to write recursive class definitions by assuming a special basic value
null and a corresponding basic type unit, having null as its only value. In Java, it is
assumed that null belongs to every class type; here, because of the complex types we
are working with (mainly, because of negations), this assumption is not valid. This,
however, enables us to specify when a field can/cannot be null; this is similar to what
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happens in database systems. In particular, lists of integers can now be defined as:

LintList = class intList extends Object {
int val;
(α∨∨∨ unit) succ;
intList (int x, (α∨∨∨ unit) y){this.val = x; this.succ = y}
. . .

}

where α is the regular tree representing the solution of the recursive type equation

α = [val : int, succ : (α∨∨∨ unit)]

Now, we can create the list 〈1, 2〉 as the value new intList(1,new intList(2,null)).

8.2 Implementing Standard Multimethods

Usually in object oriented languages, multimethods can be defined within a single
class. For simplicity, we have defined a language where at most one definition can be
given for a method name in a class. It is however possible to partially encode multi-
methods by adding one auxiliary subclass for every method definition. For instance,
suppose we want to define a multimethod m twice within class A:

class A extends B {
. . .
α1 m (α′1 x){return e1}

α2 m (α′2 x){return e2}

}

We then replace it with the following declarations:

class A1 extends B { class A extends A1 {
. . . α2 m (α′2 x){return e2}

α1 m (α′1 x){return e1} }

}

Introducing subclasses is something that must be done with care. Indeed, it is
not guaranteed, in general, that the restrictions for the definition of function type (see
Definition 10) are always satisfied. So, in principle, the encoding described above could
turn a class hierarchy where the function type is well-defined into a hierarchy where it is
not. However, this situation never arises if different bodies of a multimethod are defined
for inputs of mutually disjoint types, as we normally do. Also, it is not difficult to add
to the language a typecase construct, similar to the one of CDuce, that would allow
more expressivity. We did not pursue this approach in the present paper to simplify the
presentation.

8.3 Implementing Typical Java-like Constructs

We now briefly show how we can implement in our framework traditional pro-
gramming constructs like if-then-else, (a structural form of) instanceof and exceptions.
Other constructs, like sequential composition and loops, can also be defined.
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The expression if e then e1 else e2 can be implemented by adding to the program
the class definition (using the standard multimethods described in §8.2):

class Test extends Object {
α m ({true} x){return e1}

α m ({false} x){return e2}

}

where {true} and {false} are the singleton types containing only values true and false,
respectively, and α is the type of e1 and e2. Then, if e then e1 else e2 can be sim-
ulated by (new Test()).m(e). Notice that this term typechecks, since test has type
[m : ({true} → α)∧∧∧ ({false} → α)] ' [m : ({true} ∨∨∨ {false}) → α] ' [m : bool → α].
Indeed, in [7] it is proved that (α1 → α) ∧∧∧ (α2 → α) ' (α1 ∨∨∨ α2) → α and, trivially,
{true} ∨∨∨ {false} ' bool.

The construct e instanceof α checks whether e is typeable at α and can be imple-
mented in a way similar to the if-then-else:

class InstOf extends Object {
bool mα1 (α1 x){return true}
bool mα1 (¬¬¬α1 x){return false}
· · ·

bool mαk (αk x){return true}
bool mαk (¬¬¬αk x){return false}

}

where α1, . . . , αk are the types occurring as arguments of an instanceof in the program.
Then, e instanceof α can be simulated by (new InstOf ()).mα(e).

Finally, try e catch(α x) e′ evaluates e and, if an exception of type α is raised during
the evaluation, expression e′ is evaluated. First of all, we assume that every exception
is an object of a subclass of class Exception that, in turn, extends Object. Second, every
method that can raise an exception of type α must specify this fact in the return type
(this resembles the use of the throws keyword in Java); in particular, if m’s type is
α1 → α2 and it can raise exceptions of type α, it should be declared as

(α∨∨∨ α2) m(α1 x){. . .}

Indeed, every statement throw e within m will be translated in our framework as
return e. Third, we can translate try e catch(α x) e′ as

let x = e in (if (x instanceof α) then e′ else x)

Here, we assume a standard construct let y = e1 in e2; it can be implemented in our
framework as

this.let(e1)

once we have added to the class the method

α2 let(α1 y){return e2}

where α1 and α2 are the types of e1 and e2, respectively.
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8.4 Nominal subtyping vs. Structural subtyping

Semantic subtyping is a powerful typing discipline, but explicitly annotating pro-
grams with structural types could be too cumbersome for programmers Thus, we can
introduce aliases. We could write

L′intList = class intList extends Object {
int val;
(intList ∨ unit) succ;
intList (int x, (intList ∨ unit) y){this.val = x; this.succ = y}
. . .

