
Comparing Type Systems for Deadlock Freedom

Ornela Dardhaa, Jorge A. Pérezb

aSchool of Computing Science, University of Glasgow, UK
bUniversity of Groningen, The Netherlands

Abstract

Message-passing software systems exhibit non-trivial forms of concurrency and distribution; they are
expected to follow intended protocols among communicating services, but also to never “get stuck”.
This intuitive requirement has been expressed by liveness properties such as progress or (dead)lock
freedom and various type systems ensure these properties for concurrent processes. Unfortunately,
very little is known about the precise relationship between these type systems and the classes of
typed processes they induce.

This paper puts forward the first comparative study of different type systems for message-
passing processes that guarantee deadlock freedom. We compare two classes of deadlock-free typed
processes, here denoted L and K. The class L stands out for its canonicity: it results from Curry-
Howard interpretations of classical linear logic propositions as session types. The class K, obtained
by encoding session types into Kobayashi’s linear types with usages, includes processes not typable
in other type systems. We show that L is strictly included in K, and identify the precise conditions
under which they coincide. We also provide two type-preserving translations of processes in K into
processes in L.

Keywords: Concurrency, process calculi, linear types, session types, deadlock freedom, linear
logic.

1. Introduction

In this paper, we formally relate different type systems for concurrent processes specified in the
π-calculus [MPW92]. A fundamental model of computation, the π-calculus stands out for its expres-
siveness, which enables us to represent and reason about message-passing programs in functional,
object-oriented, and distributed paradigms [SW01]. Another distinctive aspect of the π-calculus is
its support for rich type systems that discipline process behavior [San02]. Following Milner’s semi-
nal work on sorting [Mil91], various type systems for the π-calculus have revealed a rich landscape
of models for concurrency with disciplined communication; examples include graph types [Yos96],
linear types [KPT96], generic types [IK04], and session types [Hon93, THK94, HVK98]. In the
last decade, logical foundations for message-passing concurrency, in the style of Curry-Howard
correspondence (“propositions as types”) between linear logic and session types, have been put
forward [CP10, Wad12]. By disciplining the use of channels, types for message-passing processes
strongly influence their expressiveness. Contrasting different type systems through the classes of
well-typed processes that they induce is a central theme in this work.

Our interest is in session-based concurrency, the model of concurrency captured by session types.
Session types promote a type-based approach to communication correctness: dialogues between

Preprint submitted to Elsevier September 7, 2021

participants are structured into sessions, basic communication units; descriptions of interaction
sequences are then abstracted as session types which are checked against process specifications.
In session-based concurrency, types enforce correct communications through different safety and
liveness properties. Two basic (and intertwined) correctness properties are communication safety
and session fidelity : while the former ensures absence of errors (e.g., communication mismatches),
the latter ensures that well-typed processes respect the protocols prescribed by session types.

A very desirable liveness property for safe processes is that they should never “get stuck”. This
is the well-known progress property, which asserts that a well-typed term either is a final value or
can further reduce [Pie02]. In calculi for concurrency, this property admits several formalizations;
two of them are deadlock freedom and lock freedom. Intuitively, deadlock freedom ensures that
communications will eventually succeed unless the whole process diverges [Kob06]; lock freedom
is a stronger property: it guarantees that communications will eventually succeed, regardless of
whether processes diverge, modulo some fairness assumption on the scheduler [Kob02a]. Notice
that in the absence of divergent behaviors, deadlock freedom and lock freedom coincide.

Another formalization, which we call here session progress, has been proposed for session-based
concurrency [CD10, CDM14]: “a process has session progress if combined with another process
providing the corresponding co-actions (a so-called catalyzer), then the composition reduces”. We
will say that a process is composable if it can be composed with an appropriate catalyzer for some
of its actions, or uncomposable otherwise. Carbone et al. [CDM14] proved that session progress and
(dead)lock freedom coincide for uncomposable processes; for composable processes, session progress
states potential (dead)lock freedom. We will return to this informal distinction between composable
and uncomposable processes below (Definition 2.2 will make it formal).

There is a vast literature on type systems for which typability enforces (dead)lock freedom or
session progress—see, e.g.,[Kob02a, Kob06, DdY08, CD10, CP10, CPT16, Pad13, VV13, Pad14,
GKL14, KL17, DG18, BTP19]. Unfortunately, these sophisticated systems rely on different princi-
ples and/or consider different variants of the (session) π-calculus. Also, different papers sometimes
use different terminology and notions. As a result, very little is known about the relationship be-
tween these type systems. These observations led us to our research questions: How do the type
systems for liveness properties relate to each other? What classes of deadlock-free processes do they
induce?

This paper presents the first formal comparison between different type systems for the π-calculus
that enforce liveness properties related to (dead)lock freedom. More concretely, we tackle the above
open questions by comparing L and K, two salient classes of deadlock-free (session) typed processes:

• The class L contains session processes that are well-typed under the Curry-Howard correspon-
dence between (classical) linear logic propositions and session types [CP10, CPT16, Wad12].
This suffices, because the type system derived from such a correspondence simultaneously
ensures communication safety, session fidelity, and deadlock freedom.

• The class K contains session processes that enjoy communication safety and session fidelity
(as ensured by the type system of Vasconcelos [Vas12]) as well as satisfy deadlock freedom.
This class of processes is defined indirectly, by combining Kobayashi’s type system based on
usages [Kob02a, Kob06, Kob07] with encodability results by Dardha et al. [DGS12].

Let us clarify the nature of processes in L and K. As Definition 4.4 formally states, processes in L
and K are typed under some typing context, possibly non empty. As such, these classes contain both
composable processes (if the typing context is not empty) and uncomposable processes (otherwise).

2

Thus, strictly speaking, processes in L and K have session progress (as described above), which
is strictly weaker than deadlock freedom, because a process satisfying session progress does not
necessarily satisfy deadlock freedom. This is trivially true for composable processes, which need
a catalyzer [CDM14]. However, since we shall focus on uncomposable processes, for which session
progress and deadlock freedom coincide, we shall refer to L and K as classes of deadlock-free
processes.

There are good reasons for investigating L and K. On one hand, due to its deep logical foun-
dation, the class L appears to us as the canonical class of deadlock-free session processes, upon
which all other classes should be compared. Indeed, this class arguably offers the most principled
yardstick for comparisons. On the other hand, the class K integrates session type checking with
the sophisticated usage discipline developed by Kobayashi for π-calculus processes. This indirect
approach to deadlock freedom, developed in [CDM14, Dar16], is general: it can capture sessions
with subtyping, polymorphism, and higher-order communication. Also, as discussed in [CDM14],
K strictly includes classes of session typed processes induced by other type systems for deadlock
freedom [DdY08, CD10, Pad13].

Contributions

This paper contributes technical results that, on the one hand, separate the classes L and K by
precisely characterizing the fundamental differences between them and, on the other hand, unify
these classes by showing how their differences can be overcome to translate processes in K into
processes into L. More in details:

• To separate L from K, we define µK: a sub-class of K whose definition internalizes the
key aspects of the Curry-Howard interpretations of session types. In particular, µK adopts
the principle of “composition plus hiding”, a distinguishing feature of the interpretations
in [CP10, Wad12], by which concurrent cooperation is restricted to the sharing of exactly one
session channel.

We show that L and µK coincide (Theorem 4.1). This gives us a separation result: there
are deadlock-free session processes that cannot be typed by systems derived from the Curry-
Howard interpretation of session types [CP10, CPT16, Wad12], but that are admitted as
typable by the (indirect) approach of [CDM14, Dar16].

• To unify L and K, we define two translations of processes in K into processes in L (Defini-
tion 5.4). Intuitively, because the difference between L and K lies in the forms of parallel
composition they admit (restricted in L, liberal in K), it is natural to transform a process
in K into another, more parallel process in L. In essence, the first translation, denoted L·M
(Definition 5.4), exploits type information to replace sequential prefixes with representative
parallel components; the second translation refines this idea by considering value dependencies,
i.e., causal dependencies between independent sessions not captured by types. We detail the
first translation, which satisfies type-preservation and operational correspondence properties
(Theorems 5.1 and 5.2).

Our separation result is significant as it establishes the precise status of logically motivated
systems with respect to previous disciplines, not based on Curry-Howard principles. It also provides
a new characterization for linear logic-based processes, leveraging a very different type system for
deadlock freedom [Kob06]. Also, our unifying result is insightful because it shows that the differences

3

between the two classes of processes manifest themselves rather subtly at the level of process syntax,
and can be eliminated by appropriately exploiting information at the level of types.

To further illustrate these salient points, consider the process

P , (νxy)(νwz)(x(s).w〈s〉 | y〈n〉.z(u))

where, following the syntax of the type system of Vasconcelos [Vas12], we use the restriction (νxy)
to indicate that x and y are the two endpoints of the same channel (and similarly for (νwz)). Also,
n denotes a terminated channel. Process P belongs to the class K. It consists of two processes
in parallel, each implementing two separate sessions in sequence; as such, P does not respect the
monolithic structure imposed by “composition plus hiding”. Our separation result is that P falls
outside µK, the strict sub-class of K that adheres to “composition plus hiding”. Now, process P
has an operationally equivalent cousin, the process

Q , (νxy)(νwz)(x(s).w〈s〉 | y〈n〉 | z(u))

which is structurally equivalent to one that is more parallel and respects “composition plus hiding”:

Q ≡ (νwz)((νxy)(x(s).w〈s〉 | y〈n〉) | z(u))

Our unifying result is that all processes in K but outside of µK have these kind of more paral-
lel, operationally equivalent cousins, which respect the “composition plus hiding” principle that
characterizes class L.

To our knowledge, our work is the first to formally compare fundamentally distinct type sys-
tems for deadlock freedom in message-passing processes. Previous comparisons by Carbone et
al. [CDM14] and Caires et al. [CPT16, §6], are informal: they are based on representative “corner
cases”, namely examples of deadlock-free session processes typable in one system but not in some
other.

Figure 1 summarizes the different type systems and ingredients needed to define K and L.

Paper Organization

In § 2 we summarize the session π-calculus and the type system of [Vas12]. In § 3 we present
the two typed approaches to deadlock freedom for sessions. § 4 defines the classes L and K, the
strict sub-class µK, and shows that L = µK (Theorem 4.1). § 5 presents our first translation of
K into L and establishes its correctness properties. The optimization with value dependencies is
discussed in §5.3. Enforcing deadlock freedom by typing is already challenging for processes without
constructs such as recursion or replication. For this reason, here we concentrate on finite processes;
in §6 we discuss the case of processes with unbounded behavior (with constructs such as replication
and recursion) and connections with other logical interpretations of session types. §7 compares with
related works and § 8 collects some concluding remarks. Omitted technical details are included in
the appendices.

This paper is a revised version of the workshop paper [DP15], extended with new material: we
present full technical details and additional examples not presented in [DP15]. Also, we present
updated comparisons with related works. The separation result based on the coincidence with the
sub-class µK, given in §4, is new. Moreover, the first translation, presented in [DP15] and given in
§ 5, has been substantially simplified and its correctness properties have been refined. The content
of § 6 is also original to this presentation.

4

JP K` `LL JΓK`
DF: Theorem 3.2

L

Γ `ST P [Vas12]

P

JΓKfu `
µ
≺ JP Kfu

µK
JΓKfu `≺ JP Kfu

DF: Corollary 3.2

K

Thm. 4.1

Definition 5.4:
Translation L·M

Figure 9: J·K` (processes)

Definition 4.2: J·K` (contexts)

Figure 7: J·Kfu (processes)

Definition 3.11: J·Kfu (contexts)

Figure 1: Summary of type systems, languages with deadlock freedom (DF), and encodings between them (indicated
by solid black arrows). Main results are denoted by green lines: our separation result, based on the coincidence of L
and µK is indicated by the solid line with reversed arrowheads; our unifying result is indicated by the dashed arrow.

2. Session π-calculus

We present the session π-calculus and its corresponding type system: the linear fragment of
the type system by Vasconcelos [Vas12], which ensures communication safety and session fidelity
(but not progress nor deadlock freedom). Below we follow the definitions and results from [Vas12],
pointing out differences where appropriate.

2.1. Process Model

Let P,Q, . . . range over processes, x, y, . . . over channel names (or session endpoints), and
v, v′, . . . over values; for simplicity, the sets of values and channels coincide. In examples, we
use n to denote a terminated channel that cannot be further used.

We briefly comment on the syntax of processes, given in Figure 2 (upper part). The main differ-
ence with respect to the syntax in [Vas12] is that we do not consider boolean values nor conditional
processes (if-then-else). Process x〈v〉.P denotes the output of v along x, with continuation P . Du-
ally, process x(y).P denotes an input along x with continuation P , with y denoting a placeholder.
Rather than the non-deterministic choice of the untyped π-calculus [MPW92], the session π-calculus
includes operators for (deterministic) internal and external labelled choices, denoted x / lj .P and
x . {li : Pi}i∈I , respectively. Process x / lj .P uses x to select lj from a labelled choice process
x . {li : Pi}i∈I , so as to trigger Pj ; labels are indexed by the finite set I and are pairwise distinct.
We also have the inactive process (denoted 0), the parallel composition of P and Q (denoted P | Q),
and the double restriction operator, noted (νxy)P : the intention is that x and y denote dual session
endpoints with scope P . We omit 0 whenever possible and write, e.g., x〈n〉 instead of x〈n〉.0. We
will write P to denote the session π-calculus processes generated by the grammar in Figure 2.

Notions of free and bound names in processes are exactly as in [Vas12]. That is, name y is
bound in x(y).P and names x and y are bound in (νxy)P . A name that does not occur bound
within a process is said to be free; the set of free names of P is denoted fn(P). We write P [v/z] to

5

P,Q ::= x〈v〉.P (output) | 0 (inaction)

| x(y).P (input) | P | Q (composition)

| x / lj .P (selection) | (νxy)P (session restriction)

| x . {li : Pi}i∈I (branching)

v ::= x (channel)

(R-Com) (νxy)(x〈v〉.P | y(z).Q)→ (νxy)(P | Q[v/z])

(R-Case) (νxy)(x / lj .P | y . {li : Pi}i∈I)→ (νxy)(P | Pj) j ∈ I
(R-Par) P → Q =⇒ P | R→ Q | R
(R-Res) P → Q =⇒ (νxy)P → (νxy)Q

(R-Str) P ≡ P ′, P → Q, Q′ ≡ Q =⇒ P ′ → Q′

Figure 2: The session π-calculus: syntax (top) and semantics (bottom).

denote the (capture-avoiding) substitution of free occurrences of z in P with v. Finally, we follow
Barendregt’s variable convention, whereby all names in binding occurrences in any mathematical
context are pairwise distinct and also distinct from the free names.

The operational semantics is given in terms of a reduction relation, noted P → Q, and defined
by the rules in Figure 2 (lower part). Reduction relies on a standard notion of structural congruence,
noted ≡, defined by the following axioms:

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P
(νxy)P | Q ≡ (νxy)(P | Q) (νxy)0 ≡ 0 (νwx)(νyz)P ≡ (νyz)(νwx)P

Key rules in Figure 2 are (R-Com) and (R-Case), denoting the interaction of output/input prefixes
and selection/branching constructs, respectively. Observe that interaction involves prefixes with
different channels (endpoints), and always occurs in the context of an outermost double restriction.
Rules (R-Par), (R-Res), and (R-Str) are standard [Vas12]. We write →∗ to denote the reflexive,
transitive closure of →.

2.2. Type System

The syntax of session types, ranged over T, S, . . ., is given by the following grammar.

T, S ::= ?T.S | !T.S | &{li : Si}i∈I | ⊕ {li : Si}i∈I | end

The type ?T.S is assigned to an endpoint that first receives a value of type T and then continues
according to the protocol described by S. Dually, type !T.S is assigned to an endpoint that first
outputs a value of type T and then continues according to the protocol described by S. Type
&{li : Si}i∈I is used for external choices, and generalises input types; dually, type ⊕{li : Si}i∈I is
used for internal choices, and generalises output types. Finally, end is the type of an endpoint with
a terminated protocol. Notice that session types describe protocols as sequences of actions; they
do not admit parallel operators.

6

(T-Nil)

un(Γ)

Γ `ST 0

(T-Par)

Γ1 `ST P Γ2 `ST Q
Γ1,Γ2 `ST P | Q

(T-Res)

Γ, x : T, y : T `ST P
Γ `ST (νxy)P

(T-In)

Γ, x : S, y : T `ST P
Γ, x : ?T.S `ST x(y).P

(T-Out)

Γ, x : S `ST P
Γ, x : !T.S, y : T `ST x〈y〉.P

(T-Brch)

Γ, x : Si `ST Pi ∀i ∈ I
Γ, x : &{li : Si}i∈I `ST x . {li : Pi}i∈I

(T-Sel)

Γ, x : Sj `ST P ∃j ∈ I
Γ, x : ⊕{li : Si}i∈I `ST x / lj .P

Figure 3: Typing rules for the session π-calculus.

With respect to the syntax of types in [Vas12], we only consider channel endpoint types (no
ground types such as bool). Also, types in the system in [Vas12] can be qualified as either linear
or unrestricted. Our session types are linear—the only unrestricted session type is end. Focusing
on linear types suffices for our purposes, and leads to simplifications in typing rules and auxiliary
notions, such as well-formedness (see below).

A central notion in session-based concurrency is duality, which relates session types offering
opposite (i.e., complementary) behaviors; it stands at the basis of communication safety and session
fidelity. Given a session type T , its dual type T is defined as follows:

end , end

!T.S , ?T.S

?T.S , !T.S

⊕{li : Si}i∈I , &{li : Si}i∈I
&{li : Si}i∈I , ⊕{li : Si}i∈I

Typing contexts, ranged over by Γ,Γ′, are produced by the following grammar:

Γ,Γ′ ::= ∅ | Γ, x : T

where ‘∅’ denotes the empty context. We standardly require the variables appearing in a context
to be pairwise distinct. It is often convenient to treat typing contexts as sets of typing assignments
x : T . This way, e.g., we write x : T ∈ Γ if Γ = Γ′, x : T , for some Γ′. We write un(Γ) if and only
if x : T ∈ Γ implies T = end. We sometimes write Γun to indicate that un(Γ). Given a context Γ
and a process P , a session typing judgment is of the form Γ `ST P . If Γ is empty, we write `ST P .

Typing rules are given in Figure 3. Rule (T-Nil) states that 0 is only well-typed under a fully
terminated context. Rule (T-Par) types the parallel composition of two processes by composing
their corresponding typing contexts.1 Rule (T-Res) types a restricted process by requiring that the

1In the presence of unrestricted types, as given in [Vas12], Rule (T-Par) requires a splitting operator, noted ◦
in [Vas12]. However, since we consider only linear session types, the ◦ operator boils down to ‘,’.

7

two endpoints have dual types. Rules (T-In) and (T-Out) type the receiving and sending of a value
over a channel x, respectively. Finally, Rules (T-Brch) and (T-Sel) are generalizations of input and
output over a labelled set of processes.

The main guarantees of the type system in [Vas12] are communication safety and session fidelity,
i.e., typed processes respect their ascribed protocols, as represented by session types. We have the
following results:

Theorem 2.1 (Strengthening – Lemma 7.3 in [Vas12]). Let Γ `ST P and x 6∈ fn(P). If Γ = Γ′, x : T
then Γ′ `ST P .

Theorem 2.2 (Preservation for ≡ – Lemma 7.4 in [Vas12]). If Γ `ST P and P ≡ Q, then Γ `ST Q.

Theorem 2.3 (Preservation – Theorem 7.2 in [Vas12]). If Γ `ST P and P → Q, then Γ `ST Q.

Following [Vas12], we say that processes of the form x〈v〉.P , x(z).Q, x/ lj .P , and x.{li : Pi}i∈I
are prefixed at x. We call redexes processes of the form x〈v〉.P | y(z).Q and x/lj .P | y .{li : Pi}i∈I .
The following notion of well-formed processes, a specialization of the definition in [Vas12], is key to
single out meaningful typed processes:

Definition 2.1 (Well-Formedness). A process is well-formed if for each of its structural congruent
processes of the form (νx1y1) . . . (νxnyn)(P | Q | R) the following condition holds.

• If P is prefixed at x1 and Q is prefixed at y1 then P | Q is a redex.

We have the following result:

Theorem 2.4 (Safety – Theorem 7.3 in [Vas12]). If `ST P then P is well-formed.

Therefore, if `ST P and P reduces to Q in zero or more steps, then Q is well-formed; this is
Theorem 7.1 in [Vas12].

We close by introducing some useful terminology:

Definition 2.2 ((Un)Composable Processes). Let Γ `ST P . If Γ is empty, we say that P is
uncomposable; otherwise, if Γ is non-empty, we say P is composable.

We use the adjectives composable and uncomposable to distinguish typable processes depending
on their associated typing context. Note that the adjectives open and closed have their usual
meaning, associated to the free names of a process, possibly untyped. As an example, process 0 is
a closed process that can be typed under a non-empty typing context, and so it is composable.

2.3. Deadlock Freedom

As already motivated, a desirable liveness property for session π-calculus processes is that they
should never “get stuck”. Unfortunately, the session type system given in [Vas12] (and summa-
rized above) does not exclude deadlocked processes. Intuitively, this is because typed processes
may contain cyclic causal dependencies enforced by communication prefixes in processes but not
described by their session types. Indeed, a particularly insidious class of deadlocks is due to cyclic
interleaving of channels in processes, as illustrated by following example.

Example 2.1 (A Deadlocked Process). Process P , (νxy)(νwz)(x〈n〉.w〈n〉 | z(t).y(s)) represents
the implementation of two independent sessions, xy and wz, which get intertwined (blocked) due
to the nesting induced by input and output prefixes. Process P is well-typed in [Vas12] under
n : end `ST P , even if P is unable to reduce.

8

Below we define deadlock freedom in the session π-calculus by following [KL17, Def. 5.2]:

Definition 2.3 (Deadlock Freedom). A process P is deadlock-free if the following condition holds:
whenever P →∗ P ′ and one of the following holds

• P ′ ≡ (νx̃y)(x〈v〉.Q1 | Q2)

• P ′ ≡ (νx̃y)(x(y).Q1 | Q2)

• P ′ ≡ (νx̃y)(x / lj .Q1 | Q2)

• P ′ ≡ (νx̃y)(x . {li : Pi}i∈I | Q)

then there exists R such that P ′ → R.

Remark 1 (Defining Deadlock Freedom). Definition 2.3 is closely related to the definition of
deadlock and deadlock freedom in [Kob02a] (Definition 2.4), which states that a process P is in
deadlock if it reaches one of the first two items stated in Definition 2.3 and cannot reduce from
there. Then, a process P defined as deadlock-free if it never reduces to a deadlocked process. We
shall be following the type system in [Kob06], where the notion of deadlock freedom is defined
informally: a process is deadlock-free if when “given a request, it will eventually returns a result
unless the process diverges”.

Example 2.2 (A Deadlock-Free Process). It is easy to see that process P from Example 2.1
is not deadlock-free as per Definition 2.3. A deadlock-free variant of process P would be P ′ ,
(νxy)(νwz)(x〈n〉.w〈n〉 | y(s).z(t)), which also is typable: n : end `ST P ′. Observe how the
difference between P and P ′ is in the parallel component on the right-hand side: the two input
prefixes have been swapped.

3. Two Approaches to Deadlock Freedom

We introduce two approaches to typing deadlock-free processes. The first comes from inter-
pretations of linear logic propositions as session types [CP10, CPT16, Wad12] (§ 3.1). The second
approach exploits encodings of session processes and types [DGS12] into the linear types with us-
ages for the π-calculus (§3.2). Based on these approaches, in §4 we will formally define the classes
L and K mentioned in the introduction.

3.1. Linear Logic Foundations of Session Types

The linear logic interpretation of session types was introduced by Caires and Pfenning [CP10,
CPT16], and developed by Wadler [Wad12] and others. Here we consider an interpretation based
on classical linear logic (CLL) with mix principles, following [Cai14, CP17].

The syntax and semantics of processes are as in §2 with the following differences. First, we have
a single restriction construct (νx)P instead of the double restriction (νxy)P . Second, we have a
forwarding process, denoted [x↔ y], which intuitively “fuses” or “links” channels/names x and y.
More formally, we have:

P,Q ::= x〈v〉.P | x(y).P | x / lj .P | x . {li : Pi}i∈I | (νx)P | [x↔y] | P | Q | 0

In what follows, the bound output (νy)x〈y〉.P will be abbreviated as x(y)P . Also, we write (νx̃)P
to abbreviate (νx1) . . . (νxn)P .

9

(R-ChCom) x〈v〉.P | x(z).Q→ P | Q[v/z]

(R-Fwd) (νx)([x↔y] | P)→ P [y/x]

(R-ChCase) x / lj .P | x . {li : Pi}i∈I → P | Pj j ∈ I
(R-ChRes) P → Q =⇒ (νx)P → (νx)Q

Figure 4: Reduction rules for processes in L.

Differences in the reduction rules are summarized in Figure 4. In particular, observe how
interaction of input/output prefixes and of selection/branching constructs is no longer covered by
an outermost restriction.

As for the type system, we consider the so-called linear logic types which correspond to linear
logic propositions (without exponentials). They are given by the following grammar:

A,B ::= ⊥ | 1 | A⊗B | AOB | &{li : Ai}i∈I | ⊕ {li : Ai}i∈I

Intuitively, ⊥ and 1 are used to type a terminated endpoint. Type A ⊗ B is associated to an
endpoint that first outputs an object of type A and then behaves according to B. Dually, type
AOB is the type of an endpoint that first inputs an object of type A and then continues as B. The
interpretation of &{li : Ai}i∈I and ⊕{li : Ai}i∈I as types for branching and selection behaviors is
precisely as in session types (cf. § 2.2).

A full duality on linear logic types corresponds to the negation operator of CLL (·)⊥. The dual
of type A, denoted A, is inductively defined as follows:

1 , ⊥
⊥ , 1

A⊗B , AOB

AOB , A⊗B
&{li : Ai}i∈I , ⊕{li : Ai}i∈I
⊕{li : Ai}i∈I , &{li : Ai}i∈I

Recall that A(B , A O B. As explained in [Cai14], considering mix principles means admitting
⊥(1 and 1(⊥, and therefore ⊥ = 1. We write • to denote either ⊥ or 1, and therefore • = •.
That is, we consider the conflation of dual types ⊥ and 1 as explored by Atkey et al. [ALM16].

Typing contexts, ranged over ∆,∆′, . . ., are produced by the following grammar:

∆,∆′ ::= · | ∆, x : A

where ‘ · ’ denotes the empty typing context.
Typing judgments are of the form P `LL ∆. Figure 5 gives the corresponding typing rules. One

salient point is Rule (T-cut), which types two processes that have exactly one channel of dual type
in common (x in the rule) by composing them in parallel and immediately restricting this common
channel. This implements the “composition plus hiding” principle, which monolithically integrates
parallel composition and restriction in a single rule. Indeed, unlike the system in [Vas12], there is no
dedicated rule for restriction, which also appears in the bound output induced by Rule (T-⊗). Also,

10

(T-1)
0 `LL x:•

(T-⊥)
P `LL ∆

P `LL x:•,∆
(T-id)

[x↔y] `LL x:A, y:A

(T-O)

P `LL ∆, y:A, x:B

x(y).P `LL ∆, x:AOB

(T-⊗)

P `LL ∆, y:A Q `LL ∆′, x:B

x(y).(P | Q) `LL ∆,∆′, x:A⊗B

(T-⊕)

P `LL ∆, x:Aj j ∈ I
x / lj .P `LL ∆, x:⊕ {li : Ai}i∈I

(T-&)

Pi `LL ∆, x:Ai ∀i ∈ I
x . {li : Pi}i∈I `LL ∆, x:&{li : Ai}i∈I

(T-cut)

P `LL ∆, x:A Q `LL ∆′, x:A

(νx)(P | Q) `LL ∆,∆′

(T-mix)

P `LL ∆ Q `LL ∆′

P | Q `LL ∆,∆′

Figure 5: Typing rules for the π-calculus with linear logic types.

Rule (T-mix) conveniently enables to type the independent parallel composition of processes, i.e., the
composition of two processes that do not share any sessions. (This is referred to as communication-
free concurrency in [ALM16].) Following Definition 2.2, we say that process P `LL ∆ is composable
if ∆ 6= · and uncomposable otherwise.

We now collect main results for this type system; see [CPT16, Cai14, CP17] for details. We first
state type preservation:

Theorem 3.1 (Type Preservation). If P `LL ∆ and P −−→ Q then Q `LL ∆.

We now state deadlock freedom. For any P , define live(P) if and only if P ≡ (νñ)(π.Q | R),
where π is an input, output, selection, or branching prefix.

Theorem 3.2 (Deadlock Freedom). If P `LL · and live(P) then P −−→ Q, for some Q.

3.2. Deadlock Freedom by Encodability

The second approach to deadlock-free session processes is indirect, in that establishing deadlock
freedom for session processes appeals to encodings into a dyadic π-calculus whose type system
enforces deadlock freedom by exploiting usages, obligations, and capabilities [Kob02a, Kob06].

We follow closely the definitions and results in [Kob06]. Next, we introduce the syntax of the
(dyadic) π-calculus (§ 3.2.1), types with usages (§ 3.2.2), typing rules (§ 3.2.2), and finally the
technical results leading to deadlock freedom (§ 3.2.3). The encodings of session processes into
dyadic processes and of session types into types with usages are given in § 3.2.4.

11

3.2.1. The Dyadic π-calculus

Syntax. The syntax of the dyadic π-calculus is as follows:

v ::= x (channel) | lj v (variant value)

P,Q ::= x〈ṽ〉.P (output) | 0 (inaction)

| x(z̃).P (input) | P | Q (composition)

| case v of {li xi . Pi}i∈I (case) | (νx)P (session restriction)

We discuss differences with respect to § 2 and [Kob06]:

• While the syntax of processes given in §2 (and in [Kob06]) supports monadic communication,
we consider dyadic communication: an output prefix involves a tuple of values v1, v2 and an
input prefix involves a tuple of variables z1, z2. For the sake of notational uniformity, we
write ṽ and z̃ to stand for v1, v2 and z1, z2, respectively. Dyadic communication is convenient,
as the encoding of session processes into “standard” π-calculus processes [DGS12] requires
transmitting tuples whose length is at most two.

• While in [Kob06] input and output prefixes are annotated with a capability annotation t ∈
N ∪∞, we omit such annotations to enhance clarity.

• Rather than the branching and selection constructs in § 2 (and the if-then-else process con-
sidered in [Kob06]), in the dyadic π-calculus presented above we have the case construct
case v of {li xi . Pi}i∈I , which uses the variant value lj v [SW01].

• We do not consider the let construct and replication processes in [Kob06].

• In line with § 3.1 and [Kob06] (but differently from § 2) we use (νx)P as restriction operator.

As before, we write (νx̃)P to denote the process (νx1) · · · (νxn)P . Notions of free and bound
names are as usual; we write fn(P) to denote the set of free names of P .

Reduction Semantics. Following [Kob06], the reduction semantics of dyadic π-calculus processes
relies on the structural relation �:

Definition 3.1 (Def A2 in [Kob06]). The structural relation � is the least reflexive and transitive
relation closed under the following rules (where P ≡ Q denotes (P � Q) ∧ (Q � P)):

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P (νx)P | Q ≡ (νx)(P | Q) if x is not free in Q

(νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P

P � Q =⇒ P | R � Q | R P � Q =⇒ (νx)P � (νx)Q

Thus, P � Q intuitively means that P can be restructured into Q by using the above rules. We
shall refer to ≡ as structural equivalence. The reduction rules are then as follows:

(Rπ-Com) x〈ṽ〉.P | x(z̃).Q→ P | Q[ṽ/z̃]

(Rπ-Case) case lj v of {li xi . Pi}i∈I → Pj [v/xj] j ∈ I
(Rπ-Par) P → Q =⇒ P | R→ Q | R
(Rπ-Res) P → Q =⇒ (νx)P → (νx)Q

(Rπ-Str) P � P ′, P → Q, Q′ � Q =⇒ P ′ → Q′

12

Rules are self-explanatory. We only discuss Rule (Rπ-Case), which is the main difference with
respect to the reduction semantics in [Kob06]. Note that by using the variant value lj v, this rule
simultaneously selects Pj and induces the substitution [v/xj]. This is different from Rule (R-Case) for
selection and branching (cf. Figure 2), which selects a branch but does not involve a communication.
As before, we write →∗ to denote the reflexive, transitive closure of →.

Since the definition of deadlock freedom in [Kob06] is only informal (cf. Remark 1), we shall
adopt the following definition, which mirrors Definition 2.3:

Definition 3.2 (Deadlock Freedom). A process P is deadlock-free if the following condition holds:
whenever P →∗ P ′ and one of the following holds

• P ′ ≡ (νx̃)(x〈ṽ〉.Q1 | Q2)

• P ′ ≡ (νx̃)(x(ỹ).Q1 | Q2)

• P ′ ≡ (νx̃)(case lj v of {li xi . Pi}i∈I | Q)

then there exists R such that P ′ → R.

3.2.2. Types with Usages

The type system for deadlock freedom in [Kob06] exploits types with usages. Usages rely on
obligations and capabilities, which are endowed with levels to describe inter-channel dependencies:

• An obligation of level n must be fulfilled by using only capabilities of level less than n. Said
differently, an action of obligation n may be prefixed by actions of capabilities less than n.

• For an action with capability of level n, there must exist a co-action with obligation of level
less than n or equal to n.

We shall rely on usages as defined next, a strict subset of those defined in [Kob06].

Definition 3.3 (Usages). The syntax of usages U,U ′, . . . is defined by the following grammar:

U ::= 0 (not usable)

| ?oκ.U (used in input)

| !oκ.U (used in output)

| (U1 | U2) (used in parallel)

| ↑ t U (lift obligation levels of U up to t)

where the obligation o and the capability κ range over the set N ∪ ∞. We shall refer to usages
generated with the first three productions above (not usable, input, output) as sequential usages.

Usage 0 describes a channel that cannot be used at all. A usage ?oκ.U (resp. !oκ.U) is associated
to a channel that can be used once for input (resp. output) and then according to usage U . The
usage U1 | U2 can be associated to a channel that is used according to U1 and U2, possibly in
parallel. The usage ↑ t U acts as an operator that lifts the obligation levels in U up to t. We let α
range over ‘?’ and ‘!’. We will often omit 0, and so we will write, e.g., αo

κ instead of αo
κ.0.

Notation 3.1 (Co-actions). We write α to denote the co-action of α, i.e., ! = ? and ? = !.

13

We rely on a number of auxiliary definitions for usages; they all follow [Kob06]:

Definition 3.4 (Capabilities and Obligations). Let U be a usage. The input and output capability
levels (resp. obligation levels) of U , written cap?(U) and cap!(U) (resp. ob?(U) and ob!(U)), are
defined as:

capα(0) , ∞ obα(0) , ∞
capα(αo

κ.U) , ∞ obα(αo
κ.U) , ∞

capα(αo
κ.U) , κ obα(αo

κ.U) , o

capα(U1 | U2) , min(capα(U1), capα(U2)) obα(U1 | U2) , min(obα(U1), obα(U2))

capα(↑ t U) , capα(U) obα(↑ t U) , max(t, obα(U))

We write ob(U) for max(ob?(U), ob!(U)).

The reduction relation on usages, noted U → U ′, intuitively says that if a channel with usage U is
used for communication then it should be used according to U ′ afterwards. It relies on an auxiliary
structural relation on usages.

Definition 3.5 (Structural relation on usages [Kob06]). Let � be the least reflexive and transitive
relation on usages defined by the following rules:

U1 | U2 � U2 | U1 ↑ t (U1 | U2) � (↑ t U1) | (↑ t U2) (U1 | U2) | U3 � U1 | (U2 | U3)

U1 � U ′1 ∧ U2 � U ′2 =⇒ U1 | U ′1 � U2 | U ′2 ↑ t αo
κ.U � αmax(o,t)

κ .U U � U ′ =⇒↑ t U �↑ t U ′

Definition 3.6. The reduction relation → on usages is the smallest relation closed under the
following rules:

(U-Com) ?oκ.U1 | !o
′

κ′ .U2 → U1 | U2

(U-Par) U → U ′ =⇒ U | U ′′ → U ′ | U ′′

(U-SubStruct) U � U1, U1 → U2, U2 � U ′ =⇒ U → U ′

The reflexive, transitive closure of → (written →∗) is defined as expected.

The following key definition ensures that if some action has a capability of level n then the
obligation level of its co-actions should be at most n.

Definition 3.7 (Reliability). Let α and α be co-actions (cf. Notation 3.1). We write conα(U)
when obα(U) ≤ capα(U). We write con(U) when con?(U) and con!(U) hold. Usage U is reliable,
noted rel(U), if con(U ′) holds for all U ′ such that U →∗ U ′.

Example 3.1. We illustrate reliability and obligation/capability levels. Consider the usage
U = ?o1κ1

.0 | !o2κ2
.0. We establish the conditions required for rel(U) to hold. This in turn requires

determining a few ingredients:

• ob!(U) = min(ob!(?
o1
κ1
.0), ob!(!

o2
κ2
.0)) = min(∞, o2) = o2

• cap?(U) = min(cap?(?o1κ1
.0), cap?(!o2κ2

.0)) = min(κ1,∞) = κ1

• ob?(U) = min(ob?(?o1κ1
.0), ob?(!o2κ2

.0)) = min(o1,∞) = o1

• cap!(U) = min(cap!(?
o1
κ1
.0), cap!(!

o2
κ2
.0)) = min(∞, κ2) = κ2

14

This way, con?(U) denotes o2 ≤ κ1; similarly, con!(U) denotes o1 ≤ κ2. Then we have that con(U)
holds when both o2 ≤ κ1 and o1 ≤ κ2 hold. This is indeed the condition needed for rel(U) to hold;
notice that U → 0 | 0 is the only reduction possible, and that con(0 | 0) trivially holds. Notice that
letting o1 = κ1 = o2 = κ2 = 0 suffices for rel(U) to hold.

Having defined usages (and their associated notions), we move to define types.

Definition 3.8 (Types with Usages). The syntax of types τ, τ ′, . . . builds upon usages as follows:

τ ::= chan(τ̃ ; U) (channel types)

| 〈li : τi〉i∈I (variant type)

Above, τ̃ indicates a sequence of types of length at most two. Type chan(τ̃ ; U) is associated
to a channel that behaves according to usage U to exchange a tuple of values with types τ1, τ2.
Notice that τ̃ can be empty; in that case, we write chan(− ; U): a channel with this type behaves
according to U without exchanging any values.

Differences with respect to the syntax of types in [Kob06] are: (i) we do not consider Boolean nor
product types, and (ii) we consider the variant type 〈li : τi〉i∈I from [SW01] to denote the disjoint
union of labeled types, where labels li (i ∈ I) are pairwise distinct. Variant types are essential to
encode selection and branching in session types [DGS12].

Typing contexts, ranged over Γ,Γ′, . . ., are produced by the following grammar:

Γ,Γ′ ::= ∅ | Γ, x : τ

where ‘∅’ denotes the empty context. Given a context Γ = x1 : τ1, · · · , xn : τn, we write dom(Γ) to
denote its domain, i.e., the set {x1, . . . , xn}.

Following [Kob06], we use ‘≺’ to denote a partial order that statically tracks the order in which
channels are created. That is, x ≺ y means that x was created more recently than y. Typing
judgments are indexed by ‘≺’; they are of the form Γ `≺ ṽ (for values) and Γ `≺ P (for processes).

Before commenting on the typing rules, given in Figure 6, we present some important auxiliary
notions, extracted from [Kob06].

Definition 3.9 (Auxiliary Operators on Types). We define the following auxiliary operators:

1. The unary operation ↑ t on usages extends to types as follows:

↑ t (chan(τ̃ ; U)) = chan(τ̃ ; ↑ t U)

2. The composition operation on types, denoted | , is defined as follows:

chan(τ̃ ; U1) | chan(τ̃ ; U2) , chan(τ̃ ; (U1 | U2))

〈li : τi〉i∈I | 〈li : τi〉i∈I , 〈li : τi〉i∈I

The generalisation of | to typing contexts, denoted (Γ1 | Γ2)(x), is defined as follows:

(Γ1 | Γ2)(x) =

Γ1(x) | Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)

Γ1(x) if x ∈ dom(Γ1) \ dom(Γ2)

Γ2(x) if x ∈ dom(Γ2) \ dom(Γ1)

15

(Tπ-Var)

x : τ `≺ x : τ

(Tπ-Tup)

Γ1 `≺ v1 : τ1 Γ2 `≺ v2 : τ2 ṽ = v1, v2 τ̃ = τ1, τ2

Γ1 | Γ2 `≺ ṽ : τ̃

(Tπ-LVal)

Γ `≺ v : τj ∃j ∈ I
Γ `≺ lj v : 〈li : τi〉i∈I

(Tπ-Nil)

∅ `≺ 0

(Tπ-Res)

Γ, x : chan(τ̃ ; U) `≺∪{(x,y) | y∈fn(P)\{x}} P rel(U)

Γ `≺ (νx)P

(Tπ-Par)

Γ1 `≺ P Γ2 `≺ Q
Γ1 | Γ2 `≺ P | Q

(Tπ-Out)

Γ1 `≺ P Γ2 `≺ ṽ : τ̃

x : chan(τ̃ ; !0κ) ;≺ (Γ1 | Γ2) `≺ x〈ṽ〉.P

(Tπ-In)

Γ, ỹ : τ̃ `≺ P
x : chan(τ̃ ; ?0

κ) ;≺ Γ `≺ x(ỹ).P

(Tπ-Case)

Γ1 `≺ v : 〈li : τi〉i∈I Γ2, xi : τi `≺ Pi ∀i ∈ I
Γ1 | Γ2 `≺ case v of {li xi . Pi}i∈I

Figure 6: Typing rules for the π-calculus (§ 3.2.1). Rules for values appear in the first line; the remaining rules are
for processes.

3. The operator “ ;≺ ” combines a type assignment x : chan(τ̃ ; αo
κ) and a context Γ into a new

context. Precisely, x : chan(τ̃ ; αo
κ) ;≺ Γ represents the context Γ′, defined as follows:

dom(Γ′) , {x} ∪ dom(Γ)

Γ′(x) ,

{
chan(τ̃ ; αo

κ.U) if Γ(x) = chan(τ̃ ; U)

chan(τ̃ ; αo
κ) if x /∈ dom(Γ)

Γ′(y) ,

{
↑κ Γ(y) if y 6= x ∧ x ≺ y
↑κ+1 Γ(y) if y 6= x ∧ x 6≺ y

The typing rules for values and processes are given in Figure 6. All rules are as in [Kob06],
except for the new rules (Tπ-LVal) and (Tπ-Case), which type a choice: the former types a variant
value with a variant type; the latter types a case process using a variant value as its guard. We
discuss the remaining rules. Rules (Tπ-Var) and (Tπ-Tup) are standard. Rule (Tπ-Nil) states that the
terminated process is typed under the empty context. Rule (Tπ-Res) states that (νx)P is well-typed
if the usage for x is reliable (cf. Definition 3.7). Rule (Tπ-Par) states that the parallel composition of
processes P and Q (typable under Γ1 and Γ2, respectively) is well-typed under the composed typing
context Γ1 | Γ2 (Definition 3.9(2)). Note that, unlike Rule (T-cut) in Figure 5, P and Q need not
to share any channels to be composed. Rules (Tπ-Out) and (Tπ-In) type output and input processes
with dyadic communication in a typing context where the ‘ ;≺ ’ operator (Definition 3.9(3)) is used
to increase the obligation level of the channels in continuation P .

3.2.3. Properties

Type soundness of the type system given in Figure 6 implies that well-typed processes are
deadlock-free (cf. Definition 3.2). We now state these technical results from [Kob06] and discuss

16

changes in their proofs, which require minimal modifications.
First, typing is preserved by the structural relation � (cf. Definition 3.1):

Lemma 3.1. If Γ `≺ P and P � Q then Γ `≺ Q.

The proof of type preservation in [Kob06] relies on other auxiliary results (such as substitution),
which we do not recall here. To state the type preservation result, we need the following auxiliary
definition:

Definition 3.10 (Context Reduction). We write Γ→ Γ′ when one of the following hold:

1. Γ = Γ1, x : chan(τ̃ ; U) and Γ′ = Γ1, x : chan(τ̃ ; U ′) with U → U ′ (cf. Definition 3.6), for
some Γ1, x, τ̃ , U and U ′.

2. Γ = Γ1, x : 〈li : τi〉i∈I and Γ′ = Γ1, x : τj , with j ∈ I, for some Γ1 and x.

Above, Item (1) is as in [Kob06]. Item (2) is required for characterizing reductions of the case
construct. We now state type preservation.

Theorem 3.3 (Type Preservation). If Γ `≺ P and P → Q, then Γ′ `≺ Q for some Γ′ such that
Γ′ = Γ or Γ→ Γ′.