}

instead of LintList in § 8.1. Any sequence of class declarations written in this extended
syntax can be then compiled into the standard syntax in two steps:

• First, extract from the sequence of class declarations a system of (mutually re-
cursive) type declarations; in doing this, every class name should be considered
as a type identifier. Then, solve such a system of equations.

• Second, replace every occurrence of every class name occurring in a type posi-
tion (i.e., not in a class header nor as the name of a constructor) with the corre-
sponding solution of the system.

For example, the system of equations (actually, made up of only one equation) asso-
ciated with L′intList is intList = [val : int, succ : (intList ∨ unit)]; if we assume that α
denotes the solution of such an equation, the class declaration resulting at the end of
the compilation is exactly LintList in § 8.1.

But nominal types can be more powerful than just shorthands. When using struc-
tural subtyping, we can interchangeably use two different classes having the very same
structure but different names. However, there can be programming scenarios where
also the name of the class (and not only its structure) could be needed. A typical exam-
ple is the use of exceptions, where one usually extends class Exception without chang-
ing its structure. In such cases, nominal subtyping can be used to enforce a stricter
discipline. Another sensible use of nominal types is for expressing design intent. Here,
the classical example is

class Shape {boolean draw()} class Cowboy {boolean draw()}

where the two classes have different semantics even though equal structural types, and
freely mixing Cowboy and Shape objects would not be semantically correct.

We can integrate this form of nominal subtyping in our semantic framework. To
do that, we add to each class a hidden field that represents all the nominal hierarchy
that can be generated by that class. If we want to be nominal, we will consider also
this hidden field while checking subtyping. In practice, the (semantic) ‘nominal’ type
of a class is the set of qualified names of all its subclasses; this will enable us to say
that C is a ‘nominal’ subtype of D if and only if C’s subclasses form a subset of D’s
ones. Notice that working with subsets is the key feature of our semantic approach to
subtyping. This is the reason why we need types as sets and, e.g., cannot simply add to
objects a field with the class they are instance of.

Let us denote with CN the (countable) set of class names. An element of CN∗ can
be thought of as a partially qualified name of a class – fully qualified if it starts with
Object. We consider now sets of qualified names, ranged over by X,Y,Z. They will
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be used as types, the subtyping being defined as set inclusion. For each class C, we
consider the type

XC =


s1 = C0 . . .Ck & k ≥ 0 & C0 = Object & Ck = C

s1s2 ∈ CN∗ : & ∀ i ∈ {0, . . . , k − 1}.Ci+1 extends Ci

& s2 ∈ (CN \ {C0, . . . ,Ck})∗


Following the above intuition, XC contains the fully qualified class names of all the
potential subclasses of C. Finally, we choose a special reserved name name that can-
not occur in the program. This will be the name of the “hidden” nominal field. For
example, take a standard example of Java inheritance, where class Object is extended
by class Point that is in turn extended by classes ColPoint, of coloured points, and Ge-
omPoint, of geometrical points. We can say, e.g., that the third class is a (nominal)
subtype of the second one by noting that:

XPoint = {Object.Point,
Object.Point.ColPoint,

Object.Point.ColPoint.Pixel,
. . .

Object.Point.ColPoint.3DPoint,
. . .

. . . ,

Object.Point.GeomPoint,
Object.Point.GeomPoint.Circle,
. . .

Object.Point.GeomPoint.Line,
. . .

. . . ,

. . .

}

XColPoint = {Object.Point.ColPoint,
Object.Point.ColPoint.Pixel,
. . .

Object.Point.ColPoint.3DPoint,
. . .