The proof is by induction on the derivation P → Q, following closely the proof in [Kob06]. An
additional case is needed due to the reduction rule of the case construct (Rule (Rπ-Case)):

case lj v of {li xi . Pi}i∈I → Pj [v/xj] (j ∈ I)

As a result of this reduction, we have Γ→ Γ′ because of Definition 3.10(2).
The following important result extends Theorem 2 in [Kob06] with the case construct:

Theorem 3.4 (Deadlock Freedom). If ∅ `≺ P and one of the following holds

• P � (νx̃)(x〈ṽ〉.Q1 | Q2)

• P � (νx̃)(x(z̃).Q1 | Q2)

• P � (νx̃)(case lj v of {li xi . Pi}i∈I | Q)

then P → R, for some process R.

In [Kob06], the proof of this theorem relies on a notion of normal form in which input and
output prefixes act as guards for if-expressions and let-expressions (not present in our syntax); our
case construct can be easily accommodated in such normal forms. The proof in [Kob06] also uses:
(i) an extension of � for replicated processes, (ii) mechanisms for uniquely identifying bound names,
and (iii) an ordering on processes. In our case, we do not need (i) and can re-use (ii) and (iii) as
they are. With these elements, the proof argument proceeds as in [Kob06]. We finally have:

Corollary 3.1. If ∅ `≺ P then P is deadlock-free, in the sense of Definition 3.2.

It is worth noticing how both Theorem 3.2 and Theorem 3.4 have similar formulations: both
properties state that processes can always reduce if they are well-typed (under the empty typing
context) and have an appropriate structure (cf., condition live(P) in Theorem 3.2 and condition
P � (νx̃)(x(z̃).Q | R) or P � (νx̃)(x〈ṽ〉.Q | R) in Theorem 3.4).

17

J0Kfu , 0

J(νxy)P Kfu , (νc)JP Kf,{x,y 7→c}u

JP | QKfu , JP Kfu | JQKfu
Jx〈v〉.P Kfu , (νc)fx〈fv, c〉.JP Kf,{x 7→c}u

Jx(y).P Kfu , fx(y, c).JP Kf,{x 7→c}u

Jx / lj .P Kfu , (νc)fx〈lj c〉.JP Kf,{x 7→c}u

Jx . {li : Pi}i∈IKfu , fx(y). case y of {li c . JPiKf,{x 7→c}u }i∈I

Figure 7: Encoding session π-calculus processes into the dyadic π-calculus, under a renaming function f on
names/channels.

JendKu = chan(− ; 0)

J?T.SKu = chan(JT Ku, JSKu ; ?0
0)

J!T.SKu = chan(JT Ku, JSKu ; !00)

J&{li : Si}i∈IKu = chan(〈li : JSiKu〉i∈I ; ?0
0)

J⊕{li : Si}i∈IKu = chan(〈li : JSiKu〉i∈I ; !00)

Figure 8: Encoding session types into usage types.

3.2.4. On Deadlock Freedom by Encoding

We use encodings to relate classes of (typed) processes induced by the type systems given so far.
To translate a session typed process into a usage typed process, we follow the encoding suggested
in [Kob07] and developed in [DGS12], which mimics the sequential structure of a session by sending
its continuation as a payload over a channel. This continuation-passing style encoding of processes
is denoted J·Kfu , where f is a renaming function from channels to fresh names; see Figure 7. We
write fx to stand for f(x) and f, {x 7→ c} to denote that the entry for x in the renaming f is
updated to c. We write f, {x, y 7→ c} to mean that both x and y are updated to c.

We also need to formally relate session types to usage types. To this end, we define J·Ku in
Figure 8. Two points are noteworthy: (i) it suffices to generate a usage type with obligations and
capabilities equal to 0, and (ii) only sequential usages are needed to encode session types. We now
extend this encoding from types to typing contexts:

Definition 3.11. Given J·Ku as in Figure 8, and with a slight abuse of notation, we write J·Kfu to
denote the encoding of session type contexts Γ into usage typing contexts that is inductively defined
as follows:

J∅Kfu , ∅ JΓ, x : T Kfu , JΓKfu , fx : JT Ku

The next results relate deadlock freedom, typing and the encodings in [DGS12], thus formalising
the indirect approach to deadlock freedom.

Proposition 3.1. Let P be a deadlock-free session process. Then JP Kfu is a deadlock-free π-process.

18

Jx〈y〉.P K` , x(z).([z↔y] | JP K`)

J(νxy)P K` , (νw)JP K`[w/x][w/y] w 6∈ fn(P)

Figure 9: Encoding session π-calculus processes into the linear logic processes (cf. § 3.1). It is defined as an
homomorphism for the other process constructs.

Proof. The encoding of terms given in Figure 7 preserves the nature of the prefixes in P (outputs
are directly translated as outputs, and similarly for inputs) and is defined homomorphically with
respect to parallel composition. Then, it is easy to see that if P reduces then JP Kfu can immediately
match that reduction; thanks to the definitions of deadlock freedom in each language (Definition 2.3
and Definition 3.2, respectively), this suffices to conclude the thesis.

The following result states deadlock freedom by encodability, following [CDM14].

Corollary 3.2. Let `ST P be a session process. If `≺ JP Kfu is deadlock-free then P is deadlock-free.

4. Separating Classes of Deadlock-Free Typed Processes

Up to here, we have summarized three existing type systems for the π-calculus:

• Session types, with judgment Γ `ST P (§ 2.2);

• Session types based on linear logic, with judgment P `LL ∆ (§ 3.1);

• Usage types, with judgment Γ `≺ P (§ 3.2.2).

Here we establish formal relationships between these type systems. As already mentioned, our
approach consists in defining L and K, the class of deadlock-free session-typed processes induced
by the type systems in §3.1 and §3.2.2, respectively. Our main result is that L ⊂ K (Corollary 4.1),
a strict inclusion that separates these two classes of processes. To obtain this separation result, we
define µK, a strict sub-class of K which we show to coincide with L.

4.1. Classes of Deadlock-Free Processes

4.1.1. The Classes L and K
We start by defining classes L and K, for which we require some auxiliary definitions. The

following encoding addresses minor syntactic differences between session typed processes (cf. § 2)
and the processes typable in the linear logic interpretation of session types (cf. §3.1). Such differences
concern free output actions and the double restriction operator:

Definition 4.1. Let P be a session process. The auxiliary encoding J·K` from the session processes
(cf. § 2) into the linear logic processes (cf. § 3.1) is defined in Figure 9.

We also need an encoding of session types into linear logic propositions. The encoding, also
denoted J·K` and given in Figure 10, simply follows the essence of the linear logic interpretation.
We extend it to typing contexts as follows:

19

JendK` = •
J?T.SK` = JT K` O JSK`
J!T.SK` = JT K` ⊗ JSK`

J&{li : Si}i∈IK` = &
{
li : JSiK`

}
i∈I

J⊕{li : Si}i∈IK` = ⊕
{
li : JSiK`

}
i∈I

Figure 10: Encoding session types into linear logic types.

Definition 4.2. The encoding J·K` of session type contexts Γ into linear logic typing contexts is
defined as:

J∅K` , ∅ JΓ, x : T K` , JΓK`, x : JT K`

It is not difficult to see that the encoding in Definition 4.1 is operationally correct. That is,
J·K` preserves and reflects reductions of session processes. It also preserves the encoding of types in
Figure 10 and Definition 4.2.

The next definition allows us to abstract away from differences in the way type systems handle
process 0: in the usages type system, process 0 can only be typed under the empty typing context,
whereas in the session type systems the typing context can be non-empty (subject to conditions).

Definition 4.3 (Core Context). Given Γ `ST P , we write Γ↓ to denote the core context of Γ with
respect to P . Context Γ↓ is defined so that Γ = Γ↓,Γ′ holds for some Γ′, satisfying the following
conditions: (i) un(Γ′); (ii) x : end ∈ Γ′ implies x 6∈ fn(P); and (ii) x : T ∈ Γ↓ implies x ∈ fn(P).

Notice that, by Theorem 2.1 (strengthening), Γ `ST P implies Γ↓ `ST P .

Recall that we write P to denote the class of session π-calculus processes generated by the
grammar in Figure 2. Formally, L and K are classes of processes in P, defined below.

Definition 4.4 (L and K). The classes L and K are defined as follows:

L ,
{
P ∈ P : ∃Γ. (Γ `ST P ∧ JP K` `LL JΓK`)

}
K ,

{
P ∈ P : ∃Γ, f. (Γ `ST P ∧ JΓ↓Kfu `≺ JP Kfu)

}
In words, L contains those well-typed session π-calculus processes whose corresponding trans-

lation as a process in § 3.1 (using J·K` as in Definition 4.1) is also typable in the linear logic inter-
pretation, with propositions obtained using the encoding on types J·K` (Figure 10). Similarly, K
contains those well-typed session π-calculus processes whose corresponding translation as a dyadic
π-calculus process (using J·Kfu as in Figure 7) is also typable under Kobayashi’s type system, with
usage types derived using the encoding on types J·Ku (Figure 8).

Notice that L and K contain both composable and uncomposable processes (cf. Definition 2.2).
As informally discussed in the Introduction, processes in L and K satisfy the progress property,
defined in [CD10] and further studied in [CDM14]. As a consequence:

• Uncomposable processes in L (typable with ∆ = ·) are deadlock-free by following Theorem 3.2.
Similarly, uncomposable processes in K (typable with Γ = ∅) are deadlock-free by the indirect
approach formalised by Theorem 3.4 and Definition 3.2 and Corollary 3.2.

20

(Tπ-Var)

x : τ `µ≺ x : τ

(Tπ-Tup)

Γ1 `µ≺ v1 : τ1 Γ2 `µ≺ v2 : τ2 ṽ = v1, v2 τ̃ = τ1, τ2

Γ1 | Γ2 `µ≺ ṽ : τ̃

(Tπ-LVal)

Γ `µ≺ v : τj ∃j ∈ I
Γ `µ≺ lj v : 〈li : τi〉i∈I

(Tπ-Nil)

∅ `µ≺ 0

(Tπ-IndPar)

Γ1 `µ≺ P Γ2 `µ≺ Q dom(Γ1) ∩ dom(Γ2) = ∅
Γ1,Γ2 `µ≺ P | Q

(Tπ-Par+Res)

Γ1, x : chan(τ ; U1) `µ≺∪≺1
P1 Γ2, x : chan(τ ; U2) `µ≺∪≺2

P2 dom(Γ1) ∩ dom(Γ2) = ∅
i ∈ {1, 2} ≺i= {(x, y) | y ∈ fn(Pi) \ {x}} rel(U1 | U2)

Γ1 | Γ2 `µ≺ (νx)(P1 | P2)

(Tπ-BOut)

Γ1, y : chan(τ ; U1) `µ≺′ y : chan(τ ; U1), y′ : chan(τ ′ ; U) Γ2, y : chan(τ ; U2) `µ≺′ P
rel(U1 | U2) ≺′=≺ ∪{(y, z) | z ∈ fn(P) \ {y}} ỹ = y, y′ τ̃ = τ, τ ′

x : chan(τ̃ ; !0κ) ;≺ (Γ1 | Γ2) `µ≺ (νy)x〈ỹ〉.P

(Tπ-In)

Γ, z̃ : τ̃ `µ≺ P
x : chan(τ̃ ; ?0

κ) ;≺ Γ `µ≺ x(z̃).P

(Tπ-Case)

Γ1 `µ≺ v : 〈li : τi〉i∈I Γ2, xi : τi `µ≺ Pi ∀i ∈ I
Γ1 | Γ2 `µ≺ case v of {li xi . Pi}i∈I

Figure 11: Typing rules for the π-calculus (§3.2.1), which specialize those in Figure 6 to define the class µK. Typing
rules for values appear in the first line; the remaining typing rules are for processes.

• Composable processes in L (typable with ∆ 6= ·) and K (typable with Γ 6= ∅) may be stuck,
because they lack communicating counterparts as described by their (non-empty) typing con-
text. These missing counterparts will be formalized as a catalyzer [CD10] that allows a process
to further reduce, thereby “unstucking it”.

Although we are interested in the (sub)class of processes that satisfy deadlock freedom, we have
defined L and K more generally as processes in P satisfying progress; this simplifies the definition
and presentation of our technical contributions.

4.1.2. The Class µK
We now define µK, a strict class of K obtained by internalizing key features of linear logic

interpretation in § 3.1 into the rules of Figure 6. Considering the type system is summarized in
§ 3.2, µK will arise from a type system modified as follows:

Types Because session types are strictly sequential, we restrict Definition 3.8 to channel types
of the form chan(τ1, τ2 ; U) where U is a sequential usage (cf. Definition 3.3). All other
notions (obligations and capabilities, the semantics of usages, the notion of reliability) are
kept unchanged.

Typing Rules The type system considers judgments of the form Γ `µ≺ P . The typing rules are
given in Figure 11; they are based on those in Figure 6 with the following modifications. First,

21

we consider Rule (Tπ-BOut), which accounts for bound output as used in the type discipline
in § 3.1. Second, to account for the “composition plus hiding” principle, we merge Rules
(Tπ-Res) and (Tπ-Par) into Rule (Tπ-Par+Res). In this modified rule, the parallel usage appears
exclusively for the purpose of ensuring reliability. Finally, we include Rule (Tπ-IndPar) to
account for independent parallel composition as expressed by the mix principle in § 3.1.

We use this modified type system to define µK, following Definition 4.4:

Definition 4.5 (µK). The class of processes µK is defined as follows:

µK ,
{
P ∈ P : ∃Γ, f. (Γ `ST P ∧ JΓ↓Kfu `

µ
≺ JP Kfu)

}
Considerations about (un)composable processes in µK hold exactly as described for K.

4.2. Main Results

We start by separating K and µK. First, we have the following:

Lemma 4.1. Let P be a dyadic π-calculus process as in § 3.2.1. If Γ `µ≺ P then Γ `≺ P .

Proof. By induction on the type derivation for P , with a case analysis on the last applied typing
rule. We rely on the analogue property for values (if Γ `µ≺ v then Γ `≺ v), which is immediate. We
discuss only the cases featuring key differences between `µ≺ (Figure 11) and `≺ (Figure 6) arise:

• If the last applied rule is (Tπ-BOut), then P = (νy)x〈y, y′〉.P ′ and

Γ1, y : chan(τ ; U1) `µ≺′ y : chan(τ ; U1), y′ : chan(τ ′ ; U) Γ2, y : chan(τ ; U2) `µ≺′ P
rel(U1 | U2) ≺′=≺ ∪{(y, z) | z ∈ fn(P) \ {y}}

Γ `µ≺ (νy)x〈y, y′〉.P

with Γ = x : chan(τ, τ ′ ; !0κ) ;≺ (Γ1 | Γ2). We have Γ1, y : chan(τ ; U1) `≺′ y : chan(τ ; U1), y′ :
chan(τ ′ ; U). Also, by IH: Γ2, y : chan(τ ; U2) `≺′ P .

We show that P can be typed using Rules (Tπ-Out) and (Tπ-Res) in sequence. First we have:

Γ1, y : chan(τ ; U1) `≺′ y : chan(τ ; U1), y′ : chan(τ ′ ; U) Γ2, y : chan(τ ; U2) `≺′ P

x : chan(τ, τ ′ ; !0κ) ;≺ (Γ1 | Γ2 | y : chan(τ ; U1 | U2)) `≺ x〈y, y′〉.P

Now, because by assumption we have rel(U1 | U2), we can use Rule (Tπ-Res) to derive

x : chan(τ, τ ′ ; !0κ) ;≺ (Γ1 | Γ2 | y : chan(τ ; U1 | U2)) `≺ x〈y, y′〉.P rel(U1 | U2)

x : chan(τ, τ ′ ; !0κ) ;≺ (Γ1 | Γ2) `µ≺ (νy)x〈y, y′〉.P

• If the last applied rule is (Tπ-Par+Res), then P = (νx)(P1 | P2) and

Γ1, x : chan(τ ; U1) `µ≺∪≺1
P1 Γ2, x : chan(τ ; U2) `µ≺∪≺2

P2 dom(Γ1) ∩ dom(Γ2) = ∅
i ∈ {1, 2} ≺i= {(x, y) | y ∈ fn(Pi) \ {x}} rel(U1 | U2)

Γ `µ≺ (νx)(P1 | P2)

where Γ = Γ1 | Γ2. By IH, we have Γi, x : chan(τ ; Ui) `≺∪≺i Pi, with i ∈ {1, 2}.

22

We show that P can be typed using Rules (Tπ-Par) and (Tπ-Res) in sequence. First, we have:

Γ1, x : chan(τ ; U1) `≺∪≺1∪≺2 P1 Γ2, x : chan(τ ; U2) `≺∪≺1∪≺2 P2

Γ1 | Γ2 | x : chan(τ ; U1 | U2) `≺∪≺1∪≺2
P1 | P2

where we have weakened, in both cases, the partial orders for P1 and P2. Now, because by
assumption we have rel(U1 | U2), we can use Rule (Tπ-Res) to derive

Γ1 | Γ2 | x : chan(τ ; U1 | U2) `≺∪≺1∪≺2 P1 | P2 rel(U1 | U2)

Γ1 | Γ2 `≺ (νx)(P1 | P2)

• Finally, if the last applied rule is (Tπ-IndPar), then process P = P1 | P2, which can be imme-
diately typed using Rule (Tπ-Par).

As a result of Lemma 4.1, properties derived from typing in §3.2 (type preservation and deadlock
freedom) hold in the modified type system `µ≺ and apply to processes in µK. Thus, µK ⊆ K.

The modifications defined in § 4.1.2 make `µ≺ a strict subsystem of the system `≺ in § 3.2.
Indeed, because the converse of Lemma 4.1 does not hold, there are processes in K but not in µK:

Lemma 4.2. µK ⊂ K.

Proof. Because µK is obtained by restricting the typing rules of K, it is immediate that µK ⊆ K.
In the following, we show that this inclusion is strict, by showing that K contains (deadlock-free)
session processes not in µK. A representative example is:

P , (νa1b1)(νa2b2)(a1(x). a2〈x〉 | b1〈n〉. b2(z))

JP Kfu = (νc)(νd)(c(x,w). (νd′)d〈x, d′〉 | (νc′)c〈n, c′〉. d(z, u))

This process is not in µK because JP Kfu involves the composition of two parallel processes which
share two sessions. Hence, JP Kfu is typable in `≺ (using Rules (Tπ-Par) and (Tπ-Res) in Figure 6) but
not in `µ≺, because of the forms of composition admitted by Rule (Tπ-Par+Res) in Figure 11.

We now show that L and µK coincide. We need an important property, given by Lemma 4.4,
which connects our encodings of (dual) session types into usage types with reliability (Definition 3.7),
a central notion to the type systems for deadlock freedom in Figure 6 and Figure 11. First we have
the following result, which connects our encodings of types and the notion of duality.

Lemma 4.3. Let T, S be session types. Then, the following hold: (i) T = S if and only if
JT K` = JSK`; (ii) T = S if and only if JT Ku = JSKu.

Proof. By induction on the duality relation of session types.

Given a channel type τ = chan(τ̃ ; U), we write u(τ) to denote the usage U .

Lemma 4.4. Let T be a session type. Then rel(u(JT Ku) | u(JT Ku)) holds.

Proof. The proof proceeds by induction on the structure of T , using Lemma 4.3.

23

• T = end. By duality, T = end. Then JT Ku = JT Ku = chan(− ; 0). Thus, u(JT Ku) | u(JT Ku) =
0 | 0. Notice that 0 | 0 6→ and that con(0 | 0) holds trivially. Therefore, by Definition 3.7,
rel(0 | 0).

• T = !T1.T2 for some T1, T2. By definition of duality, T = ?T1.T2. Then,

JT Ku = chan(JT1Ku, JT2Ku ; !00)

JT Ku = chan(JT1Ku, JT2Ku ; ?0
0)

Thus, u(JT Ku) | u(JT Ku) = !00 | ?0
0. Notice that !00 | ?0

0 → 0 | 0 6→. We examine con(·) for both
usages. First, con(!00 | ?0

0) holds because 0 ≤ 0; then, con(0 | 0) trivially holds. Therefore, by
Definition 3.7, rel(!00 | ?0

0) holds.

• T = ?T1.T2, for some T1, T2. By definition of duality, T = !T1.T2. Then,

JT Ku = chan(JT1Ku, JT2Ku ; ?0
0)

JT Ku = chan(JT1Ku, JT2Ku ; !00)

Thus, u(JT Ku) | u(JT Ku) = ?0
0 | !00 and the thesis holds as in the previous case.

• T = &{li : Si}i∈I , for some Si. By definition of duality, T = ⊕{li : Si}i∈I . Then,

JT Ku = chan(〈li : JSiKu〉i∈I ; ?0
0)

JT Ku = chan(〈li : JSiKu〉i∈I ; !00)

Thus, u(JT Ku) | u(JT Ku) = ?0
0 | !00 and the thesis holds just as in case T = ?T1.T2.

• T = ⊕{li : Si}i∈I , for some Si and i ∈ I: similar to the previous cases.

We then have the following result:

Theorem 4.1. L = µK.

Proof (Sketch). We prove two lemmas: (i) If P ∈ L then P ∈ µK and (ii) If P ∈ µK then P ∈ L.
Both lemmas are proven by structural induction on P ; see §Appendix A.1 (Page 44) for details.

Therefore, we have the following corollary, which attests that the class of deadlock-free session
processes induced by linear logic interpretations of session types (cf. § 3.1) is strictly included in
the class induced by the indirect approach of [DGS12] (cf. § 3.2).

Corollary 4.1. L ⊂ K.

The fact that (deadlock-free) processes such as P (cf. Lemma 4.2) are not included in L is informally
discussed by Caires et al. in [CPT16, §6]. The discussion in [CPT16] highlights the principle of
“composition plus hiding” (enforced by Rule (T-cut), cf. Figure 5) as a feature that distinguishes
logically motivated session type systems from other type systems (in particular, the one in [GH05]),
which can type P but also deadlocked variants of it (cf. Example 2.1). However, Caires et al. give
no formal comparisons with other classes of deadlock-free processes.

24

5. Translating K into L

Having established and characterized the differences between deadlock-free session π-calculus
processes in L and K, in this section we explore how fundamental these differences really are. To
this end, we define a type-preserving translation from processes in K into processes in L.

One leading motivation for looking into a translation is that the separation result established by
Corollary 4.1 can be seen as being subtle, in the following sense. Consider a process P that belongs
to K but not to µK because one of its subprocesses does not conform to the (restrictive) form of
typed parallel composition enforced by Rule (Tπ-Par+Res) in Figure 11. The fact that P ∈ K \ µK
implies that P features forms of session cooperation that are intrinsically sequential and admitted
by Rules (Tπ-Res) and (Tπ-Par) in Figure 6; this means that subprocesses of P must become more
independent (concurrent) to be admitted in µK. We illustrate this intuition with an example:

Example 5.1 (Idea of the Translation). Recall process P in Lemma 4.2:

P , (νa1b1)(νa2b2)(a1(x). a2〈x〉 | b1〈n〉. b2(z))

We have that P ∈ K but P 6∈ µK: each sub-process features two independent sessions occurring in
sequence.

Consider now the following variant of P , in which the left subprocess has been kept unchanged,
but the right subprocess has been modified to increase concurrency:

P ′ , (νa2b2)((νa1b1)(a1(x). a2〈x〉 | b1〈n〉.0) | b2(z).0)

Indeed, by replacing b1〈n〉. b2(z) with b1〈n〉.0 | b2(z).0, we have that P ′ ∈ µK.

Here we propose a translation that converts any typable session process into a process in L (i.e.
µK). The translation, given in § 5.2, follows the idea of Example 5.1: given a parallel process as
input, return as output a process in which one of the components is kept unchanged, but the other
is translated by using representatives of the sessions implemented in it, composed in parallel. Such
parallel representatives are formally defined as characteristic processes and catalyzers, which we
introduce next.

5.1. Characteristic Processes and Catalyzers

We need some preliminary notions. A characteristic process of a session type T represents the
smallest process in L inhabiting it.

Definition 5.1 (Characteristic Processes of a Session Type). Given a name x, the set of charac-
teristic processes of session type T , denoted 〈|T |〉x, is inductively defined as follows:

〈|end|〉x , {0}
〈|?T ′.S|〉x ,

{
x(y).(P | Q) : P ∈ 〈|T ′|〉y ∧Q ∈ 〈|S|〉x

}
〈|!T ′.S|〉x ,

{
x(y).(P | Q) : P ∈ 〈|T ′|〉y ∧Q ∈ 〈|S|〉x

}
〈|&{li : Si}i∈I |〉x ,

{
x . {li : Pi}i∈I : ∀i ∈ I. Pi ∈ 〈|Si|〉x

}
〈| ⊕ {li : Si}i∈I |〉x ,

⋃
i∈I

{
x / li.Pi : Pi ∈ 〈|Si|〉x

}

25

The previous definition extends to typing contexts by composing in parallel independent character-
istic processes, one for each of the session types declared in the context. This reflects that sessions
in a context declare independent structures of communication.

Definition 5.2 (Characteristic Processes of a Session Typing Context). Given a context Γ =
w1:T1, . . . , wn:Tn, we shall write 〈|Γ|〉 to stand for the set {(P1 | · · · | Pn) : Pi ∈ 〈|Ti|〉wi}.

Characteristic processes are well-typed in the system of § 3.1 (cf. Figure 5):

Lemma 5.1. Let T be a session type and Γ be a session context.

1. For all P ∈ 〈|T |〉x, we have P `LL x : JT K`.

2. For all P ∈ 〈|Γ|〉, we have P `LL JΓK`.

Proof. The proof of Part 1 is by induction on the structure of T . The proof of Part 2 is by induction
on the size of Γ, using Part 1. See § Appendix B.1 (Page 50) for details.

Let us use ‘[·]’ to denote a hole and C[·], C ′[·], . . . to denote process contexts (i.e., a process with
a hole). Building upon characteristic processes, a catalyzer for a typing context is a process context
that implements the behaviors it declares.

Definition 5.3 (Catalyzers of a Session Typing Context). Given a session typing context Γ, we
define its set of associated catalyzers, noted CΓ, inductively as follows:

CΓ ,

{{
[·]
}

if Γ = ∅{
(νx)(C[·] | P) : C[·] ∈ CΓ′ ∧ P ∈ 〈|T |〉x

}
if Γ = Γ′, x : T

Given a context Γ = x1 : T1, . . . , xn : Tn, let us write Γ to denote the context x1 : T1, . . . , xn : Tn,
i.e., the context obtained by “dualising” all the types in Γ. The following statement formalizes the
complementarity, in terms of session behaviors, between a well-typed process in L and its associated
catalyzers:

Lemma 5.2 (Catalyzers Preserve Typing). Let P `LL JΓK`, JΓ′K` and C[·] ∈ CΓ. Then C[P] `LL
JΓ′K`.

Proof. Follows from Definition 5.3, which defines C[·] as a composition of characteristic processes,
and Lemma 5.1 (Part 1), which ensures the appropriate type for each of them.

5.2. Translating K into L
Our translation, given in Definition 5.4, transforms a session-typed process in K into a set of L

processes. Unsurprisingly, a delicate point in this translation is the treatment of parallel composi-
tion, which follows the intuition of the transformation of P into P ′ motivated in Example 5.1: keep
half of a parallel process unchanged, and increase the parallelism in the other half. This way, our
translation returns a set of processes because we wish to account for both these two alternatives,
for the sake of generality.

Intuitively, given a well-typed session process P1 | P2, our translation produces two sets of
processes: the first one collects processes of the form Q1 | G2, where Q1 composes the translation
of P1 within an appropriate catalyzer and G2 is a characteristic process that implements all sessions
declared in the typing of P2. Similarly, the second set collects processes of the form G1 | Q2, where

26

Q2 composes the translation of P2 within an appropriate catalyzer and G1 is a characteristic process
that implements all sessions declared in the typing for P1. This way, by translating one subprocess
and replacing the other with parallel representatives (G1 and G2), the translated processes are more
independent, and the circular dependencies—the heart of deadlocked processes—are systematically
ruled out.

We require some auxiliary notations.

Notation 5.1 (Bound Names). Concerning bound names and their session types:

• We annotate bound names with their session types: we write (νx1y1 : T1) · · · (νxnyn : Tn)P
and x(y : T).P , for some session types T, T1, . . . , Tn.

• We sometimes write Γ, x̃ : T `ST P as shorthand notation for Γ, x1 : T1, . . . , xn : Tn `ST P .
Similarly, we write (νx̃ỹ : T̃)P to abbreviate (νx1y1 : T1) · · · (νxnyn : Tn)P .

Using these notations for bound names, we introduce the following notation for well-typed
parallel processes, in which “hidden” sessions are explicitly denoted by brackets:

Notation 5.2 (Hidden/Bracketed Sessions). We shall write

Γ1, [x̃ : S] ? Γ2, [ỹ : T] `ST (νx̃ỹ : S̃)(P1 | P2)

whenever Γ1,Γ2 `ST (νx1y1) · · · (νxnyn)(P1 | P2) holds with Γ1, x1 : S1, . . . , xn : Sn `ST P1, Γ2, y1 :
T1, . . . , yn : Tn `ST P2, and Si = Ti, for all i ∈ {1, . . . , n}.

We are now ready to give the first translation from session processes into L:

Definition 5.4 (Translation into L). Let P be such that Γ `ST P and P ∈ K. The set of L
processes LΓ `ST P M is defined in Figure 12.

Our translation operates on typing judgments: a well-typed session process is translated using
the information declared in its typing context. Although the translation could be defined for
arbitrary session processes (even deadlocked ones), membership in K plays a role in operational
correspondence (see below). We discuss the different cases in Figure 12:

• The process 0 is translated into the singleton set {0} provided that the associated typing
context Γ contains only completed sessions (recall that Γun stands for un(Γ)).

• The translation of output- and input-prefixed processes is self-explanatory; in the former
case, we translate the free output available in K by exploiting a forwarding process in L (cf.
Definition 4.1). The translation of selection and branching processes also follows expected
lines.

• The last case of the definition handles processes in parallel, possibly with restricted sessions;
we use Notation 5.2 to make such sessions explicit. As hinted at above, the translation of a
parallel process (νx̃ỹ : S̃)(P1 | P2) in K results into two different sets of L processes: the first
set contains processes of the form C1[Q1] | G2, where, intuitively:

• Q1 belongs to the set that results from translating subprocess P1 with an appropriate

typing judgment, which includes x̃ : S.

27

LΓun `ST 0M ,
{
0
}

LΓ, x : !T.S, v : T `ST x〈v〉.P ′M ,
{
x(z).([v↔z] | Q) : Q ∈ LΓ, x : S `ST P ′M

}
LΓ1,Γ2, x : !T.S `ST (νzy)x〈y〉.(P1 | P2)M ,{

x(y).(Q1 | Q2) : Q1 ∈ LΓ1, z : T `ST P1M ∧Q2 ∈ LΓ2, x : S `ST P2M
}

LΓ, x : ?T.S `ST x(y : T).P ′M ,
{
x(y).Q : Q ∈ LΓ, x : S, y : T `ST P ′M

}
LΓ, x : ⊕{li : Si}i∈I `ST x / lj .P ′M ,

{
x / lj .Q : Q ∈ LΓ, x : Sj `ST P ′M

}
LΓ, x : &{li : Si}i∈I `ST x . {li : Pi}i∈IM ,

{
x . {li : Qi}i∈I : Qi ∈ LΓ, x : Si `ST PiM

}
LΓ1, [x̃ : S] ? Γ2, [ỹ : T] `ST (νx̃ỹ : S̃)(P1 | P2)M ,{

C1[Q1] | G2 : Q1 ∈ LΓ1, x̃ : S `ST P1M, C1 ∈ C̃x:T
, G2 ∈ 〈|Γ2|〉

}
∪{

G1 | C2[Q2] : Q2 ∈ LΓ2, ỹ : T `ST P2M, C2 ∈ C̃y:S
, G1 ∈ 〈|Γ1|〉

}
Figure 12: Translation L·M (cf. Definition 5.4).

• C1 belongs to the set of catalyzers that implement the context x̃ : T , i.e., the dual
behaviors of the sessions implemented by P1 (cf. Definition 5.3). This step thus removes
the double restriction operator.

• G2 belongs to the set of characteristic processes for Γ2, which describes the sessions
implemented by P2 (cf. Definition 5.2).

The explanation for the processes of the form G1 | C2[Q2] in the second set is completely dual.

As we will see, processes C1[Q1] | G2 (and G1 | C2[Q2]) preserve by construction the typing

of (νx̃ỹ : S̃)(P1 | P2): process C1[Q1] (resp. C2[Q2]) is typable with context Γ1 (resp. Γ2);
process G2 (resp. G1) is typable with context Γ2 (resp. Γ1)—see Theorem 5.1 below.

We illustrate the translation by means of an example.

Example 5.2 (The Translation L·M at Work). Consider again the process P used in Lemma 4.2.
Let T , !end.end and S , ?end.end. Clearly, S = T . We have the following derivation.

(T-In)
a1 : S, a2 : T `ST a1(x). a2〈x〉.0 b1 : T, b2 : S,n : end `ST b1〈n〉. b2(z).0

(T-Out)

a2 : T, b2 : S, a1 : S, b1 : T,n : end `ST a1(x). a2〈x〉.0 | b1〈n〉. b2(z).0
(T-Par)

a1 : ?end.end, b1 : !end.end,n : end `ST (νa2b2)(a1(x). a2〈x〉.0 | b1〈n〉. b2(z).0)
(T-Res)

n : end `ST (νa1b1)(νa2b2)(a1(x). a2〈x〉.0 | b1〈n〉. b2(z).0)
(T-Res)

28

Before detailing the set Ln : end `ST P2M, we spell out the main ingredients required:

La1 : S, a2 : T `ST a1(x). a2〈x〉.0M = {a1(x).a2(z).([x↔z] | 0)}
Lb1 : T, b2 : S,n : end `ST b1〈n〉. b2(z).0M = {b1(u).([n↔u] | b2(z).0)}

〈|T |〉x = {x(z).(0 | 0)}
〈|S|〉x = {x(z).(0 | 0)}

Ca1:T,a2:S = {(νa1)(R1 | (νa2)(R2 | [·])) : R1 ∈ 〈|S|〉a1 , R2 ∈ 〈|T |〉a2}
= {(νa1)(a1(z).(0 | 0) | (νa2)(a2(z).(0 | 0) | [·]))}

Cb1:S,b2:T = {(νb1)(Q1 | (νb2)(Q2 | [·])) : Q1 ∈ 〈|T |〉b1 , Q2 ∈ 〈|S|〉b2}
= {(νb1)(b1(z).(0 | 0) | (νb2)(b2(z).(0 | 0) | [·]))}

Exploiting Notation 5.2, judgement n : end `ST P can be written as

[a1 : S, a2 : T] ? n : end, [b1 : T, b2 : S] `ST (νa1b1)(νa2b2)(a1(x). a2〈x〉.0 | b1〈n〉. b2(z).0)

We may now define the translation of P into L:

L[a1 : S, a2 : T] ? n : end, [b1 : T, b2 : S] `ST (νa1b1)(νa2b2)(a1(x). a2〈x〉.0 | b1〈n〉. b2(z).0)M

=
{
C1[Q1] | 〈|n : end|〉n : C1 ∈ Ca1:T,a2:S , Q1 ∈ La1 : S, a2 : T `ST a1(x). a2〈x〉.0M

}
∪
{
C2[Q2] : C2 ∈ Cb1:S,b2:T , Q2 ∈ Lb1 : T, b2 : S,n : end `ST b1〈n〉. b2(z).0M

}
=
{

(νa1)(a1(z).(0 | 0) | (νa2)(a2(z).(0 | 0) | a1(x).a2(z).([x↔z] | 0))) | 〈|n : end|〉n ,
(νb1)(b1(z).(0 | 0) | (νb2)(b2(z).(0 | 0) | b1(u).([n↔u] | b2(z).0)))

}
Above, P has two parallel components and so set Ln : end `ST P M has two elements, representing the
two different possibilities for “dividing” the sequential structure of P into more parallel processes.

5.2.1. Properties

We present two important results about our translation. First, it is type preserving, up to the
encoding of types given in Figure 10:

Theorem 5.1 (The Translation L·M is Type Preserving). Let Γ `ST P . Then, for all Q ∈ LΓ `ST P M,
we have that Q `LL JΓK`.

Proof. By induction on the derivation Γ `ST P . See § Appendix B.2 (Page 52) for details.

Theorem 5.1 is meaningful, for it says that the session type “interface” of a process (i.e., the
set of sessions it implements) is not modified by the translation. That is, L·M modifies the process
structure by closely following the session typing discipline.

To establish properties with respect to reduction, we start with a useful notation:

Notation 5.3. Let us write Γ `ST P1, P2 whenever both Γ `ST P1 and Γ `ST P2 hold. Similarly, let
us write P1, P2 `LL Γ, whenever both P1 `LL Γ and P2 `LL Γ hold.

Before showing how our translation satisfies an operational correspondence result (cf. The-
orem 5.2), we illustrate the need for a useful auxiliary definition, which will allow us to relate
processes typable under the same typing context but featuring a different parallel structure (cf.
Definition 5.5).

29

Example 5.3 (The Parallel Structure of Typable Processes). Let P `LL ∆ where P ,
(νx)(x〈v〉.P1 | x(z).P2) and ∆ = ∆1,∆2, v : T . Consider the following reduction from P , ob-
tained using the rules in Figure 4:

(νx)(x〈v〉.P1︸ ︷︷ ︸
∆1, v : T

| x(z).P2︸ ︷︷ ︸
∆2

)→ (νx)(P1︸︷︷︸
∆1

| P2[v/z]︸ ︷︷ ︸
∆2, v : T

) , Q

Here we are using a free output process, namely x〈v〉.P1, as a shortcut for x(z).([v↔z] | P1); recall
that this process is typable using Rules (T-id) and (T-⊗) in Figure 5. Observe that name z is free
with scope P2; for typing to hold, it must be the case that z : T in P2.

By Theorem 3.1, Q `LL ∆1,∆2, v : T . Let us consider the typing of P and Q in relation to
their parallel structure. We can notice that even though the typing context ∆ remains the same
under reduction, the “parallel decomposition” changes after reduction, as highlighted by the under
brackets. In particular, the type assignment v : T , at first related to the left-hand side component
in P , “jumps” after reduction to the right-hand side component in Q. This phenomenon is due to
value passing: after reduction, a substitution occurs in the continuation process P2, where v might
be used in different ways. For instance, v could occur within a sequential position within P2 or at
top-level in one of its parallel subprocesses.

Now, consider process Q′, which contains subprocesses P1 and P2 from Q but has a different
form of parallelism:

Q′ , (νx)(P1︸︷︷︸
∆1

| (νz)(P2 | Pz)︸ ︷︷ ︸
∆2

| Pv︸︷︷︸
v : T

)

Here, Pz and Pv are characteristic processes implementing T along z and v, respectively. Clearly,
Q′ `LL ∆1,∆2, v : T , just as Q, but its parallel structure is different: in Q′ we have two separate
subprocesses in parallel, one typed according to ∆2, the other according to v : T . In (νz)(P2 | Pz),
process Pz provides one of the counterparts for P2; this interaction is hidden by restriction (νz)
and so the resulting typing context is ∆2. By using Pv, the type interface of Q′ is exactly as that
of Q; by using it in parallel position, their parallel structure will be different whenever z occurs in
P2 in a sequential position.

We are interested in capturing the parallelization relation between processes such as Q and Q′

in Example 5.3, because it serves to explain how translated processes behave under reduction. This
relation is formalised in Definition 5.5 below:

Definition 5.5 (Parallelization Relation). Let P and Q be processes such that P,Q `LL Γ. We
write P + Q if and only if there exist processes P1, P2, Q1, Q2 and contexts Γ1,Γ2 such that the
following hold:

P = P1 | P2 Q = Q1 | Q2 P1, Q1 `LL Γ1 P2, Q2 `LL Γ2 Γ = Γ1,Γ2

This definition says that two processes P and Q, typed under the typing context Γ, are related
by +, if they can be decomposed into parallel subprocesses, which are typed under the same
decomposition of Γ. This way, for processes Q and Q′ from Example 5.3, relation Q + Q′ holds.

By definition, the relation + is reflexive. It will appear in our operational correspondence
result, given next. Below, let ↪→ denote structural congruence (cf § 2.1) extended with a reduction
by Rule (R-Fwd) (cf. § 3.1). We may now state:

30

Theorem 5.2 (Operational Correspondence for L·M). Let P be such that Γ `ST P for some typing
context Γ. Then, we have:

1. If P → P ′, then for all Q ∈ LΓ `ST P M there exist Q′, R such that Q →↪→ Q′, Q′ + R, and
R ∈ LΓ `ST P ′M.

2. If Q ∈ LΓ `ST P M, such that P ∈ K, and Q→↪→ Q′, then there exist P ′, R such that P → P ′,
Q′ + R, and R ∈ LΓ `ST P ′M.

Proof. By induction on the length of the derivations P → P ′ and Q→ Q′. See § Appendix B.3 for
details.

Part 1 of Theorem 5.2 certifies that our translation tightly preserves the behavior of the session
process given as input. The parallelization relation + (cf. Definition 5.5) is crucial when the
reduction P → P ′ involves value passing: in that case, process Q′, obtained from the translated
process Q, may have a different parallel structure than R—just as Q and Q′ from Example 5.3.
Part 2 relates the behavior of a translated process with respect to that of the session process given
as input, with + playing a role similar as in Part 1. Unlike Part 1, in Part 2 we require P to be in
K, i.e., P must be deadlock-free for the correspondence to hold. Indeed, if P is not in K then Q
(its deadlock-free, translated variant) could have reductions not enabled in P due to deadlocks.

5.3. Discussion: Translating K into L Exploiting Value Dependencies

Process prefixes can induce causality relations not accounted for by session types. One kind of
causality relations are at the heart of deadlocked processes, in which session interleavings in process
prefixes leads to circular dependencies between independent sessions (cf. Example 2.1). Another
kind of causality relations are the value dependencies induced by value exchanges: they occur when
a value received in one session is sent along a different one.

Example 5.4 (A Value Dependency). Let P be the process

P , (νa0b0)(a0〈n〉.a1(u).a2〈u〉.0 | b0(v).(b2(y).y(x).0 | (νwz)(b1〈w〉.z〈n〉.0)))

Also, let U , ?end.end. Consider the typing judgment for the leftmost parallel process
a0〈n〉.a1(u).a2〈u〉.0:

a0 : !end.end, a1 : ?U.end, a2 : !U.end `ST a0〈n〉.a1(u). a2〈u〉.0

Although the typing for a1 and a2 states that they are independent sessions, actually they are
causally related: the process forwards along a2 the value of type U received on a1. By considering
the typing for P

a1 : ?U.end, a2 : !U.end, b2 : ?U.end, b1 : !U.end `ST P

we see that the forwarded value is w, which is delegated by the rightmost parallel process,
(νwz)(b1〈w〉.z〈n〉.0).

In the terminology of Boreale and Sangiorgi [BS98], value dependencies are both subject and
object dependencies. In a0〈n〉.a1(u).a2〈u〉.0 there is a subject dependency: the input on a1 enables
the output on a2; there is also an object dependency: the name received on a1 is used as object in

31

the output on a2. Indeed, Boreale and Sangiorgi argue that in most cases an object dependency is
also a subject dependency.

While intuitive, the translation L·M does not preserve value dependencies: in translating a process
with parallel components, a subprocess containing a value dependency can be replaced by an equally
typed process in which such a dependency is no longer present:

Example 5.5 (Value Dependencies in L·M). Let process P and type U be as in Example 5.4.
Consider the set of processes La1 : ?U.end, a2 : !U.end, b1 : !U.end, b2 : ?U.end `ST P M obtained
using Definition 5.4. One process in this set is the following:

Q = G1 | G2 | Cb0:?end.end

[
b0(v).(b2(y).y(x).0 | (νwz)(b1〈w〉.z〈n〉.0))

]
where G1 ∈ 〈|?U.end|〉a1 and G2 ∈ 〈|!U.end|〉a2 . Since G1 and G2 are independently defined, the
name received along a1 in G1 cannot be the same session sent along a2 in G2. Thus, the value
dependence between a1 and a2 in P , has disappeared in its translation as Q.

To address this limitation of L·M, we have defined an optimized translation that preserves value
dependencies. Here we discuss the key elements of this optimization; the full technical development
is presented in the online appendix [DP20]. The optimization is obtained as follows:

1. Detecting value dependencies requires gathering further information on how types are imple-
mented by process prefixes. To this end, we extend the type system of § 2 with annotated
output and input session types, written !nS.T and ?nS.T (with n ≥ 0), which specify the
position of an associated prefix within the process. This way, e.g., type !0S.T is associated to
an output prefix at top-level. Also, we have typing judgments

Γ �Ψ `ST P

where the typing context Γ is as before and Ψ is a dependency context that describes all
communication prefixes in P and their distance to top-level. This context contains tuples
of the form (a1, u, 1) and 〈a2, u, 2〉; the former can be read as “there is an input on a1 with
placeholder u one prefix away from top-level”, whereas the latter can be read as “there is an
output on a2 with object u two prefixes away from top-level”. Using Ψ, we formally define
value dependencies as pairs: we write (an, bm) to denote a value dependency of an (output)
prefix along session b on an (input) prefix along session a.