. . .

}

Indeed, XColPoint ⊆ XPoint.
Now, given a sequence of class declarations L̃, we denote with (L̃)name the sequence

obtained by adding to every class declaration for class C in L̃ the field declaration

XC name

It is easy to verify the following desirable facts

• C is a sub-class of D if and only if type(L̃)name (C) ≤ type(L̃)name (D);

• For every C, it holds that type(L̃)name (C) ≤ typeL̃(C);

• If typeL̃(C) ' typeL̃(D) but C , D, then type(L̃)name (C) , type(L̃)name (D).

where the subscript to the function type specifies the declarations in which the function
is calculated.
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By the way, notice that here we are working with infinite sets. But these sets have
always a finite representation that makes the subtyping still decidable. Indeed, every
set XC can be represented by the fully qualified name of C and C is a sub-class of D if
and only if XD is a prefix of XC .

It remains to describe how we can use nominal subtyping in place of the structural
one. We propose two ways. In declaring a class or a field, or in the return type of a
method, we could add the keyword nominal, to indicate to the compiler that nominal
subtyping should always be used with it. However, the only place where subtyping is
used is in function body, i.e. when deciding which body of an overloaded method we
have to activate on a given sequence of actual values. Therefore, we could be even
more flexible, and use the keyword nominal in method declarations, to specify which
method arguments have to be checked nominally and which ones structurally. For
example, consider the following class declaration:

class A extends Object { . . .
int m (C x, nominal C y){ return 0; }

}

Here, every invocation of method m will check the type of the first argument struc-
turally and the type of the second one nominally. This is a mechanism akin to the
notion of brand in Strongtalk [36]. Thus, if we consider the following class declara-
tions

class C extends Object { } class D extends Object { }

the expressions
(new A()).m(new C(),new C())

(new A()).m(new D(),new C())

(new A()).m(new Object(),new C())

typecheck, whereas

(new A()).m(new C(),new D()) (new A()).m(new C(),new Object())

do not.
In practice, for each sequence of class declarations L̃, the compiler will build the

types both for L̃ and for (L̃)name, and will decide which one to use according the pres-
ence or not of the keyword nominal.

9 Conclusions and Future Work
We have presented a Java-like programming framework that integrates structural

subtyping, boolean connectives and semantic subtyping to exploit and combine the
benefits of such approaches. There is still work to do in this research line.

This paper lays out the foundations for a concrete implementation of our frame-
work. First of all, a concrete implementation calls for algorithms to decide the subtyp-
ing relation; then, decidability of subtyping is exploited to define a typechecking algo-
rithm for our type system. This can be achieved by adding algorithms similar to those
in [7]. These are intermediate steps towards a prototype programming environment
where writing and evaluating the performances of code written in the new formalism.
Of course, extending a real language as Java with structural types and multi-methods is
far from being a simple task: this would imply major modifications of the Java Virtual
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Machine (which is quite a complex architecture) and would pose non trivial efficiency
and legacy code issues. Our present paper lays the foundations of the typing mech-
anisms, but deliberately neglects many other important problems that would arise in
practice when trying to implement the proposed extension.

Another direction for future research is the enhancement of the language consid-
ered. For example, one can consider the extension of FJ with assignments; this is an
important aspect because mutable values are crucial for modeling the heap, a key fea-
ture in object oriented programming. We think that having a state would complicate
the issue of typing, because of the difference between the declared and the actual type
of an object. Some ideas on how to implement the mutable state can come from the
choices made in the implementation of CDuce.

Another possibility for enhancing the language is the introduction of higher-order
values, in the same vein as the Scala programming language [37]; since the framework
of [7] is designed for a higher-order language, the theoretical machinery developed
therein should be adaptable to the new formalism.
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Appendix: Technical Proofs for Closing the Circle
The appendix is fully devoted to prove the main theoretical result of this paper,

namely Theorem 1. To this aim, we first give the definition of disjunctive normal form
(DNF), which gives us a systematic and uniform way of writing types; this will then
facilitate the presentation of our theoretical development. Then, we show that J·KV
is a set-theoretic interpretation; this fact will allow us to use standard set-theoretic
equalities when working with such an interpretation. Finally, using these notions and
results, we shall prove that ≤V = ≤B.