2. We exploit the value dependencies in Ψ to refine the definitions of characteristic processes
(Definition 5.1) and catalyzer contexts (Definition 5.3) of a typing context Γ:

• The set of characteristic processes of Γ that exploits Ψ is denoted 〈|Γ|〉Ψ: it implements
value dependencies in Ψ using so-called bridging sessions that connect the characteristic
processes of the two types involved in the dependency.

• The set of catalyzer contexts of Γ handles value dependencies in Ψ by “isolating” them
using dedicated forwarder processes and characteristic processes.

3. Using these refined definitions, we define the optimized translation L·MV. Main differences with
respect to the translation defined in Figure 12 appear in the translation of parallel processes.
As before, process (νx̃ỹ : S̃)(P1 | P2) is translated into processes of two forms: C1[Q1] | G2 and
G1 | C2[Q2], where Q1 (resp. Q2) stands for the translation of P1 (resp. P2). The difference is

32

that the catalyzers C1, C2 and the characteristic processes G1, G2 are now obtained exploiting
value dependencies (as explained in (2)). As L·M, the optimized translation L·MV satisfies type
preservation and operational correspondence.

The following example illustrates how L·MV improves over L·M.

Example 5.6 (Revisiting Examples 5.4 and 5.5). Let P be as in Example 5.4:

P , (νa0b0)(a0〈n〉.a1(u).a2〈u〉.0 | b0(v).(b2(y).y(x).0 | (νwz)(b1〈w〉.z〈n〉.0)))

In the extended type system, we have Γ �Ψ `ST P where

Γ , a1 : ?1U.end, a2 : !2U.end, b2 : ?1U.end, b1 : !1U.end

Ψ , 〈a0,n, 0〉, (a1, u, 1), 〈a2, u, 2〉, (b0, v, 0), (b2, y, 1), (y, x, 2), 〈b1, w, 1〉, 〈z,n, 2〉

Using Ψ, we can detect the value dependence (a1
1, a

2
2). Consider now Q′, one particular process

included in the set LΓ �Ψ `ST P MV:

Q′ = (νca1a2)(G′a1 | G′a2) | Cb0:?end.end

[
b0(v).(b2(y).y(x).0 | (νwz)(b1〈w〉.z〈n〉.0))

]
where G′a1 ∈ 〈|?U.end|〉a1Ψ and G′a2 ∈ 〈|!U.end|〉a2Ψ are obtained using the refined definition of char-
acteristic processes. With the refined definition, we have that

G′a1 = a1(y).ca1a2(w).([y↔w] | 0)

G′a2 = ca1a2(y).a2(w).([y↔w] | 0)

Thus, the characteristic processes of a type are still independently defined but now implement a
bridging session ca1a2 , which ensures that the name received along a1 in G′a1 is the same name
outputted along a2 in G′a2 . The characteristic process of a typing context guarantees that bridging
sessions are properly composed. This way, the value dependence between a1 and a2, present in P ,
has been preserved in Q′ as a result of the refined translation.

Although intuitive, the way in which L·MV improves over L·M is somewhat implicit, because value
dependencies are accounted for by the revised definitions of characteristic processes and catalyzers
as restricted (hidden) sessions. Therefore, the implemented value dependencies in these definitions
does not influence the observable behavior of the translated process. Formalizing the advantages of
L·MV over L·M is an interesting question for future work, because it requires devising new notions of
observables for typed processes that “look inside” reductions to ensure that values are forwarded
appropriately between the two independent sessions.

6. Discussion

Processes with Unbounded Behavior. Our investigation has been motivated by the proliferation of
type systems for ensuring safety and liveness properties of mobile, concurrent processes. Different
type systems enforce different such properties, which include various forms of (dead)lock-freedom,
termination, and confluence. In this work, our criteria have been twofold. On the one hand, we have
aimed at obtaining objective formal comparisons between well-established type systems, sticking
to their original formulations as much as possible. On the other hand, we have concentrated

33

on the intrinsic challenges of statically enforcing deadlock freedom. We have focused on typed
processes without constructs for expressing processes with unbounded behavior, such as replication
or recursion. This focus was useful to be consistent with these criteria; next we discuss some of the
issues involved in going beyond this class of finite processes.

In the Curry-Howard correspondences for session types, sharing exponentials ! and ? at the
level of propositions/types can be interpreted as input-guarded replication !x(z).Q at the level of
proofs/processes. In the classical setting considered here, a channel typed with !A denotes a server
able to offer an arbitrary number of copies (including zero) of a process with behavior of type A
upon request (an input); dually, a channel typed with ?A denotes a request to such a server (an
output). This requires an additional cut rule for exponential (unrestricted) contexts (denoted Θ)
as well as typing rules for realizing the sharing semantics of !A and ?A. Other rules are adjusted
to account for Θ; for instance, the mix rule becomes:

P `LL ∆; Θ Q `LL ∆′; Θ

P | Q `LL ∆,∆′; Θ

The resulting logically justified reduction rule for replication is as follows:

(νx)(x(y).P | !x(z).Q)→ (νx)((νy)(P | Q) | !x(z).Q) (1)

The process before the reduction features one linear cut along session x; after the reduction, the
process contains two cuts: the cut on y is linear, whereas the one on x is exponential.

The definition of the typed languages L and K (Definition 4.4) can be extended to consider typed
processes with replication, which is used in [CP10, CPT16] (in the input-guarded variant described
above) and in [Kob06] (where unguarded replication !P is accounted for). Since the type system
`ST in [Vas12] admits rather expressive forms of recursion (that go well beyond the server-request
interactions enabled by input-guarded replication), the class of “full L” processes would be a strict
sub-class of session-typed processes.

Now, considering processes with unbounded behavior entails including termination properties
into the analysis of (dead)lock-freedom. Crucially, the full Curry-Howard interpretation for ses-
sion types, including exponentials as explained above, is known to be strongly normalizing and
confluent [PCPT14, CP17]. Therefore, unbounded behavior in full L concerns unboundedly many
copies of finite, deterministic interactive behaviors. The fact that a single type system simultane-
ously enforces deadlock freedom, termination, and confluence sharply contrasts to the situation for
non-logical type systems: to our knowledge, only the hybrid type system in [KS10] simultaneously
ensures these three properties (see below). Clearly, it would be unfair to compare processes that
enjoy different properties, i.e., processes in L against well-typed processes in type systems that
enforce some, but not all, of deadlock freedom, termination, and confluence. By focusing on finite
processes, we have found a fair ground to objectively compare different type systems.

The integration of non-logical type systems for (dead)lock-freedom, termination, and confluence
is far from trivial, and requires advanced mechanisms. Kobayashi and Sangiorgi [KS10] targeted
this goal by defining a parametric hybrid type system based on usages, which enforces the three
properties through different methods (not necessarily type systems). As in [Kob02a], the syntax of
usage types in [KS10] includes replicated usages ∗U , i.e., unboundedly many parallel copies of usage
U . (The authors remark that the recursive usages µα.U from [Kob06] are also sound.) To enable
fair comparisons against full L, Kobayashi and Sangiorgi’s type system should be restricted so that
it allows only input-guarded replicated processes (cf. (1)) and simultaneously enforces (dead)lock-
freedom, termination, and confluence. Identifying the syntactic/semantic conditions that enable

34

this restriction seems challenging. Defining such a restricted variant of [KS10] would most likely
mean developing a very different type system, therefore departing from the compact abstractions
given by usage types. Hence, comparing such a different type system against the canonical language
full L would also be unfair.

We notice that Curry-Howard interpretations of session types have been extended with forms
of (co)-recursive types, which extend (full) L by admitting as typable certain forms of (productive)
unbounded behavior—see the works by Toninho et al.[TCP14] and by Lindley and Morris [LM16].
Indeed, the framework in [LM16] can be roughly seen as the extension of the logic-based type system
in §3.1 with co-recursion. Although these extensions bring closer logically motivated and non-logical
type systems (which often do not ensure termination), the forms of co-recursive unbounded behavior
enabled by [TCP14, LM16] preserve the intrinsic confluent, deterministic behavior inherited from
logical foundations. This prevents fair comparisons with type systems for deadlock freedom of
unbounded/cyclic communication structures which do not guarantee confluence/determinism, such
as those by Giachino et al. [GKL14, KL17]. In contrast, the type system for deadlock freedom by
Padovani [Pad14] ensures a form of partial confluence, inherited from [KPT99]. Hence, it would
seem that there is common ground for comparing the linear type system in [Pad14] and the logically
motivated session type system in [LM16]. The actual feasibility of relating these different type
systems remains unclear, and should be established in future work.

Other Curry-Howard Interpretations of Session Types. As already discussed, our work concerns
the Curry-Howard correspondences between (classical) linear logic propositions and session types
developed in [CP10, CPT16, Wad12]. In the following, we briefly discuss our results in the context of
other correspondences between (variants of) linear logic and session types [DG18, KMP19, QKB21].

Dardha and Gay [DG18] developed Priority-based Classical Processes (PCP), a session type sys-
tem that rests upon an extension of classical linear logic with Kobayashi’s obligations/capabilities,
simplified to priorities by following Padovani [Pad14]. Unlike the type system in [Wad12], the type
system of PCP admits processes with safe cyclic topologies. To this end, PCP cuts ties with the
“composition plus hiding” principle that is at the heart of L: the Rule (T-cut) is replaced by rules
(T-mix) and (T-cycle) that separately treat parallel composition and restriction, respectively. As a re-
sult, a multicut rule, which allows composing two processes that may share more than one session,
is derivable in PCP. This way, the class of typable processes induced by PCP strictly includes L.

Kokke et al. [KMP19] developed Hypersequent Classical Processes (HCP), an interpretation
of session types based on the same classical linear logic as in [Wad12] but with a hypersequent
presentation. The design of HCP neatly induces a labeled transition semantics for typed processes;
it has been further investigated in, e.g., [QKB21, FKD+21]. Also, similarly to PCP, HCP includes
separate typing rules for restriction and parallel composition. However, HCP cannot type the
kind of safe cyclic process topologies that are typable in PCP: as such, the separate treatment for
restriction and parallel composition (enabled by the hypersequent presentation of CLL) does not
enhance by itself the topology of processes, and the typable processes in HCP have a tree topology
as in L. We conjecture that our separation and unifying results also hold, with minor modifications,
for a variant of L based on HCP. We leave such technical investigation as future work.

Qian et al. [QKB21] recently proposed Client-Server Linear Logic (CSLL) and a corresponding
session type system for π-calculus processes, which uses the hypersequent presentation of [KMP19].
By introducing coexponentials, CSLL captures more expressive client-server behaviours than those
usually admitted by interpretations of CLL as session types. Their approach consists in abandoning
the mix principles as adopted by most systems based on CLL (including the one we define in §3.1).

35

This way, the mix rules in CSLL only concern disjoint concurrency, as captured by hyperenviron-
ments. As already discussed, in our work the Rule (T-mix) enables us to type the independent parallel
composition of processes, as needed in several aspects of our development, such as our separation
result based on µK. Exploring how to adapt our results to a system without mix principles is an
interesting item for future work.

Correctness Criteria for the Translation. The translation L·M defined in § 5 is supported by an
operational correspondence result, Theorem 5.2. Operational correspondence is a well-established
correctness criterion, which allows us to certify the quality of a language translation. There exist
other correctness criteria, which typically serve different purposes [Gor10, Par08]. A notable cri-
terion is full abstraction, i.e., that a translation from a source to a target language preserves the
respective equivalences. While full abstraction is not informative enough to assert the quality of a
translation (see [GN16, Par16] for a discussion), it is quite appropriate to formalise the transfer of
reasoning techniques between different calculi. Studying L·M from the perspective of full abstraction
would be insightful and requires developing (typed) behavioural equivalences for K and L. We leave
such technical developments as future work.

7. Related Work

The analysis of deadlock freedom in concurrency has a rather long and rich history, as discussed
in details in [AGN97]. Focusing on type-based approaches to deadlock freedom for communicating
processes, early works are by Kobayashi [Kob97] and by Abramsky et al. [AGN97]. The work
in [AGN97] develops a semantic approach to deadlock freedom for asynchronous communicating
processes, building upon categorical foundations. The work in [Kob97] proposes a type system for
the π-calculus that builds upon two key ideas: (i) the introduction of usage of channels as types
(usage types), and (ii) the classification of channels into reliable and unreliable (where reliable
channels are ensured to have deadlock-free interactions). These ideas have proved rather influen-
tial: based on them, a number of extensions and enhancements to type systems for deadlock-free,
message-passing processes have been introduced. Kobayashi [Kob07] offers a unified presentation
of these developments. The work of Kobayashi and Laneve [KL17] builds upon notions of usage
types and reliable channels for the type-based analysis of unbounded process networks.

The introduction of type systems based on usage types coincided in time with the intro-
duction of (binary) session types as a type-based approach to ensure safe structured commu-
nications [Hon93, THK94, HVK98]. In their original formulation, session types for the π-
calculus ensure communication safety and session fidelity, therefore ruling out some (but not
all!) of the causes of deadlocked behaviors in communicating processes. In session-based con-
currency, deadlocks are due to circular dependencies inside a session, but are also found in
subtle entanglements between different protocols/sessions. In particular, session type systems
[Vas12] cannot guarantee deadlock freedom of interleaved sessions. To our knowledge, Dezani
et al. [DdY08] were the first to address progress/deadlock freedom for session-typed processes.
Subsequent works on type-based analyses for deadlock freedom in structured communications in-
clude [BCD+08, CV09, CD10, CP10, Pad13, VV13, Pad14].

As discussed in detail in this paper, another approach to deadlock freedom is based on linear
logic under a Curry-Howard correspondence [CP10, Wad12], where circular dependencies of com-
munication in processes are eliminated by design, due to Rule (T-cut). As already mentioned, the
type system PCP [DG18] allows to type safe cyclic process topologies. Following PCP, Kokke and

36

Dardha [KD21b] define Priority GV (PGV) and its implementation in Linear Haskell [KD21a],
which is a core concurrent λ-calculus with priorities, whereas the work of Van den Heuvel and
Pérez [vdHP21] extends PCP with asynchronous communication. Balzer et al. [BTP19] develop a
type system that enforces deadlock freedom for a language with manifest sharing, which supports
possibly recursive processes in which cycles arise under an acquire-release discipline for shared chan-
nels. We note that none of the above works propose a formal comparison between different type
systems for deadlock freedom, as we achieve in this paper.

Building upon a translation first suggested by Kobayashi [Kob07], the work of Dardha et
al. [DGS12, Dar14, DGS17] offered a formal relationship between usage types and session types.
Such a relationship made it possible to use type-based analysis techniques for usage types in
the analysis of session-typed process specifications; this insight was formalized by Carbone et
at. [CDM14, Dar16]. The effectiveness of the approach in [CDM14] is supported by informal com-
parisons with respect to different type systems for deadlock freedom (including those in [DdY08]
and [CD10]) using processes typable in one framework but not in another.

A comparison with the workshop version of our work [DP15] is relevant. In [DP15], we intro-
duced the notion of degree of sharing to classify processes in K. Intuitively, the degree of sharing
quantifies the greatest number of channels shared by parallel components: processes with a degree
of sharing equal to 0 do not share any channels (concurrency without interaction), processes with a
degree of sharing equal to 1 share at most one session, and so on. The degree of sharing determines
a strict hierarchy of processes (denoted K0,K1, . . . in [DP15]). This hierarchy, however, is only
static—it is not closed under reduction.

A recent work by Van den Heuvel and Pérez [vdHP20] also compares session type systems based
on Curry-Howard foundations. In [vdHP20], the focus is on the classes of typable processes induced
by classical and intuitionistic presentations of linear logic; the main result is that the class induced
by intuitionistic linear logic is strictly contained in the class induced by classical linear logic. That is,
classical linear logic leads to more permissive session type systems. The developments in this paper
involved several process languages, each with its own type system—note that the type system that
defines L (Figure 5) falls under the classical perspective. In contrast, the comparisons in [vdHP20]
concern different logically-motivated type systems for the same process language.

Loosely related to our work (in particular to the translation in §5) is previous work on deadlock
resolution in the π-calculus by Giunti and Ravara [GR13] and on unlocking blocked processes by
Francalanza et al. [FGR15]. The approach in [GR13] relies on a typing algorithm that detects a
particular class of deadlocks (so-called self-holding deadlocks), but instead of rejecting the code,
fixes it by looking into the session types and producing new safe code that obeys the protocols and
is deadlock-free. Building upon [GR13], the work in [FGR15] investigates methods for resolving
circular-wait deadlocks across parallel compositions, with a focus on finite CCS processes.

8. Concluding Remarks

We have presented a formal comparison of fundamentally distinct type systems for deadlock-
free, session typed π-calculus processes. To the best of our knowledge, ours is the first work to
establish precise relationships of this kind. Indeed, prior comparisons between type systems for
deadlock freedom are informal, given in terms of specific processes typable in one type system but
not in some other.

An immediate difficulty in giving a unified account of different typed frameworks for deadlock
freedom is the variety of process languages, type structures, and typing rules that define each

37

framework. Our comparisons involve: the framework of session processes put forward by Vascon-
celos [Vas12]; the interpretation of linear logic propositions as session types by Caires [Cai14]; the
π-calculus with usage types by Kobayashi in [Kob02a]. Finding some common ground for compar-
ing these three frameworks is not trivial—several translations/transformations were required in our
developments to account for numerous syntactic differences. We made an effort to follow the exact
definitions in each framework. Overall, we believe that we managed to concentrate on essential
semantic features of two salient classes of deadlock-free session processes, here defined as L and K
(cf. Definition 4.4).

One main technical contribution is the identification of the precise conditions under which L
and K coincide. We introduced µK, a strict sub-class of K that coincides with L. The class µK
arises as the specialization of Kobayashi’s type system [Kob06] that results from internalizing the
key aspects of the Curry-Howard interpretation of session types, most notably, the principle of
“composition plus hiding”, which allows to compose only processes that share exactly one session.
This way, µK represents a new characterization of L, given in terms of a very different type system
for deadlock freedom adopting usages, capabilities and obligations, put forward by Kobayashi. The
identification of µK and its coincidence with L thus provide an immediate way of separating the
classes of processes in L and K. As another technical contribution, but on the opposite direction,
we determined how to unify these two classes by developing an intuitive translation of processes
in K into processes in L, which addresses the syntactic differences between different classes of
deadlock-free processes in a type-respecting manner. Although based on simple ideas, our technical
developments substantially clarify our understanding of type systems for liveness properties (such
as deadlock freedom) in the context of π-calculus processes.

Acknowledgments

We would like to thank the anonymous reviewers of previous versions of this paper for their
useful and constructive suggestions, which led to substantial improvements. We are also grateful
to Lúıs Caires and Simon J. Gay for their valuable comments and suggestions on prior versions of
this manuscript. We thank Bas van den Heuvel for his help in designing Figure 1.

This work was partially supported by the EU COST Action IC1201 (Behavioural Types for
Reliable Large-Scale Software Systems). Dardha has been supported by the UK EPSRC project
EP/K034413/1 (From Data Types to Session Types: A Basis for Concurrency and Distribution)
and by the EU HORIZON 2020 MSCA RISE project 778233 “Behavioural Application Program
Interfaces” (BehAPI). Pérez has been partially supported by the Dutch Research Council (NWO)
under project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software). Pérez is
also affiliated to the NOVA Laboratory for Computer Science and Informatics, Universidade Nova
de Lisboa, Portugal.

References

[AGN97] Samson Abramsky, Simon J. Gay, and Rajagopal Nagarajan. A type-theoretic approach
to deadlock-freedom of asynchronous systems. In Mart́ın Abadi and Takayasu Ito, edi-
tors, Theoretical Aspects of Computer Software, Third International Symposium, TACS
’97, Sendai, Japan, September 23-26, 1997, Proceedings, volume 1281 of Lecture Notes
in Computer Science, pages 295–320. Springer, 1997.

38

[ALM16] Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation confers concurrency.
In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella, editors, A
List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer Science,
pages 32–55. Springer, 2016.

[BCD+08] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty
sessions. In CONCUR, pages 418–433, 2008.

[BS98] Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causality in the
\pi-calculus. Acta Inf., 35(5):353–400, 1998.

[BTP19] Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom
for shared session types. In Lúıs Caires, editor, Programming Languages and Systems -
28th European Symposium on Programming, ESOP 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, volume 11423 of Lecture Notes in Computer
Science, pages 611–639. Springer, 2019.

[Cai14] Lúıs Caires. Types and logic, concurrency and non-determinism. In Essays for the
Luca Cardelli Fest - Microsoft Research Technical Report MSR-TR-2014-104, September
2014.

[CD10] Marco Carbone and Søren Debois. A graphical approach to progress for structured
communication in web services. In ICE 2010, Amsterdam, The Netherlands, 10th of
June 2010., volume 38 of EPTCS, pages 13–27, 2010.

[CDM14] Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compositional lock-
freedom. In Coordination Models and Languages - 16th IFIP WG 6.1 International
Conference, COORDINATION 2014, Held as Part of the 9th International Federated
Conferences on Distributed Computing Techniques, DisCoTec, volume 8459 of LNCS,
pages 49–64. Springer, 2014.

[CP10] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR 2010, volume 6269 of LNCS, pages 222–236. Springer, 2010.

[CP17] Lúıs Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In
Hongseok Yang, editor, Programming Languages and Systems - 26th European Sym-
posium on Programming, ESOP 2017, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 229–259.
Springer, 2017.

[CPT16] Lúıs Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016.

[CV09] Lúıs Caires and Hugo Torres Vieira. Conversation types. In ESOP’09, volume 5502 of
LNCS, pages 285–300, Heidelberg, Germany, 2009. Springer-Verlag.

39

[Dar14] Ornela Dardha. Recursive session types revisited. In Proceedings Third Workshop on Be-
havioural Types, BEAT 2014, Rome, Italy, 1st September 2014., volume 162 of EPTCS,
pages 27–34, 2014.

[Dar16] Ornela Dardha. Type Systems for Distributed Programs: Components and Sessions,
volume 7 of Atlantis Studies in Computing. Springer / Atlantis Press, 2016.

[DdY08] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. On progress for
structured communications. In Trustworthy Global Computing, volume 4912 of LNCS,
pages 257–275. Springer, 2008.

[DG18] Ornela Dardha and Simon J. Gay. A new linear logic for deadlock-free session-typed
processes. In Foundations of Software Science and Computation Structures - 21st Inter-
national Conference, FOSSACS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, volume 10803 of LNCS, pages 91–109. Springer, 2018.