A Disjunctive Normal Forms for Types
A disjunctive normal form is based on the notion of atomic types, which are the

most basic form of types. Recall from §3.3 that there are three kinds of atomic types
Tbasic, Trec and Tfun such that T = Tbasic ]Trec ]Tfun. In order for a disjunctive normal
form to be useful, we rely on the fact that every type can be decomposed as a disjunctive
normal form and, conversely, that every disjunctive normal form corresponds to one
precise type.

Definition 11. A disjunctive normal form δ is a finite set of pairs of finite sets of atoms,
namely an element of P f

(
P f (T) × P f (T)

)
.

Next, we give the definition of the set-theoretic interpretation of a disjunctive nor-
mal form δ.

Definition 12. If J·K : T → P(D) is an arbitrary set-theoretic interpretation and δ a
disjunctive normal form, we define JδK as:

JδK =
⋃

(P,N)∈δ

⋂
t∈P

JtK ∩
⋂
t∈N

(
D \ JtK

)
The set-theoretic interpretation separates the “positive” (P) and the “negative” (N)

parts of the disjunctive normal form δ. By using standard set-theoretic equalities, we
obtain: ⋃

(P,N)∈δ

⋂
t∈P

JtK ∩
⋂
t∈N

(
D \ JtK

) =
⋃

(P,N)∈δ

⋂
t∈P

JtK ∩
⋂
t∈N

JtK

 =

=
⋃

(P,N)∈δ

⋂
t∈P

JtK ∩
⋃
t∈N

JtK

 =
⋃

(P,N)∈δ

⋂
t∈P

JtK \
⋃
t∈N

JtK


In what follows, we shall usually use the latter expression for JδK. Since an empty
intersection is D and an empty union is ∅, we have that JδK ⊆ D.

By following [7], we can prove, by construction, that for each τ ∈ T , it is possible
to compute a disjunctive normal form N (τ) such that JτK = JN (τ)K, for every set-
theoretic interpretation J·K. In order to construct the disjunctive normal formN (τ), we
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associate with function N a second function N ′, both mutually defined as follows:

N(0) = ∅

N(t) = {({t},∅)}
N(τ1 ∧∧∧ τ2) = N(τ1) ∩ N(τ2)
N(¬¬¬τ) = N ′(τ)

N ′(0) = {(∅,∅)}
N ′(t) = {(∅, {t})}

N ′(τ1 ∧∧∧ τ2) = {(P1 ∩ P2,N1 ∩ N2) | (P1,N1) ∈ N ′(τ1), (P2,N2) ∈ N ′(τ2)}
N ′(¬¬¬τ) = N(τ)

It can be checked by induction over τ that JτK = JN(τ)K = D \ JN ′(τ)K.
Note that the inverse is also true: for every disjunctive normal form δ, there is a type

τ such that JτK = JδK, for every set-theoretic interpretation J·K: it suffices to consider∨
(P,N)∈δ

(∧
t∈P t \

∨
t∈N t

)
. Hence, from now on we will interchangeably use the notions

of type and disjunctive normal form.

B Types as Sets of Pseudo-Values
In this section we focus on the interpretation of types as sets of pseudo-values and

we will show that this interpretation is set-theoretic. We state that a (pseudo-)value v
and an atomic type t are compatible if they are of the same kind.

We will use the bootstrap model constructed in § 3.3, namely J·KB : T → P(B), and
we write ≤ to indicate the subtyping relation induced by this model. Similarly, we write
' to denote the corresponding equivalence relation, namely τ1 ' τ2 ⇐⇒ Jτ1KB ⊆ Jτ2KB
and Jτ2KB ⊆ Jτ1KB.

Lemma 5. J0KV = ∅.

Proof. It suffices to prove that ` v : τ =⇒ τ ; 0, for every pseudo-value v. We reason
by case analysis on v. The cases to consider are when v is a constant, an object creation
or an abstraction; in all cases the result trivially follows. �

Lemma 6. If τ1 ≤ τ2 then Jτ1KV ⊆ Jτ2KV. Thus, if τ1 ' τ2 then Jτ1KV = Jτ2KV.

Proof. Follows immediately by the subsumption rule. �

Lemma 7. Jτ1 ∧∧∧ τ2KV = Jτ1KV ∩ Jτ2KV.

Proof. By Lemma 6, we have that Jτ1 ∧∧∧ τ2KV ⊆ JτiKV, for i ∈ {1, 2}; this imples that
Jτ1 ∧∧∧ τ2KV ⊆ Jτ1KV ∩ Jτ2KV.

For the opposite inclusion, first observe that, if Jτ1KV ∩ Jτ2KV = ∅, then the inclu-
sion trivially holds. So, let us assume that there exists v ∈ Jτ1KV ∩ Jτ2KV, i.e., ` v : τ1
and ` v : τ2. Without loss of generality, we can assume that such type derivations both
end with an instance of (const)/(new)/(abstr) followed by an instance of (subsum) (such
an instance may also be useless, in the sense that it assigns the type in the premise also
to the conclusion). We now reason on the possible kind of v:

v = c: In this case, the only possible typing axiom used to type c is (const) and it states
that ` c : Bc; hence, the only way to infer τ1 and τ2 for c is when Bc ≤ τ1 and
Bc ≤ τ2, i.e., Bc ≤ τ1 ∧∧∧ τ2. Hence, ` v : τ1 ∧∧∧ τ2, as desired.
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v = new C(̃u): Here, the typing rule used is (new), with type(C) = [ã : α, m̃ : µ], Γ `

ũ : α̃′, for α̃′ ≤ α̃, and

α′1 = [ã : α′, m̃ : µ] ∧∧∧
∧

i=1...n

¬[l̃i : τi] ; 0

α′2 = [ã : α′, m̃ : µ] ∧∧∧
∧

i=n+1...n′
¬[l̃i : τi] ; 0

Moreover, α′1 ≤ τ1 and α′2 ≤ τ2. Let us now define α′ as follows:

α′ = [ã : α′, m̃ : µ] ∧∧∧
∧

i=1...n′
¬[l̃i : τi]

Trivially, α′ ' α′1 ∧∧∧ α
′
2 ; 0 and α′1 ∧∧∧ α

′
2 ≤ τ1 ∧∧∧ τ2. We can now use rules (new)

and (subsum) to deduce ` new C(̃u) : τ1 ∧∧∧ τ2.

v = λ(m,ρ)x.e: Similarly, the typing rule used is (abstr), with ρ(m) =
∧

i∈I(αi → α′i),
x : αi ` e : α′i , for all i ∈ I, and

µ1 =
∧

i∈{1,...,n}

(αi → α′i) ∧∧∧
∧

j∈{n+1,...,m}

¬(α j → α′j) ; 0

µ2 =
∧

i∈{1,...,n}

(αi → α′i) ∧∧∧
∧

j∈{m+1,...,h}

¬(α j → α′j) ; 0

Moreover, µ1 ≤ τ1 and µ2 ≤ τ2. Let us now define µ as follows:

µ =
∧

i∈{1,...,n}

(αi → α′i) ∧∧∧
∧

j∈{n+1,...,h}

¬(α j → α′j)

Trivially, µ ' µ1 ∧∧∧ µ2 ; 0 and µ1 ∧∧∧ µ2 ≤ τ1 ∧∧∧ τ2; by rule (abstr) and (subsum),
` λ(m,ρ)x.e : τ1 ∧∧∧ τ2. �

Lemma 8. J¬¬¬τKV = V \ JτKV.

Proof. Trivially, we have τ ∧∧∧ ¬¬¬τ ' 0; by Lemma 7, 6 and 5, JτKV ∩ J¬¬¬τKV =

Jτ∧∧∧¬¬¬τKV = J0KV = ∅. It then remains to prove that JτKV ∪ J¬¬¬τKV = V, i.e.

∀v ∈ V. (` v : τ) or (` v : ¬¬¬τ)

To this aim, let us define Tv = {τ ∈ T | ` v : τ or ` v : ¬¬¬τ}. If we now prove
that Tv = T , for every v ∈ V, we have done. Indeed, for every v ∈ V, it holds that
τ ∈ T = Tv and this may hold either because ` v : τ or because ` v : ¬¬¬τ.