[DGS12] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In
PPDP’12, pages 139–150. ACM, 2012.

[DGS17] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Inf.
Comput., 256:253–286, 2017.

[DP15] Ornela Dardha and Jorge A. Pérez. Comparing deadlock-free session typed processes.
In Combined 22th International Workshop on Expressiveness in Concurrency and 12th
Workshop on Structural Operational Semantics, and 12th Workshop on Structural Op-
erational Semantics, EXPRESS/SOS, volume 190 of EPTCS, pages 1–15, 2015.

[DP20] Ornela Dardha and Jorge A. Pérez. Comparing Type Systems for Deadlock Freedom.
CoRR, abs/1810.00635, 2020.

[FGR15] Adrian Francalanza, Marco Giunti, and António Ravara. Unlocking blocked communi-
cating processes. In Maurice H. ter Beek and Alberto Lluch-Lafuente, editors, Proceed-
ings 11th International Workshop on Automated Specification and Verification of Web
Systems, WWV 2015, Oslo, Norway, 23rd June 2015., volume 188 of EPTCS, pages
23–32, 2015.

[FKD+21] Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. Separat-
ing sessions smoothly. In Serge Haddad and Daniele Varacca, editors, 32nd International
Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Con-
ference, volume 203 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[GH05] Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191–225, nov 2005.

[GKL14] Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. Deadlock analysis of unbounded
process networks. In CONCUR, pages 63–77, 2014.

[GN16] Daniele Gorla and Uwe Nestmann. Full abstraction for expressiveness: history, myths
and facts. Math. Struct. Comput. Sci., 26(4):639–654, 2016.

40

[Gor10] Daniele Gorla. Towards a unified approach to encodability and separation results for
process calculi. Inf. Comput., 208(9):1031–1053, 2010.

[GR13] Marco Giunti and António Ravara. Towards static deadlock resolution in the -calculus.
In TGC, pages 136–155, 2013.

[Hon93] Kohei Honda. Types for dyadic interaction. In the 4th International Conference on
Concurrency Theory, CONCUR, volume 715 of LNCS, pages 509–523. Springer, 1993.

[HVK98] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives
and type discipline for structured communication-based programming. In ESOP’98,
volume 1381 of LNCS, pages 122–138. Springer, 1998.

[IK04] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theor.
Comput. Sci., 311(1-3):121–163, 2004.

[KD21a] Wen Kokke and Ornela Dardha. Deadlock-free session types in linear haskell. In Jurri-
aan Hage, editor, Haskell 2021: Proceedings of the 14th ACM SIGPLAN International
Symposium on Haskell, Virtual Event, Korea, August 26-27, 2021, pages 1–13. ACM,
2021.

[KD21b] Wen Kokke and Ornela Dardha. Prioritise the best variation. In Kirstin Peters and
Tim A. C. Willemse, editors, Formal Techniques for Distributed Objects, Components,
and Systems - 41st IFIP WG 6.1 International Conference, FORTE 2021, Held as Part
of the 16th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings, volume 12719 of Lecture
Notes in Computer Science, pages 100–119. Springer, 2021.

[KL17] Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process networks.
Inf. Comput., 252:48–70, 2017.

[KMP19] Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never: a fully-
abstract semantics for classical processes. Proc. ACM Program. Lang., 3(POPL):24:1–
24:29, 2019.

[Kob97] Naoki Kobayashi. A partially deadlock-free typed process calculus. In Proceedings, 12th
Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 -
July 2, 1997, pages 128–139. IEEE Computer Society, 1997.

[Kob02a] Naoki Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122–159,
2002.

[Kob02b] Naoki Kobayashi. Type systems for concurrent programs. In Formal Methods at the
Crossroads: From Panacea to Foundational Support—Papers from the 10th Anniversary
Colloquium of UNU/IIST, the International Institute for Software Technology of the
United Nations University, volume 2757 of LNCS, pages 439–453. Springer, 2002.

[Kob06] Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR 2006,
volume 4137 of LNCS, pages 233–247. Springer, 2006. Full version available at http:

//www-kb.is.s.u-tokyo.ac.jp/~koba/papers/concur2006-full.pdf.

41

http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/concur2006-full.pdf
http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/concur2006-full.pdf

[Kob07] Naoki Kobayashi. Type systems for concurrent programs. Extended ver-
sion of [Kob02b], Tohoku University. www.kb.ecei.tohoku.ac.jp/~koba/papers/

tutorial-type-extended.pdf, 2007.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-
calculus. In POPL, pages 358–371, 1996.

[KPT99] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-
calculus. ACM Trans. Program. Lang. Syst., 21(5):914–947, 1999.

[KS10] Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst., 32(5), 2010.

[LM16] Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for session
types. In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP
2016, Nara, Japan, September 18-22, 2016, pages 434–447. ACM, 2016.

[Mil91] Robin Milner. The Polyadic pi-Calculus: A Tutorial. Technical report, Logic and
Algebra of Specification, 1991.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I.
Inf. Comput., 100(1):1–40, 1992.

[Pad13] Luca Padovani. From lock freedom to progress using session types. In Proceedings of
PLACES 2013, Rome, Italy, 23rd March 2013., volume 137 of EPTCS, pages 3–19,
2013.

[Pad14] Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In CSL-LICS,
pages 72:1–72:10. ACM, 2014.

[Par08] Joachim Parrow. Expressiveness of process algebras. Electron. Notes Theor. Comput.
Sci., 209:173–186, 2008.

[Par16] Joachim Parrow. General conditions for full abstraction. Math. Struct. Comput. Sci.,
26(4):655–657, 2016.

[PCPT14] Jorge A. Pérez, Lúıs Caires, Frank Pfenning, and Bernardo Toninho. Linear logical
relations and observational equivalences for session-based concurrency. Inf. Comput.,
239:254–302, 2014.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press, MA, USA, 2002.

[QKB21] Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in linear logic. Proc.
ACM Program. Lang., 5(ICFP):1–31, 2021.

[San02] Davide Sangiorgi. Types, or: Where’s the difference between CCS and pi? In Lubos
Brim, Petr Jancar, Mojmı́r Kret́ınský, and Antońın Kucera, editors, CONCUR 2002 -
Concurrency Theory, 13th International Conference, Brno, Czech Republic, August 20-
23, 2002, Proceedings, volume 2421 of Lecture Notes in Computer Science, pages 76–97.
Springer, 2002.

42

www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[TCP14] Bernardo Toninho, Lúıs Caires, and Frank Pfenning. Corecursion and non-divergence in
session-typed processes. In TGC 2014, volume 8902 of LNCS, pages 159–175. Springer,
2014.

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and
its typing system. In PARLE’94, pages 398–413, 1994.

[Vas12] Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.

[vdHP20] Bas van den Heuvel and Jorge A. Pérez. Session type systems based on linear logic:
Classical versus intuitionistic. In Stephanie Balzer and Luca Padovani, editors, Pro-
ceedings of the 12th International Workshop on Programming Language Approaches to
Concurrency- and Communication-cEntric Software, PLACES@ETAPS 2020, Dublin,
Ireland, 26th April 2020, volume 314 of EPTCS, pages 1–11, 2020.

[vdHP21] Bas van den Heuvel and Jorge A. Pérez. Deadlock freedom for asynchronous and cyclic
process networks. In Julien Lange, Anastasia Mavridou, Larisa Safina, and Alceste
Scalas, editors, Proceedings 14th Interaction and Concurrency Experience, ICE 2021,
EPTCS, 2021.

[VV13] Hugo Torres Vieira and Vasco Thudichum Vasconcelos. Typing progress in
communication-centred systems. In COORDINATION, volume 7890 of LNCS, pages
236–250. Springer, 2013.

[Wad12] Philip Wadler. Propositions as sessions. In ICFP’12, pages 273–286, 2012.

[Yos96] Nobuko Yoshida. Graph types for monadic mobile processes. In FSTTCS’96, volume
1180 of LNCS, pages 371–386. Springer, 1996.

43

Appendix A. Omitted Proofs for § 4

Appendix A.1. Proof of Theorem 4.1 (Page 24)

We divide the proof into the following two lemmas: Lemma Appendix A.2 (see below) and
Lemma Appendix A.3 (Page 48).

Lemma Appendix A.1 (Substitution Lemma for CP). If P `LL Γ, x : T and v /∈ fn(P), then
P [v/x] `LL Γ, v : T .

Lemma Appendix A.2. If P ∈ L then P ∈ µK.

Proof. By structural induction on P . By Definition 4.4 and Definition 4.5, we have that

L =
{
P ∈ P : ∃Γ. (Γ `ST P ∧ JP K` `LL JΓK`)

}
µK =

{
P ∈ P : ∃Γ, f. (Γ `ST P ∧ JΓ↓Kfu `

µ
≺ JP Kfu)

}
where J·K` is as in Definition 4.1. Following the syntax in Figure 2, there are seven cases to consider:

1. P = 0: By assumption we have both Γ `ST 0, for some context Γ (with un(Γ)), and 0 `LL
x1:•, · · · , xn:•, for some x1, . . . , xn such that xi : end ∈ Γ, for all i ∈ {1, . . . , n}. Because
Γ↓ = ∅, we must show that J∅Kfu `

µ
≺ J0Kfu . By Definition 3.11 and Figure 7, this is the same

as showing that ∅ `µ≺ 0. The thesis then follows immediately from Rule (Tπ-Nil) in Figure 11.

2. P = x(y).P ′: By assumption and Definition 3.11, Definition 4.1, and Definition 4.4, we have

Γ, x : ?T.S `ST x(y).P ′ (A.1)

x(y).JP ′K` `LL JΓK`, x : JT K` O JSK`

for some context Γ and session types S, T . By inversion on typing judgement on (A.1):

Γ, x : S, y : T `ST P ′

Γ, x : ?T.S `ST x(y).P ′
(A.2)

By Definition 3.11 and Definition 4.5 and by Figure 7, we then must show:

fx : chan(JT Ku, JSKu ; ?0
0) ;≺ JΓ↓Kfu `

µ
≺ fx(y, c).JP ′Kf,{x 7→c}u

By induction hypothesis on the premise of (A.2) we have:

JΓ↓Kf
′

u , f
′
x : JSKu, f ′y : JT Ku `µ≺ JP ′Kf

′

u (A.3)

for some renaming function f ′. We let f be such that f ′ = f, {x 7→ c}. We can then use f to
rewrite the above judgement (A.3), as follows:

JΓ↓Kfu , c : JSKu, y : JT Ku `µ≺ JP ′Kf,{x7→c}u (A.4)

Then, the thesis follows from (A.4) after applying Rule (Tπ-In) in Figure 11.

44

3. P = x〈y〉.P ′: By assumption and Definition 3.11, Definition 4.1, and Definition 4.4, we have:

Γ, x : !T.S, y : T `ST x〈y〉.P ′ (A.5)

x(z).([z↔y] | JP ′K`) `LL JΓK`, x : JT K` ⊗ JSK`, y : JT K`

for some context Γ and session types S, T . By inversion on typing judgement on (A.5) we
have:

Γ, x : S `ST P ′

Γ, x : !T.S, y : T `ST x〈y〉.P ′
(A.6)

By Definition 4.5 and Figure 7, we must show:

fx : chan(JT Ku, JSKu ; !00) ;≺
(
y : JT Ku | JΓ↓Kfu

)
`µ≺ (νc)fx〈y, c〉.JP ′Kf,{x 7→c}u

By induction hypothesis on the premise of (A.6) we have:

JΓ↓Kf
′

u , f
′
x : JSKu `µ≺ JP ′Kf

′

u

for some renaming function f ′. We let f be such that f ′ = f, {x 7→ c}. We can then rewrite
the above judgement in terms of f as follows:

JΓ↓Kfu , c : JSKu `µ≺ JP ′Kf,{x 7→c}u (A.7)

By applying Rule (Tπ-Var) we can derive both

y : JT Ku `µ≺ y : JT Ku (∗) and c : JSKu `µ≺ c : JSKu (∗∗)

Let U1 = u(JSKu) and U2 = u(JSKu). Lemma 4.4 ensures rel(U1 | U2). We can then apply
Rule (Tπ-BOut) in Figure 11 on (∗), (∗∗), and the induction hypothesis in (A.7):

y : JT Ku, c : JSKu `µ≺ y : JT Ku, c : JSKu JΓ↓Kfu , c : JSKu `µ≺ JP ′Kf,{x7→c}u rel(U1 | U2)

fx : chan(JT Ku, JSKu ; !00) ;≺
(
y : JT Ku | JΓ↓Kfu

)
`µ≺ (νc)fx〈y, c〉.JP ′Kf,{x 7→c}u

(A.8)
which concludes this case.

4. P = x.{li : Pi}i∈I . Then, by assumption and Definition 3.11, Definition 4.1, and Definition 4.4
we have:

Γ, x : &{li : Ti}i∈I `ST x . {li : Pi}i∈I (A.9)

x . {li : Pi}i∈I `LL JΓK`, x:&{li : JTiK`}i∈I

for some context Γ and session types Ti for i ∈ I. By inversion on the typing judgement given
in (A.9) we have:

Γ, x : Ti `ST Pi ∀i ∈ I
Γ, x : &{li : Ti}i∈I `ST x . {li : Pi}i∈I

(A.10)

By Definition 3.11 and Definition 4.5, and by Figure 7, we must show:

fx : chan(〈li : JTiKu〉i∈I ; ?0
0) ;≺ JΓ↓Kfu `

µ
≺ fx(y). case y of {li c . JPiKf,{x 7→c}u }i∈I

45

By induction hypothesis on the premise of (A.10) we have:

JΓ↓Kf
′

u , f
′
x : JTiKu `µ≺ JPiKf

′

u ∀i ∈ I

for some renaming function f ′. We let f be such that f ′ = f, {x 7→ c}. We can then rewrite
the above judgement as follows:

JΓ↓Kfu , c : JTiKu `µ≺ JPiKf,{x 7→c}u ∀i ∈ I

By applying Rule (Tπ-Var), we obtain y : 〈li : JTiKu〉i∈I `µ≺ y : 〈li : JTiKu〉i∈I . Then we apply
in order Rules (Tπ-Case) and (Tπ-Inp) (cf. Figure 11) on the judgement above to conclude:

fx : chan(〈li : JTiKu〉i∈I ; ?0
0) ;≺ JΓ↓Kfu `

µ
≺ fx(y). case y of {li c . JPiKf,{x 7→c}u }i∈I

5. P = x / lj .Pj . Then, by assumption and Definition 3.11, Definition 4.1, and Definition 4.4,
we have:

Γ, x : ⊕{li : Ti}i∈I `ST x / lj .Pj (A.11)

x / lj .JPjK` `LL JΓK`, x:⊕ {li : JTiK`}i∈I

for some context Γ and session types Ti, for i ∈ I. By inversion on typing judgement on (A.11)
we have:

Γ, x : Tj `ST Pj ∃j ∈ I
Γ, x : ⊕{li : Ti}i∈I `ST x / lj .Pj

(A.12)

By Definition 4.5 and Figure 7, we must show:

fx : chan(〈li : JTiKu〉i∈I ; !00) ;≺ JΓ↓Kfu `
µ
≺ (νc)fx〈lj c〉.JPjKf,{x7→c}u

By induction hypothesis on the premise of (A.12) we have:

JΓ↓Kf
′

u , f
′
x : JTjKu `µ≺ JPjKf

′

u

for some renaming function f ′. We let f be such that f ′ = f, {x 7→ c}. We can then rewrite
the above judgement as follows:

JΓ↓Kfu , c : JTjKu `µ≺ JPjKf,{x 7→c}u (A.13)

By applying Rules (Tπ-Var) and (Tπ-LVal) we obtain:

c : JTjKu `µ≺ lj c : 〈li : JTiKu〉i∈I (A.14)

Let U1 = u(JTjKu) and U2 = u(JTjKu) Lemma 4.4 ensures rel(U1 | U2). We can then ap-
ply Rule (Tπ-BOut) (cf. Figure 11), without a free channel (only a bound one), on (A.13)
and (A.14). We have:

c : JTjKu `µ≺ lj c : 〈li : JTiKu〉i∈I JΓ↓Kfu , c : JTjKu `µ≺ JPjKf,{x 7→c}u rel(U1 | U2)

fx : chan(〈li : JTiKu〉i∈I ; !00) ;≺ JΓ↓Kfu `
µ
≺ (νc)fx〈lj c〉.JPjKf,{x7→c}u

which concludes this case.

46

6. P = (νxy)P ′: Then, by assumption and Definition 3.11, 4.1, and 4.4, we have that there exist
P1, P2 such that P ′ = P1 | P2 with

Γ `ST (νxy)(P1 | P2) (A.15)

(νw)(JP1K`[w/x] | JP2K`[w/y]) `LL JΓK`

for some context Γ. By inversion on the typing judgements given in (A.15) we have the
following derivation, for some session type T :

Γ1, x : T `ST P1 Γ2, y : T `ST P2

Γ, x : T, y : T `ST P1 | P2

Γ `ST (νxy)(P1 | P2)

(A.16)

where Γ = Γ1,Γ2. Because P ∈ L, we have that Γ1 and Γ2 are disjoint and that channel
endpoints x and y (or the single name w in L) form the only shared channel between processes
P1 and P2. By Definition 4.5 and Figure 7, we must show:

JΓ↓Kfu `
µ
≺ (νw)(JP1Kf,{x 7→w}u | JP2Kf,{y 7→w}u)

By induction hypothesis on the premises of (A.16), we have:

JΓ↓1K
f ′

u , f
′
x : JT Ku `µ≺1

JP1Kf
′

u and JΓ↓2K
f ′

u , f
′
y : JT Ku `µ≺2

JP2Kf
′

u

for some renaming function f ′. We let f be such that f ′ = f, {x, y 7→ w}, hence we have
f ′x = f ′y = w. We can now rewrite the above judgements in terms of f as follows:

JΓ↓1K
f
u , w : JT Ku `µ≺1

JP1Kf,{x 7→w}u and JΓ↓2K
f
u , w : JT Ku `µ≺2

JP2Kf,{y 7→w}u

Let U1 = u(JT Ku) and U2 = u(JT Ku). By Lemma 4.4, rel(U1 | U2). Combining these facts, we
can apply Rule (Tπ-Par+Res) in Figure 11:

JΓ↓1K
f
u , w : JT Ku `µ≺1

JP1Kf,{x 7→w}u JΓ↓2K
f
u , w : JT Ku `µ≺2

JP2Kf,{y 7→w}u rel(U1 | U2)

JΓ↓1K
f
u , JΓ

↓
2K
f
u `

µ
≺ (νw)(JP1Kf,{x 7→w}u | JP2Kf,{y 7→w}u)

with ≺i=≺ ∪{(w, y) | y ∈ fn(Pi) \ {w}} (i ∈ {1, 2}. This completes the proof for this case.

7. P = P1 | P2: This case is similar to the previous one. By assumption we have

Γ `ST P1 | P2 (A.17)

JP1K` | JP2K` `LL JΓK`

and inversion on typing on (A.17) we infer:

Γ1 `ST P1 Γ2 `ST P2

Γ1,Γ2 `ST P1 | P2

(A.18)

where Γ = Γ1,Γ2. As before, because P ∈ L, we have that Γ1 and Γ2 are disjoint: they share
no endpoints. By Definition 4.5 and Figure 7, we must show:

JΓ↓Kfu `
µ
≺ JP1Kfu | JP2Kfu

which follows by induction hypothesis on the premises of (A.18) and by applying Rule (Tπ-
IndPar) (cf. Figure 11).

47

Lemma Appendix A.3. If P ∈ µK then P ∈ L.

Proof. By structural induction on P . Recall that by Definition 4.5 and Definition 4.4, we have that

µK ,
{
P ∈ P : ∃Γ, f. (Γ `ST P ∧ JΓ↓Kfu `

µ
≺ JP Kfu)

}
L ,

{
P ∈ P : ∃Γ. (Γ `ST P ∧ JP K` `LL JΓK`)

}
Following the syntax of processes in Figure 2, there are seven cases to consider:

1. P = 0: By assumption we have both Γ `ST 0, for some Γ (with un(Γ)), and JΓ↓Kfu `
µ
≺ J0Kfu .

Notice that Γ↓ = ∅. We have to show 0 `LL x1:•, · · · , xn:•, for some x1, . . . , xn such that
xi : end ∈ Γ, for all i ∈ {1, . . . , n}. The thesis follows by using Axiom (T-1), followed by n−1
applications of Rule (T-⊥) in Figure 5.

2. P = x(y).P ′: Then, by assumption, Figure 7 and Definition 4.5, we have both

Γ, x : ?T.S `ST x(y).P ′ (A.19)

JΓ↓Kfu , fx : chan(JT Ku, JSKu ; ?0
0) `µ≺ fx(y, c).JP ′Kf,{x 7→c}u

for some context Γ, session types S, T , and renaming function f . By inversion on typing
judgement on (A.19) we have:

Γ, x : S, y : T `ST P ′

Γ, x : ?T.S `ST x(y).P ′
(A.20)

By Definition 4.1 and Figure 10, we must show:

x(y).JP ′K` `LL JΓK`, x : JT K` O JSK`

By induction hypothesis on the premise of (A.20) we have:

JP ′K` `LL JΓK`, x : JSK`, y : JT K` (A.21)

and the thesis follows easily from (A.21) using Rule (T-O) (cf. Figure 5).

3. P = x〈y〉.P ′: Then, by assumption, Figure 7 and Definition 4.5, we have both

Γ, x : !T.S, y : T `ST x〈y〉.P ′ (A.22)

JΓ↓Kfu , fx : chan(JT Ku, JSKu ; !0κ) `µ≺ (νc)fx〈y, c〉.JP ′Kf,{x 7→c}u

for some typing context Γ, session types S, T and renaming function f . By inversion on typing
judgement on (A.26) we have:

Γ, x : S `ST P ′

Γ, x : !T.S, y : T `ST x〈y〉.P ′
(A.23)

By Definition 4.1 and Figure 10, we must show:

x(z).([z↔y] | JP ′K`) `LL JΓK`, x : JT K` ⊗ JSK`, y : JT K`

48

By induction hypothesis on the premise of (A.23) we have:

JP ′K` `LL JΓK`, x : JSK`

and then we can conclude using Rule (T-⊗) in Figure 5:

JP ′K` `LL JΓK`, x : JSK` [y↔z] `LL y : JT K`, z : JT K`
x(z).([z↔y] | JP ′K`) `LL JΓK`, x : JT K` ⊗ JSK`, y : JT K`

where [y↔z] `LL y : JT K`, z : JT K` follows from Rule (T-id).