Trivially, Tv is closed under ¬¬¬. Moreover, by (subsum), ` v : 1 = ¬¬¬0 and hence
0 ∈ Tv. Now, let τ1 and τ2 belong to Tv. If ` v : τ1 ∨∨∨ τ2, then trivially τ1 ∨∨∨ τ2 ∈ Tv.
Otherwise, by (subsum), 0 v : τ1 and 0 v : τ2. Since τ1 and τ2 belong to Tv, then ` v :
¬¬¬τ1 and ` v : ¬¬¬τ2. Then, Lemma 7 entails ` v : ¬¬¬τ1∧∧∧¬¬¬τ2 and¬¬¬τ1∧∧∧¬¬¬τ2 ' ¬¬¬(τ1 ∨∨∨ τ2).
By Lemma 6, ` v : ¬¬¬(τ1 ∨∨∨ τ2); so, ¬¬¬(τ1 ∨∨∨ τ2) ∈ Tv. By closure under ¬¬¬, this entails
that τ1 ∨∨∨ τ2 ∈ Tv. Finally, closure under ∧∧∧ easily follows from closure under ¬¬¬ and ∨∨∨.

We now show that Tv = T , i.e., that, for every τ ∈ T , it holds that τ ∈ Tv. For what
we have just shown, we can only consider the case when τ is an atomic type t. There
are two cases to consider:
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1. Let us first assume that v and t are not compatible and prove that ` v : ¬¬¬t. Since
v ∈ V, it is typeable and, hence, there exists a type derivation for v. Without
loss of generality, such a derivation ends with a (possible useless) instance of
(subsum) preceded by an instance of (const)/(new)/(abstr), according to the kind
of v; the latter yields ` v : τ′. By definition of the typing rules, τ′ is

• a basic type, if v is a constant;

• a record type in conjunction with some negated record types, if v is an
object creation;

• a conjunction of arrow types and of negated arrow types, if v is an abstrac-
tion.

In the first case, Jτ′KB ⊆ K . Since t is not compatible with v, it cannot be a
basic type; hence, JtKB ⊆ B \ K . Thus, J¬¬¬tKB ⊇ K and, consequently, τ′ ≤ ¬¬¬t.
By (subsum), we easily conclude that ` v : ¬¬¬t. In the second and third case,
we reason in a similar way but we replace K with P f (L × B) and P f (B × BΩ),
respectively.

2. Let us then assume that v and t are compatible and reason on the kind of v:

v = c: by (const), ` c : Bc. By definition, E (Bc) = ValBc = {c}; hence, Bc ≤ t or
Bc ≤ ¬¬¬t, according to whether c ∈ E (t) or not. By rule (subsum), ` c : t or
` c : ¬¬¬t.

v = new C(̃u): in this case, t = [ã : α, m̃ : µ]. By rule (new) and (subsum), `
v : t if type(C) ≤ [ã : α, m̃ : µ] (indeed, since v belongs to V, it must
be typeable and, hence, ` ũ : α̃′, where α̃′ is the sequence of types of
the fields in C). Otherwise, since type(C) � [ã : α, m̃ : µ], we have that
type(C) ∧∧∧ ¬¬¬[ã : α, m̃ : µ] ; 0. Hence, we can use the latter type in (abstr)
and then (subsum) to infer that ` v : ¬¬¬t.

v = λ(m,ρ)x.e: in this case, t = α → α′. By rule (abstr) and (subsum), ` v : t if
ρ(m) =

∧
i∈I(αi → α′i) ≤ α → α′ (indeed, since v belongs toV, it must be

typeable and, hence, for all i ∈ I, it holds that x : αi ` e : α′i). Otherwise,
we reason like in the previous case with type

∧
i∈I(αi → α′i)∧∧∧¬¬¬(α→ α′).�

Lemma 9. Jτ1 ∨∨∨ τ2KV = Jτ1KV ∪ Jτ2KV.