4. P = x / lj .P
′: Then, by assumption, Figure 7, and Definition 4.5, we have both

Γ, x : ⊕{li : Si}i∈I `ST x / lj .P
′ (A.24)

JΓ↓Kfu , fx : chan(〈li : JSiKu〉i∈I ; !0κ) `µ≺ (νc)fx〈lj c〉.JP ′Kf,{x 7→c}u

for some typing context Γ, session types Si for i ∈ I, and renaming function f . By inversion
on typing judgement on (A.24) we have:

Γ, x : Sj `ST P ′ ∃j ∈ I
Γ, x : ⊕{li : Si}i∈I `ST x / lj .P ′

(A.25)

By Definition 4.1 and Figure 10, we must show:

x / lj .JP ′K` `LL JΓK`, x:⊕ {li : JSiK`}i∈I

By induction hypothesis on the premise of (A.25) we have:

JP ′K` `LL JΓK`, x : JSjK`

and then we can conclude by using Rule (T-⊕) in Figure 5:

JP ′K` `LL JΓK`, x : JSjK` j ∈ I
x / lj .JP ′K` `LL JΓK`, x:⊕ {li : JSiK`}i∈I

5. P = x . {li : P ′i}i∈I : Similar to the previous case.

6. P = (νxy)P ′: Then, by assumption, Figure 7, and Definition 4.5 we have:

Γ `ST (νxy)P ′ (A.26)

JΓ↓Kfu `µ≺ (νw)JP ′Kf,{x,y 7→w}u (A.27)

for some context Γ. By Definition 4.1 and Figure 10, we must show:

(νw)(JP1K`[w/x] | JP2K`[w/y]) `LL JΓ1K`, JΓ2K`

for some Γ = Γ1,Γ2.

By inversion on (A.27), using Rule (Tπ-Par+Res) in Figure 11, we can infer the following:

49

• Let w : chan(T̃ ; U), then rel(U).

• Since rel(U), then it must be the case that U = U1 | U2, which in turn implies that

JP ′Kf,{x,y 7→w}u = JP ′1K
f,{x7→w}
u | JP ′2K

f,{y 7→w}
u , for some P ′1, P

′
2.

• Processes JP ′1K
f,{x7→w}
u and JP ′2K

f,{y 7→w}
u share exactly one channel, namely w.

By inversion on the encoding and renaming function f , and on the typing judgement on (A.26)
we have:

Γ1, x : S `ST P1 Γ2, y : S `ST P2

Γ1, x : S,Γ2, y : S `ST P1 | P2

Γ1,Γ2 `ST (νxy)(P1 | P2)

(A.28)

for some session type S and Γ = Γ1,Γ2. By applying the induction hypothesis on the premises
of (A.28), we have both

JP1K` `LL JΓ1K`, x : JSK` and JP2K` `LL JΓ2K`, y : JSK`

By Lemma Appendix A.1 we obtain:

JP1K`[w/x] `LL JΓ1K`, w : JSK` and JP2K`[w/y] `LL JΓ2K`, w : JSK`

We then conclude by using Lemma 4.3 and Rule (Tcut) (cf. Figure 5):

JP1K`[w/x] `LL JΓ1K`, w : JSK` JP2K`[w/y] `LL JΓ2K`, w : JSK`
(νw)(JP1K`[w/x] | JP2K`[w/y]) `LL JΓ1K`, JΓ2K`

7. P = P1 | P2: similar to the previous case, noticing that since there is no restriction to bind
two endpoints together, membership of P in µK relies on Rule (Tπ-InDPar) in Figure 11 rather
than on Rule (Tπ-Par+Res) (as in the previous case). Then, we use Rule (T-mix) (rather than
Rule (Tcut)) to type the composition of P1 and P2 (cf. Figure 5).

Appendix B. Omitted Proofs for § 5

Appendix B.1. Proof of Lemma 5.1

We repeat the statement in Page 26:

Lemma 5.1. Let T be a session type and Γ be a session context.

1. For all P ∈ 〈|T |〉x, we have P `LL x : JT K`.

2. For all P ∈ 〈|Γ|〉, we have P `LL JΓK`.

Proof. We consider both parts separately.

Part 1. The proof proceeds by induction on the structure of T . Thus, there are five cases to
consider:

50

1. Case T = end. Then, by Definition 5.1, we have 〈|end|〉x =
{
0
}

. We conclude by the fact
that JendK` = • (cf. Figure 10) and by Rule (T-1) (cf. Figure 5).

2. Case T = ?T.S. Then, by Definition 5.1, P is of the form x(y).(P1 | P2), with P1 ∈ 〈|T |〉y and
P2 ∈ 〈|S|〉x. By applying the induction hypothesis twice, on T and S, we obtain:

P1 `LL y : JT K` P2 `LL x : JSK`

Now, by applying Rules (T-mix) and (T-O) (cf. Figure 5) we have

P1 `LL y : JT K` P2 `LL x : JSK`
P1 | P2 `LL y : JT K`, x : JSK`

x(y).(P1 | P2) `LL x:JT K` O JSK`

By encoding of types in Figure 10, we have J?T.SK` = JT K` O JSK`, which concludes this case.

3. Case T = !T.S. Then, by Definition 5.1, P is of the form x(y).(P1 | P2), with P1 ∈ 〈|T |〉y and
P2 ∈ 〈|S|〉x. By applying the induction hypothesis twice, on T and S, we obtain

P1 `LL y : JT K` P2 `LL x : JSK`

Now, by applying Rule (T-⊗) (cf. Figure 5) we have

P `LL y : JT K` Q `LL x : JSK`
x(y).(P | Q) `LL x : JT K` ⊗ JSK`

By encoding of types in Figure 10, we have J!T.SK` = JT K` ⊗ JSK` which concludes this case.

4. Case T = &{li : Si}i∈I . Then, by Definition 5.1, P is of the form x . {li : Pi}i∈I , with
Pi ∈ 〈|Si|〉x, for all i ∈ I. By induction hypothesis on those Si, we obtain Pi `LL x : JSiK`, for
all i ∈ I. Then, by Rule (T&) (cf. Figure 5) we have:

Pi `LL x : JSiK` ∀i ∈ I
x . {li : Pi}i∈I `LL x : &{li : JSiK`}i∈I

By encoding of types in Figure 10, J&{li : Si}i∈IK` = &{li : JSiK`}i∈I , which concludes this
case.

5. Case T = ⊕{li : Si}i∈I . Then, by Definition 5.1, P is of the form x / lj .Pj , with Pj ∈ 〈|Sj |〉x
and j ∈ I. By induction hypothesis on Sj , we obtain Pj `LL x : JSjK`. Then, by Rule (T⊕)
(cf. Figure 5) we have

Pj `LL x : JSjK`
x / lj .Pj `LL x:⊕ {li : JSiK`}i∈I

By encoding of types in Figure 10, we have J⊕{li : Si}i∈IK` = ⊕{li : JSiK`}i∈I , which concludes
this case.

51

Part 2. Given Γ = w1 : T1, . . . , wn : Tn, the proof is by induction on n, the size of Γ. The base case is
when n = 1: then, by Part 1, 〈|Γ|〉 = 〈|T1|〉w1 , and the thesis follows immediately. The inductive step
(n > 1) proceeds by using the inductive hypothesis and Rule (T-mix). Let Γ = Γ′, wn : Tn. Then, by
inductive hypothesis, Pi ∈ 〈|Γ′|〉 implies Pi `LL JΓ′K`. Recall that JΓ′K` = w1:JT1K`, . . . , wn−1:JTn−1K`
by Definition 4.2. Also, by Part 1, P ′ ∈ 〈|Tn|〉wn implies P ′ `LL wn : JTnK`. Since by Definition 5.2,
Pi | P ′ ∈ 〈|Γ|〉, the thesis follows by composing Pi and P ′ using Rule (T-mix):

Pi `LL w1 : JT1K`, · · · , wn−1 : JTn−1K` P ′ `LL wn : JTnK`
Pi | P ′ `LL w1 : JT1K`, · · · , wn : JTnK`

This concludes the proof.

Appendix B.2. Proof of Theorem 5.1

We repeat the statement in Page 29:

Theorem 5.1. (L·M is Type Preserving) Let Γ `ST P . Then, for all Q ∈ LΓ `ST P M, we have that
Q `LL JΓK`.

Proof. The proof proceeds by cases on the judgement Γ `ST P used in the translation given in
Definition 5.4, and by inversion on the last typing rule applied (given in Figure 3). There are seven
cases to consider:

1. Γ `ST 0. Then, by inversion the last rule applied is (T-Nil), with un(Γ). By Definition 5.4 we
have LΓ `ST 0M = {0}. By applying Rule (T-1) (cf. Figure 5) we have:

0 `LL x : •
(T-1)

The thesis follows immediately by the encoding of types J·K` in Figure 10 and Definition 4.2,
which ensure that Jx : endK` = x : JendK` = x : •.

2. Γ′, x : !T.S, v : T `ST x〈v〉.P ′, where Γ = Γ′, x : !T.S, v : T and P = x〈v〉.P ′. By inversion the
last rule applied is (T-Out):

Γ′, x : S `ST P ′

Γ′, x : !T.S, v : T `ST x〈v〉.P ′
(T-Out)

By Definition 5.4,

LΓ′, x : !T.S, v : T `ST x〈v〉.P ′M = {x(z).
(
[v↔z] | Q

)
: Q ∈ LΓ′, x : S `ST P ′M}

By Rule (T-id) and by Lemma 4.3 we have:

[v↔z] `LL v : JT K`, z : JT K`
(T-id)

(B.1)

By induction hypothesis, for all Q ∈ LΓ′, x : S `ST P ′M we have that Q `LL JΓ′K`, x : JSK`. Let
Q′ be a process in this set. By applying Rule (T-⊗) on Q′ and on (B.1) we have

[v↔z] `LL v : JT K`, z : JT K` Q′ `LL JΓ′K`, x : JSK`
x(z).

(
[v↔z] | Q′

)
`LL JΓ′K`, x : JT K` ⊗ JSK`, v : JT K`

(T-⊗)

By encoding of types J·K` in Figure 10 we have J!T.SK` = JT K` ⊗ JSK`, and by Definition 4.2,
we have JΓ′, x : !T.S, v : T K` = JΓ′K`, x : JT K` ⊗ JSK`, v : JT K`, which concludes this case.

52

3. Γ1,Γ2, x : !T.S `ST (νzy)x〈y〉.(P1 | P2), where Γ = Γ1,Γ2, x : !T.S. By inversion, this judge-
ment is derived by a sequence of applications of rules, the last rule applied is (T-Res), and
before that (T-Out) and (T-Par) as follows:

Γ1, z : T `ST P1 Γ2, x : S `ST P2

Γ1, z : T ,Γ2, x : S `ST P1 | P2

(T-Par)

Γ1,Γ2, x : !T.S, y : T, z : T `ST x〈y〉.(P1 | P2)
(T-Out)

Γ1,Γ2, x : !T.S `ST (νzy)x〈y〉.(P1 | P2)
(T-Res)

By Definition 5.4, we have

LΓ1,Γ2, x : !T.S `ST (νzy)x〈y〉.(P1 | P2)M ={
x(z).(Q1 | Q2) : Q1 ∈ LΓ1, z : T `ST P1M ∧ Q2 ∈ LΓ2, x : S `ST P2M

}
By induction hypothesis, for all processes

Q1 ∈ LΓ1, z : T `ST P1M we have Q1 `LL JΓ1K`, z : JT K`

and
Q2 ∈ LΓ2, x : S `ST P2M we have Q2 `LL JΓ2K`, x : JSK`

Let Q′1 and Q′2 be processes in the first and second set, respectively. By applying Rule (T-⊗)
on Q′1 and Q′2 we have:

Q′1 `LL JΓ1K`, z : JT K` Q′2 `LL JΓ2K`, x : JSK`
x(z).

(
Q′1 | Q′2

)
`LL JΓ1K`, JΓ2K`, x : JT K` ⊗ JSK`

(T-⊗)

By the encoding of types J·K` in Figure 10 we have J!T.SK` = JT K`⊗JSK`, and by Definition 4.2,
we have JΓ1,Γ2, x : !T.SK` = JΓ1K`, JΓ2K`, x : JT K` ⊗ JSK`, which concludes this case.

4. Γ′, x : ?T.S `ST x(y : T).P ′, where Γ = Γ′, x : ?T.S. By inversion, the last typing rule applied
is (T-In):

Γ′, x : S, y : T `ST P ′

Γ′, x : ?T.S `ST x(y : T).P ′
(T-In)

By Definition 5.4 we have

LΓ′, x : ?T.S `ST x(y : T).P ′M = {x(y).Q : Q ∈ LΓ′, x : S, y : T `ST P ′M}

By induction hypothesis, Q ∈ LΓ′, x : S, y : T `ST P ′M implies Q `LL JΓ′K`, x : JSK`, y : JT K`.
Let Q′ be a process in this set. By applying Rule (T-O) on Q′:

Q′ `LL JΓ′K`, x : JSK`, y : JT K`
x(y).Q′ `LL JΓ′K`, x : JT K` O JSK`

(T-O)

where by the encoding of types J·K` in Figure 10 we have J?T.SK` = JT K` O JSK`, and by
Definition 4.2, we have JΓ′, x : ?T.SK` = JΓ′K`, x : JT K` O JSK`, which concludes this case.

53

5. Γ′, x : ⊕{li : Si}i∈I `ST x / lj .P ′, where Γ = Γ′, x : ⊕{li : Si}i∈I . By inversion, the last typing
rule applied is (T-Sel):

Γ′, x : Sj `ST P ′ j ∈ I
Γ′, x : ⊕{li : Si}i∈I `ST x / lj .P ′

(T-Sel)

By Definition 5.4 we have

LΓ′, x : ⊕{li : Si}i∈I `ST x / lj .P ′M = {x / lj .Q : Q ∈ LΓ′, x : Sj `ST P ′M}

By induction hypothesis, for all Q ∈ LΓ′, x : Sj `ST P ′M we have Q `LL JΓ′K`, x : JSjK`. Let Q′

be a process in this set. By applying Rule (T-⊕) on Q′ we have:

Q′ `LL JΓ′K`, x : JSjK` j ∈ I
x / lj .Q

′ `LL JΓ′K`, x : ⊕{li : JSiK`}i∈I
(T-⊕)

By the encoding of types J·K` in Figure 10, and Definition 4.2, we have

JΓ′, x : ⊕{li : Si}i∈IK` = JΓ′K`, x : ⊕{li : JSiK`}i∈I

which concludes this case.

6. Γ′, x : &{li : Si}i∈I `ST x . {li : Pi}i∈I , where Γ = Γ′, x : &{li : Si}i∈I . By inversion, the last
typing rule applied is (T-Bra):

Γ′, x : Si `ST Pi ∀i ∈ I
Γ′, x : &{li : Si}i∈I `ST x . {li : Pi}i∈I

(T-Bra)

By Definition 5.4 we have that

LΓ′, x : &{li : Si}i∈I `ST x . {li : Pi}i∈IM = {x . {li : Q}i∈I : Q ∈ LΓ′, x : Si `ST PiM}

By induction hypothesis, Qi ∈ LΓ′, x : Si `ST PiM implies Qi `LL JΓ′K`, x : JSiK`, for all i ∈ I.
Let Q′i be a process in the corresponding set, for all i ∈ I. By applying Rule (T-&) on each of
Q′i we have:

Q′i `LL JΓ′K`, x : JSiK`
x . {li : Q′i}i∈I `LL JΓ′K`, x : &{li : JSiK`}i∈I

(T-&)

By the encoding of types J·K` in Figure 10 we have J&{li : Si}i∈IK` = &{li : JSiK`}i∈I , and by
Definition 4.2, we have JΓ′, x : &{li : Si}i∈IK` = JΓ′K`, x : &{li : JSiK`}i∈I , which concludes
this case.

7. Γ1, [x̃ : S],Γ2, [ỹ : T] `ST (νx̃ỹ : S̃)(P1 | P2), where by inversion we have Γ1, x̃ : S `ST P1 and

Γ2, ỹ : T `ST P2, and the last typing rule applied is (T-Res), and before that Rule (T-Par) is
used, as follows:

Γ1, x̃ : S `ST P1 (1) Γ2, ỹ : T `ST P2 (2)

Γ1,Γ2, x̃ : S, ỹ : T `ST P1 | P2

(T-Par)

Γ1, [x̃ : S],Γ2, [ỹ : T] `ST (νx̃ỹ : S̃)(P1 | P2)
(T-Res)

54

Notice that since restriction is the only means of creating dual session channel endpoints (co-
variables) and the only restricted names in P are x̃y, it then follows that Γ1 ∩Γ2 = ∅. Hence,
by the definition of the ‘,’ operator we have that Γ1,Γ2 = Γ1,Γ2.

By Definition 5.4, we have that LΓ1, [x̃ : S],Γ2, [ỹ : T] `ST (νx̃y : S̃)(P1 | P2)M is the following
set of processes: {

C1[Q1] | G2 :C1 ∈ C̃x:T
, Q1 ∈ LΓ1, x̃ : S `ST P1M, G2 ∈ 〈|Γ2|〉

}
(B.2)

∪
{
G1 | C2[Q2] :C2 ∈ C̃y:S

, Q2 ∈ LΓ2, ỹ : T `ST P2M, G1 ∈ 〈|Γ1|〉
}

(B.3)

We start by inspecting the set of processes in (B.2). By induction hypothesis on the left-hand
side premise of Rule (T-Par), marked (1), we have:

for all processes Q ∈ LΓ1, x̃ : S `ST P1M we have that Q `LL JΓ1K`, x̃ : JSK`

Let Q′ be an arbitrary process in this set. By Lemma 5.2 we have that C1[Q′] `LL JΓ1K`. By
Lemma 5.1(b) since G2 ∈ 〈|Γ2|〉, we have that G2 `LL JΓ2K`. Since Γ1 and Γ2 are disjoint, by
Rule (T-mix) we have the following derivation, which concludes the inspection of (B.2):

C1[Q′] `LL JΓ1K` G2 `LL JΓ2K`
C1[Q′] | G2 `LL JΓ1K`, JΓ2K`

(T-mix)

We inspect now the the set of processes in (B.3). By induction hypothesis on the right-hand
side premise of Rule (T-Par), marked (2), we have:

for all processes R ∈ LΓ2, ỹ : T `ST RM we have that R `LL JΓ2K`, ˜y : JT K`

Let R′ be an arbitrary process in this set. By Lemma 5.2, C2[R′] `LL JΓ2K`. By Lemma 5.1(b)
since G1 ∈ 〈|Γ1|〉, we have G1 `LL JΓ1K`. Since Γ1 and Γ2 are disjoint, by Rule (T-mix) we have
the following derivation:

C2[R′] `LL JΓ2K` G1 `LL JΓ1K`
C2[R′] | G1 `LL JΓ1K`, JΓ2K`

(T-mix)

We thus conclude that every process belonging to the set in (B.2) or (B.3) is typed under the
typing context JΓ1K`, JΓ2K`, concluding this case (and the proof).

Appendix B.3. Proof of Theorem 5.2 (Page 31)

We repeat Definition 5.5 (cf. Page 30):

Definition Appendix B.1. Let P,Q be processes such that P,Q `LL Γ. We write P + Q if and
only if there exist P1, P2, Q1, Q2 and Γ1,Γ2 such that the following hold:

P = P1 | P2 Q = Q1 | Q2 P1, Q1 `LL Γ1 P2, Q2 `LL Γ2 Γ = Γ1,Γ2

Lemma Appendix B.1 (Substitution Lemma for Sessions [Vas12]). If Γ1 `ST v : T and Γ2, x :
T `ST P and Γ = Γ1,Γ2, then Γ `ST P [v/x].

55

Lemma Appendix B.2 (Substitution Lemma for L·M). If P ∈ LΓ, x : T `ST QM and v /∈ fn(P,Q),
then P [v/x] ∈ LΓ, v : T `ST Q[v/x]M.

Proof. Immediate from Definition 5.4 and Lemma Appendix B.1.

Proposition Appendix B.1 (Composing Characteristic Processes). Let Γ and T be a typing
context and a type, respectively.

• If P1 ∈ 〈|Γ|〉 and P2 ∈ 〈|T |〉x then P1 | P2 ∈ 〈|Γ, x : T |〉.

• If Q ∈ 〈|Γ, x : T |〉 then there are Q1, Q2 such that Q = Q1 | Q2 with Q1 ∈ 〈|Γ|〉 and Q2 ∈ 〈|T |〉x.

Proof. Immediate from Definition 5.2.

We repeat the statement of the operational correspondence given in Page 31:

Theorem 5.2. (Operational Correspondence for L·M) Let P be such that Γ `ST P for some typing
context Γ. Then, we have:

1. If P → P ′, then for all Q ∈ LΓ `ST P M there exist Q′, R such that Q →↪→ Q′, Q′ + R, and
R ∈ LΓ `ST P ′M.

2. If Q ∈ LΓ `ST P M, such that P ∈ K, and Q→↪→ Q′, then there exist P ′, R such that P → P ′,
Q′ + R, and R ∈ LΓ `ST P ′M.

Proof. We consider both parts separately.

Part 1. The proof is by induction on the height of the derivation P → P ′ (cf. Figure 2). There are
two main cases to consider, which are reductions inferred using Rules (R-Com) and (R-Case); there
are also cases corresponding to Rules (R-Par), (R-Res), and (R-Str), which are straightforward via the
induction hypothesis. For convenience, below we annotate bound names with their types: this way,
e.g., (νxy : S) means that x : S and y : S.

1. Case (R-Com): Then we have:

P , (νxy : S′)(x〈v〉.P1 | y(t : T).P2) → (νxy : S′′)(P1 | P2[v/t]) , P ′

Since Γ `ST P , then by inversion we get S′ = !T.S for some session types S, T . Then, S′′ = S.
Again by inversion we have the following derivation:

(T-Out)
Γ1, x : S `ST P1

Γ1, v : T, x : !T.S `ST x〈v〉.P1

Γ2, y : S, t : T `ST P2

Γ2, y : ?T.S `ST y(t : T).P2

(T-Inp)

Γ1, v : T, x : !T.S,Γ2, y : ?T.S `ST x〈v〉.P1 | y(t : T).P2

(T-Par)

(Γ1, v : T),Γ2 `ST (νxy : S′)(x〈v〉.P1 | y(t : T).P2)
(T-Res)

By Definition 5.4, the translation of P is as follows:

LΓ `ST P M =L(Γ1, v : T),Γ2 `ST (νxy : !T.S)(x〈v〉.P1 | y(t : T).P2)M

=
{
C1[Q1] | G2 : C1 ∈ Cx:?T.S , Q1 ∈ LΓ1, x : !T.S, v : T `ST x〈v〉.P1M, G2 ∈ 〈|Γ2|〉

}︸ ︷︷ ︸
A1

∪{
G1 | C2[Q2] : C2 ∈ Cy:!T.S , Q2 ∈ LΓ2, y : ?T.S `ST y(t : T).P2M, G1 ∈ 〈|Γ1, v : T |〉

}︸ ︷︷ ︸
A2

56

where:

A1 =
{

(νx)
(
x(w).