Proof. By Lemma 8, 7 and 6, we have that Jτ1 ∨∨∨ τ2KV = J¬¬¬((¬¬¬τ1)∧∧∧ (¬¬¬τ2))KV = V \

(J¬¬¬τ1KV ∩ J¬¬¬τ2KV) = V \ ((V \ Jτ1KV)∩ (V \ Jτ2KV)) = V \ (V \ (Jτ1KV ∪ Jτ2KV)) =

Jτ1KV ∪ Jτ2KV. �

Proposition 2. J·KV is a set-theoretic interpretation.

Proof. By Lemma 5, 7 and 8. �

C Closing the Circle
We are now ready to prove Theorem 1. To this aim, we first need a preliminary

technical Lemma on the bootstrap model.
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Lemma 10. Let d = {(l′1 : d1), . . . , (l′n : dn)} ∈
q∧

ρ∈P ρ \
∨
ρ∈N ρ

y
. Then,

d ∈

t

[l′1 :
∧
ρ∈P

(ρ ↑ l′1) \
∨
ρ∈N

(ρ ↓ l′1) , · · · , l′n :
∧
ρ∈P

(ρ ↑ l′n) \
∨
ρ∈N

(ρ ↓ l′n)]

|

where

ρ ↑ l =

{
ρ(l) if l ∈ dom(ρ)
1 otherwise ρ ↓ l =

{
ρ(l) if l ∈ dom(ρ) ⊆ {l′1, . . . , l

′
n}

0 otherwise

and dom(ρ) denotes {l1, . . . , lm} whenever ρ = [l1 : τ1, . . . , lm : τm].

Proof. Because the bootstrap model is set-theoretic (see Prop. 1), we have that
t∧
ρ∈P

ρ \
∨
ρ∈N

ρ

|

=
⋂
ρ∈P

JρK \
⋃
ρ∈N

JρK

and hence

• for all ρ ∈ P, it holds that d ∈ JρK; and

• for all ρ ∈ N, it holds that d < JρK.

From the first item, d ∈ JρK if and only if dom(ρ) ⊆ {l′1, . . . , l
′
n}, and, for all l ∈

dom(ρ), it holds that di ∈ Jρ(l)K, where l′i = l. Thus, for every i = 1, . . . , n, we have that

di ∈
⋂

ρ∈P : l′i ∈ dom(ρ)

Jρ(l′i)K =
⋂
ρ∈P

Jρ ↑ l′iK =

t∧
ρ∈P

(ρ ↑ l′i)

|

Similarly, from the second item, d < JρK if and only if either dom(ρ) * {l′1, . . . , l
′
n}

or there exists l ∈ dom(ρ) such that l′i = l but di < Jρ(l)K. Thus, for every i = 1, . . . , n,
we have that

di <
⋃

ρ∈N : l′i ∈ dom(ρ)⊆ {l′1,...,l
′
n}

Jρ(l′i)K =
⋃
ρ∈N

Jρ ↓ l′iK =

t∨
ρ∈N

(ρ ↓ l′i)

|

So, we have proved that di ∈ J
∧
ρ∈P(ρ ↑ l′i) \

∨
ρ∈N(ρ ↓ l′i)K, for every i = 1, . . . , n.

This entails the thesis. �

Notice that, in the definition of ρ ↑ l, the condition dom(ρ) ⊆ {l′1, . . . , l
′
n} would be

redundant, since it follows by the fact that ρ ∈ P and d ∈
⋂
ρ∈P JρK. By contrast, there

may be a ρ ∈ N such that dom(ρ) * {l′1, . . . , l
′
n} (and this is the reason for d not being

in JρK) but with some l′i ∈ dom(ρ). We cannot consider such a ρ in the overall union
for di because, in principle, it could be di ∈ Jρ(l′i)K. This is the reason for having the
condition dom(ρ) ⊆ {l′1, . . . , l

′
n} in the latter union of the proof and, consequently, in the

definition of ρ ↓ l.
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Proof of Theorem 1 It suffices to prove, for every τ, that

JτKV = ∅⇐⇒ JτK = ∅

Indeed, τ1 ≤ τ2 if and only if Jτ1K ⊆ Jτ2K and this holds if and only if Jτ1K \ Jτ2K =

Jτ1\\\τ2K = ∅. And similarly for J·KV and ≤V, thanks to Proposition 2.

(⇐) Because of Proposition 1, we have that JτK = ∅ if and only if τ ' 0. Thus, we can
easily conclude by Lemmata 6 and 5.

(⇒) We prove the contrapositive, i.e.

d ∈ JτK =⇒ JτKV , ∅

The proof is by structural induction on d ∈ D. Notice that this induction can be done
because the bootstrap model is structural (see Proposition 1); indeed, by using the �
relation, we have that the induction is mathematically well-founded.

We have three cases for d, viz. whether it belongs to K , to P f (B × BΩ) or to
P f (L × B):

1. d ∈ K : then d ∈ ValB, for some B; hence, E (Bd) = {d} ⊆ E (τ) that implies
Bd ≤ τ (because J·K is well-founded); moreover, ` d : Bd, by rule (const). We
can conclude that ` d : τ, by using rule (subsum). Hence, d ∈ JτKV.

2. d ∈ P f (B × BΩ): then, d = {(d1, d′1), · · · , (dn, d′n)}, and it belongs to the set

JτK ∩ P f (B × BΩ) =
⋃

(P,N)∈N(τ)

P f (B × BΩ) ∩

⋂
t∈P

JtK \
⋃
t∈N

JtK


Thus, we can write

τ =
∨

(P,N)∈N(τ)

τ(P,N)

where, for every pair (P,N) ∈ N(τ), we have that P = {α1 → α′1, . . . , αn → α′n},
N ∩ Tfun = {αn+1 → α′n+1, . . . , αm → α′m} and

τ(P,N) =

 ∧
i=1...n

αi → α′i

 \\\
 ∨

j=n+1...m

α j → α′j


Hence, there exists τ(P,N) ; 0, since by hypothesis τ ; 0. Moreover, JτKV =⋃

(P,N)∈N(τ) Jτ(P,N)KV. To conclude the desired JτKV , ∅, it suffices to prove that
Jτ(P,N)KV , ∅. Since τ(P,N) ; 0, by rule (abstr) we can conclude if we find a
proper λ(m,ρ)x.e such that ρ(m) =

∧
i=1,..,n(αi → α′i), and, for all i = 1, .., n, it

holds that x : αi ` e : α′i . It can be easily verified that a possible choice is to have
ρ = [m :

∧
i=1,..,n(αi → α′i)] and e = (new Cρ).m(x); indeed,

∧
i=1,..,n(αi → α′i) '

(
∨

i=1,..,n αi)→ (
∧

i=1,..,n α
′
i).

3. d ∈ P f (L × B): thus, d = {(l′1, d1), . . . ,
(
l′n, dn

)
}, and it belongs to the set

JτK ∩ P f (L × B) =
⋃

(P,N)∈N(τ)

P f (L × B) ∩

⋂
t∈P

JtK \
⋃
t∈N

JtK


Hence, we can find a pair (P,N) ∈ N(τ) such that d ∈ P f (L × B) ∩(⋂

t∈P JtK \
⋃

t∈N JtK
)
. Notice that, if t is an atom different from a record type,
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then P f (L × B) ∩ JtK = ∅ (recall that J·K is structural). Thus, it suffices to
consider P ⊆ Trec; so, we have

d ∈
⋂
ρ∈P

JρK \
⋃
ρ∈N

JρK

Because of Lemma 10, {(l′1, d1), . . . , (l′n, dn)} ∈ J[l′1 : τ1, . . . , l′n : τn]K, where
τi =

∧
ρ∈P(ρ ↑ l′i) \

∨
ρ∈N(ρ ↓ l′i). By definition of the bootstrap model,

this means that, for every i = 1, . . . , n, it holds that di ∈ JτiK. We can now
use the inductive hypothesis applied to the latter judgements and obtain that
Jτ1KV , ∅, . . . , JτnKV , ∅; consequently, also J[l′1 : τ1, . . . , l′n : τn]K

V
, ∅.

To conclude, we use Lemma 9 and obtain that J[l′1 : τ1, . . . , l′n : τn]K
V
⊆ JτKV,

because τ is a disjunction of types (
⋃

(P,N)∈N(τ)) and we took one of its disjuncts
(P,N). �
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