(
[v↔w] | P ∗1

)
| Px

)
| G2 :

P ∗1 ∈ LΓ1, x : S `ST P1M, Px ∈ 〈|?T.S|〉x, G2 ∈ 〈|Γ2|〉
}

(B.4)

A2 =
{
G1 | (νy)

(
y(t).P ∗2 | Py

)
:

P ∗2 ∈ LΓ2, y : S, t : T `ST P2M, Py ∈ 〈|!T.S|〉y, G1 ∈ 〈|Γ1, v : T |〉
}

(B.5)

Before spelling out the translation of P ′, we record some considerations. By Theorem 5.1, the
translation preserves types: Q ∈ LΓ `ST P M implies Q `LL JΓK`. Since P → P ′, Theorem 2.3
ensures Γ `ST P ′. Again, by Theorem 5.1, O ∈ LΓ `ST P ′M implies O `LL JΓK`. Also, since
Γ2, y : S, t : T `ST P2, then by Lemma Appendix B.1 we have Γ2, y : S, v : T `ST P2[v/t] and
by well-typedness v /∈ fn(P2). By Definition 5.4, the translation of P ′ is as follows:

LΓ `ST P ′M = LΓ1, (Γ2, v : T) `ST (νxy : S)(P1 | P2[v/t])M

=
{
C ′1[Q1] | G′2 : C ′1 ∈ Cx:S , Q1 ∈ LΓ1, x : S `ST P1M, G′2 ∈ 〈|Γ2, v : T |〉

}︸ ︷︷ ︸
B1

∪{
G′1 | C ′2[Q2] : C ′2 ∈ Cy:S , Q2 ∈ LΓ2, y : S, v : T `ST P2[v/t]M, G′1 ∈ 〈|Γ1|〉

}︸ ︷︷ ︸
B2

where:

B1 =
{
G′2 | (νx)

(
Q1 | P ′x

)
:

P ′x ∈ 〈|S|〉x, Q1 ∈ LΓ1, x : S `ST P1M, G′2 ∈ 〈|Γ2, v : T |〉
}

(B.6)

B2 =
{
G′1 | (νy)

(
Q2 | P ′y

)
:

P ′y ∈ 〈|S|〉y, Q2 ∈ LΓ2, y : S, v : T `ST P2[v/t]M, G′1 ∈ 〈|Γ1|〉
}

(B.7)

We now show that every process in LΓ `ST P M reduces into a process in LΓ `ST P ′M. We address
two distinct sub-cases:

(i) We show that every Q ∈ A1 (cf. Equation (B.4)) reduces to a Q′ ∈ B1 (cf. Equa-
tion (B.6));

(ii) We show that every Q ∈ A2 (cf. Equation (B.5)) reduces to a Q′ such that Q′′ + R,
with R ∈ B2 (cf. Equation (B.7)).

Sub-case (i). Let Q = G2 | (νx)
(
x(w).

(
[v↔w] | P ∗1

)
| Px

)
be an arbitrary process in A1,

with Px ∈ 〈|?T.S|〉x. By Definition 5.1:

〈|?T.S|〉x =
{
x(t).(Qt | Qx) : Qt ∈ 〈|T |〉t ∧ Qx ∈ 〈|S|〉x

}

57

We may then let Px = x(t).(Qt | Qx) where Qt ∈ 〈|T |〉t and Qx ∈ 〈|S|〉x. Considering this, and
by applying Rules (R-ChCom) and (R-Fwd) (cf. Figure 4) we have:

Q = G2 | (νx)
(
x(w).

(
[v↔w] | P ∗1

)
| Px

)
= G2 | (νx)

(
x(w).

(
[v↔w] | P ∗1

)
| x(t).(Qt | Qx)

)
→ G2 | (νx)

(
(νw)

(
[v↔w] | P ∗1 | Qw | Qx

))
↪→ G2 | Qv | (νx)

(
P ∗1 | Qx

)
, Q′

(Recall that ↪→ is structural congruence extended with a reduction by Rule (R-Fwd).) We shall
show that Q′ ∈ B1. Let us consider/recall the provenance of its different components:

(a) G2 ∈ 〈|Γ2|〉
(b) Since Qv stands for Qt[w/t][v/w], we have Qv ∈ 〈|T |〉v.
(c) P ∗1 ∈ LΓ1, x : S `ST P1M.

(d) Qx ∈ 〈|S|〉x

By Proposition Appendix B.1, Items (a) and (b) above entail:

(e) G2 | Qv ∈ 〈|Γ2, v : T |〉

In turn, by considering Items (c), (d), and (e), together with Equation (B.6), it is immediate
to see that Q′ ∈ B1. Therefore, Q′ ∈ LΓ `ST P ′M, as desired.

Sub-case (ii). Let Q = G1 | (νy)
(
y(t).P ∗2 | Py

)
be an arbitrary process in A2. Since Py ∈

〈|!T.S|〉y, by Definition 5.1 we have Py = y(k).(Qk | Qy), where Qk ∈ 〈|T |〉k and Qy ∈ 〈|S|〉y.
Considering this, and by applying Rule (R-ChCom) (cf. Figure 4), we have:

Q = G1 | (νy)
(
y(t).P ∗2 | Py

)
= G1 | (νy)

(
y(t).P ∗2 | y(k).(Qk | Qy)

)
→ G1 | (νy)

(
(νk)(P ∗2 [k/t] | Qk) | Qy

)
, Q′′

We shall show that Q′′ + R, for some R ∈ B2. Let us consider/recall the provenance of its
different components:

(a) G1 ∈ 〈|Γ1, v : T |〉
(b) By Lemma Appendix B.2, P ∗2 [k/t] ∈ LΓ2, y : S, k : T `ST P2[k/t]M.

(c) Qk ∈ 〈|T |〉k

(d) Qy ∈ 〈|S|〉y

Furthermore, we can infer:

(e) From (a) and Proposition Appendix B.1, there must exist G∗1 and Gv such that G1 =
G∗1 | Gv, G∗1 ∈ 〈|Γ1|〉, and Gv ∈ 〈|T |〉v.

(f) By combining (b), (c) and (d), together with Proposition Appendix B.1, we have that
(νy)

(
(νk)(P ∗2 [k/t] | Qk) | Qy

)
∈ 〈|Γ2|〉.

58

Given this, we can rewrite Q′′ as follows:

Q′′ = G∗1 | Gv | (νy)
(
(νk)(P ∗2 [k/t] | Qk) | Qy

)
(B.8)

We now consider an arbitrary R ∈ B2. By Equation (B.7), we have that

R , G′1 | (νy)
(
Q2 | P ′y

)
(B.9)

with

(a′) G′1 ∈ 〈|Γ1|〉
(b′) Q2 ∈ LΓ2, y : S, v : T `ST P2[v/t]M
(c′) P ′y ∈ 〈|S|〉y

By Lemma 5.1 and (c′), we can infer: P ′y `LL y : JSK`; and by Theorem 5.1 and (b′), we can

infer: Q2 `LL JΓ2, y : S, v : T K`. Finally, we have:

(d′) (νy)
(
Q2 | P ′y

)
`LL JΓ2K`, Jv : T K`

We now compare Q′′ and R (as in Equation (B.8) and Equation (B.9), respectively). By
Lemma 5.1 and (e) and (f) above, it is easy to see that Q′′, R `LL JΓ1K`, JΓ2K`, Jv : T K`. Then,
by Definition 5.5, we have that Q′′ + R. Therefore, there is an R such that Q′′ + R, with
R ∈ LΓ `ST P ′M, as desired. This concludes the analysis for Case (R-Com).

2. Case (R-Case):

P , (νxy : S′)(x / lj .Q | y . {li : Ri}i∈I) → (νxy : S′′)(Q | Rj) , P ′

Since Γ `ST P , then by inversion S′ = ⊕{li : Si}i∈I for some Si, with i ∈ I. For simplicity,
let us write Ti to denote the dual of any Si. As a result of the reduction, we have S′′ = Sj
for some j ∈ I. Again by inversion we have the following derivation:

(T-Sel)

Γ1, x : Sj `ST Q ∃j ∈ I
Γ1, x : ⊕{li : Si}i∈I `ST x / lj .Q

(T-Brch)

Γ2, y : Ti `ST Ri ∀i ∈ I
Γ2, y : &{li : Ti}i∈I `ST y . {li : Ri}i∈I

(Γ1, x : ⊕{li : Si}i∈I), (Γ2, y : &{li : Ti}i∈I) `ST x / lj .Q | y . {li : Ri}i∈I
(T-Par)

Γ1,Γ2 `ST (νxy : S′)(x / lj .Q | y . {li : Ri}i∈I)
(T-Res)

By Definition 5.4 the translation of P is as follows:

LΓ `ST P M = LΓ `ST (νxy : S′)(x / lj .Q | y . {li : Ri}i∈I)M

=
{
C1[Q1] | G2 : C1 ∈ Cx:&{li:Ti}i∈I

, Q1 ∈ LΓ1, x : ⊕{li : Si}i∈I `ST x / lj .QM, G2 ∈ 〈|Γ2|〉
}︸ ︷︷ ︸

A1

∪{
G1 | C2[Q2] : C2 ∈ Cy:⊕{li:Si}i∈I

, Q2 ∈ LΓ2, y : &{li : Ti}i∈I `ST y . {li : Ri}i∈IM, G1 ∈ 〈|Γ1|〉
}︸ ︷︷ ︸

A2

59

where:

A1 =
{
G2 | (νx)

(
x / lj .Q

∗ | Px
)

:

Q∗ ∈ LΓ1, x : Sj `ST QM, Px ∈ 〈|&{li : Ti}i∈I |〉x, G2 ∈ 〈|Γ2|〉
}

(B.10)

A2 =
{
G1 | (νy)

(
y . {li : R∗i }i∈I | Py

)
:

R∗i ∈ LΓ2, y : Ti `ST RiM, Py ∈ 〈| ⊕ {li : Si}i∈I |〉y, G1 ∈ 〈|Γ1|〉
}

(B.11)

Before spelling out the translation of P ′, we record some considerations. By Theorem 5.1,
M ∈ LΓ `ST P M implies M `LL JΓK`. Since P → P ′, then by Theorem 2.3 we have Γ `ST P ′.
Again, by Theorem 5.1, O ∈ LΓ `ST P ′M implies O `LL JΓK`. By Definition 5.4 the encoding of
P ′ is as follows:

LΓ `ST P ′M = LΓ `ST (νxy : Sj)(Q | Rj)M

=
{
G′2 | C ′1

[
Q∗
]

: C ′1 ∈ Cx:Tj
, Q∗ ∈ LΓ1, x : Sj `ST QM, G′2 ∈ 〈|Γ2|〉

}︸ ︷︷ ︸
B1

∪
{G′1 | C ′2

[
R∗j
]

: C ′2 ∈ Cy:Sj
, R∗j ∈ LΓ2, y : Tj `ST RjM, G′1 ∈ 〈|Γ1|〉}︸ ︷︷ ︸

B2

where:

B1 =
{
G′2 | (νx)(Q∗ | P ′x) : Q∗ ∈ LΓ1, x : Sj `ST QM, P ′x ∈ 〈|Tj |〉x, G′2 ∈ 〈|Γ2|〉

}
(B.12)

B2 = {G′1 | (νy)(R∗j | P ′y) : R∗j ∈ LΓ2, y : Tj `ST RjM, P ′y ∈ 〈|Sj |〉y, G′1 ∈ 〈|Γ1|〉} (B.13)

We now show that every process in LΓ `ST P M reduces into a process in LΓ `ST P ′M. We address
two distinct sub-cases:

(i) We show that every Q ∈ A1 (cf. Equation (B.10)) reduces to a Q′ ∈ B1 (cf. Equa-
tion (B.12));

(ii) Similarly, we show that every Q ∈ A2 (cf. Equation (B.11)) reduces to a Q′′ ∈ B2 (cf.
Equation (B.13)).

Sub-case (i). Let Q = G2 | (νx)
(
x / lj .Q

∗ | Px
)

be an arbitrary process in A1, with
Q∗ ∈ LΓ1, x : Sj `ST QM and Px ∈ 〈|&{li : Ti}i∈I |〉x. By Definition 5.1, we may then let
Px = x . {li : Pi}i∈I , such that Pi ∈ 〈|Ti|〉x, for all i ∈ I. By applying Rule (R-ChCase) (cf.
Figure 4), we have:

Q , G2 | (νx)
(
x / lj .Q

∗ | Px
)

→ G2 | (νx)
(
Q∗ | Pj

)
, Q′

We shall show that Q′ ∈ B1. Let us consider/recall the provenance of its different components:

(a) G2 ∈ 〈|Γ2|〉
(b) Q∗ ∈ LΓ1, x : Sj `ST QM.

60

(c) Pj ∈ 〈|Tj |〉x.

By considering Items (a) – (c), together with Equation (B.12), it is immediate to see that
Q′ ∈ B1. Therefore, Q′ ∈ LΓ `ST P ′M, as desired.

Sub-case (ii). Let Q = G1 | (νy)
(
y . {li : R∗i }i∈I | Py

)
be an arbitrary process in A2,

with R∗i ∈ LΓ2, y : Ti `ST RiM and Py ∈ 〈| ⊕ {li : Si}i∈I |〉y. By Definition 5.1, Py is one of the
processes in the union

⋃
i∈I
{
y / li.Pi : Pi ∈ 〈|Si|〉y

}
. We then choose Py = y / lj .Pj such that

j ∈ I and Pj ∈ 〈|Sj |〉y. By applying Rule (R-ChCase) (cf. Figure 4), we have:

Q , G1 | (νy)
(
y . {li : R∗i }i∈I | y / lj .Pj

)
→ G1 | (νy)

(
R∗j | Pj

)
, Q′′

We shall show thatQ′′ ∈ B2. Let us consider/recall the provenance of its different components:

(a) G1 ∈ 〈|Γ1|〉
(b) R∗j ∈ LΓ2, y : Tj `ST RjM.
(c) Pj ∈ 〈|Sj |〉y.

By considering Items (a) – (c), together with Equation (B.13), it is immediate to see that
Q′′ ∈ B2. Therefore, Q′′ ∈ LΓ `ST P ′M, as desired. This concludes the analysis for Case (R-Case)
(and for Part 1).

Part 2. Let P ∈ K and Q ∈ LΓ `ST P M. Suppose that Q →↪→ Q′; we now show that (i) there is a
P ′ such that P → P ′ and (ii) Q′ + R, for some R ∈ LΓ `ST P ′M.

We first argue for (i), i.e., the existence of a reduction P → P ′. Notice that for the reduction(s)
Q →↪→ Q′ to occur, there must exist two complementary prefixes occurring at top level in Q. By
Definition 5.4 and, crucially, by the assumption P ∈ K, the same two prefixes occur at top-level also
in P and can reduce; indeed, without the assumption P ∈ K, it could be that P cannot reduce due
to a deadlock. Hence, P can mimic the reduction from Q, up to structural congruence: P → P ′. It
then suffices to prove the theorem for M ≡ P , in which the two prefixes involved occur in contiguous
positions and can reduce.

To address (ii), we now relate P ′ and Q′ by considering two main cases for the reduction
originating from Q (cf. Figure 4): (1) it corresponds to an input-output communication via Rule (R-

ChCom); and (2) it corresponds to a selection-branching interaction via Rule (R-ChCase). (The third
case, corresponding to Rule (R-ChRes), is straightforward using the induction hypothesis.) We detail
these two cases; the analysis largely mirrors the one given in Part 1:

1. Case M = E
[
(νxy : S′)(x〈v〉.P1 | y(t : T).P2)

]
→ E

[
(νxy : S)(P1 | P2[v/t])

]
, P ′.

Since Γ `ST P , by Theorem 2.2 Γ `ST M . By inversion, S′ = !T.S for some S. Then, again by
inversion Γ = (Γ1, v : T),Γ2. By Definition 5.4, LΓ `ST MM = A1 ∪A2, where:

A1 =
{
F
[
G2 | (νx)

(
x(w).

(
[v↔w] | P ∗1

)
| Px

)]
: P ∗1 ∈ LΓ1, x : S `ST P1M, Px ∈ 〈|?T.S|〉x, G2 ∈ 〈|Γ2|〉

}
A2 =

{
H
[
G1 | (νy)

(
y(t).P ∗2 | Py

)]
: P ∗2 ∈ LΓ2, y : S, t : T `ST P2M, Py ∈ 〈|!T.S|〉y, G1 ∈ 〈|Γ1, v : T |〉

}
61

Also by Definition 5.4, we have that LΓ `ST P ′M = B1 ∪B2, where:

B1 =
{
F
[
G′2 | (νx)

(
Q1 | P ′x

)]
: P ′x ∈ 〈|S|〉x, Q1 ∈ LΓ1, x : S `ST P1M, G′2 ∈ 〈|Γ2, v : T |〉

}
B2 =

{
H
[
G′1 | (νy)

(
Q2 | P ′y

)]
: P ′y ∈ 〈|S|〉y, Q2 ∈ LΓ2, y : S, v : T `ST P2[v/t]M, G′1 ∈ 〈|Γ1|〉

}
We now address two distinct sub-cases:

(i) We show that every Q ∈ A1 reduces to a Q′ ∈ B1;

(ii) Similarly, we show that every Q ∈ A2 reduces to a Q′ such that Q′ + R and R ∈ B2.

Sub-case (i). Let Q = F
[
G2 | (νx)

(
x(w).

(
[v↔w] | P ∗1

)
| Px

)]
be an arbitrary process in

A1, with Px ∈ 〈|?T.S|〉x. By Definition 5.1 we have that

〈|?T.S|〉x =
{
x(t).(Qt | Qx) : Qt ∈ 〈|T |〉t ∧Qx ∈ 〈|S|〉x

}
We may then let Px = x(t).(Qt | Qx) where Qt ∈ 〈|T |〉t and Qx ∈ 〈|S|〉x. By applying Rules
(R-ChCom) and (R-Fwd) (cf. Figure 4) we have:

Q , F
[
G2 | (νx)

(
x(w).

(
[v↔w] | P ∗1

)
| Px

)]
= F

[
G2 | (νx)

(
x(w).

(
[v↔w] | P ∗1

)
| x(t).(Qt | Qx)

)]
→ F

[
G2 | (νx)

(
(νw)

(
[v↔w] | P ∗1 | Qw | Qx

))]
↪→ F

[
G2 | Qv | (νx)

(
P ∗1 | Qx

)]
, Q′

It is then easy to see that Q′ ∈ LΓ `ST P ′M.

Sub-case (ii). Let Q = H
[
G1 | (νy)

(
y(t).P ∗2 | Py

)]
be an arbitrary process in A2. By

Definition 5.1, since Py ∈ 〈|!T.S|〉y, we may then let Py = y(k).(Qk | Qy) where Qk ∈ 〈|T |〉k
and Qy ∈ 〈|S|〉y. By applying Rule (R-ChCom) (cf. Figure 4), we have:

Q , H
[
G1 | (νy)

(
y(t).P ∗2 | Py

)]
= H

[
G1 | (νy)

(
y(t).P ∗2 | y(k).(Qk | Qy)

)]
→ H

[
G1 | (νy)

(
(νk)(P ∗2 [k/t] | Qk) | Qy

)]
, Q′

By Lemma Appendix B.2, P ∗2 [k/t] ∈ LΓ2, y : S, k : T `ST P2[k/t]M. Also, by Proposition Ap-
pendix B.1 we can rewrite G1 as G1 = G∗1 | Gv, such that G∗1 ∈ JΓ1K` and Gv ∈ Jv : T K`.
Then, we can rewrite Q′ as follows:

Q′ = H
[
G∗1 | Gv | (νy)

(
(νk)(P ∗2 [k/t] | Qk) | Qy

)]
It is then easy to see that Q′ + R, with R ∈ LΓ `ST P ′M, as wanted.

2. Case M = E
[
(νxy : S′)(x / lj .Q | y . {li : Ri}i∈I)

]
→ E

[
(νxy : S′′)(Q | Rj)

]
, P ′.

62

Since Γ `ST P , by Theorem 2.2 also Γ `ST M . By inversion let S′ = ⊕{li : Si}i∈I for some
session types Si (i ∈ I). By Definition 5.4, LΓ `ST MM = A1 ∪A2, where:

A1 =
{
F
[
G2 | (νx)

(
x / lj .Q

∗ | Px
)]

: Q∗ ∈ LΓ1, x : Sj `ST QM, Px ∈ 〈|&{li : Ti}i∈I |〉x, G2 ∈ 〈|Γ2|〉
}

A2 =
{
H
[
G1 | (νy)

(
y . {li : R∗i }i∈I | Py

)]
: R∗i ∈ LΓ2, y : Ti `ST RiM, Py ∈ 〈| ⊕ {li : Si}i∈I |〉y, G1 ∈ 〈|Γ1|〉

}
Also, by Definition 5.4, we have that LΓ `ST P ′M = B1 ∪B2, where:

B1 =
{
F
[
G′2 | (νx)(Q∗ | P ′x)

]
: Q∗ ∈ LΓ1, x : Sj `ST QM, P ′x ∈ 〈|Tj |〉x, G′2 ∈ 〈|Γ2|〉

}
B2 =

{
H
[
G′1 | (νy)(R∗j | P ′y)

]
: R∗j ∈ LΓ2, y : Tj `ST RjM, P ′y ∈ 〈|Sj |〉y, G′1 ∈ 〈|Γ1|〉

}
As before, we now address two distinct sub-cases:

(i) We show that every Q ∈ A1 reduces to a Q′ ∈ B1;

(ii) Similarly, we show that every Q ∈ A2 reduces to a Q′ ∈ B2.

Sub-case (i). Let Q = F
[
G2 | (νx)

(
x / lj .Q

∗ | Px
)]

be an arbitrary process in A1. By
Definition 5.1, since Px ∈ 〈|&{li : Ti}i∈I |〉x, then Px = x . {li : Pi}i∈I with Pi ∈ 〈|Ti|〉x, for all
i ∈ I. By applying Rule (R-ChCase) (cf. Figure 4), and letting j ∈ I we have:

Q , F
[
G2 | (νx)

(
x / lj .Q

∗ | Px
)]

→ F
[
G2 | (νx)

(
Q∗ | Pj

)]
, Q′

It is then easy to see that Q′ ∈ B1, and therefore Q′ ∈ LΓ `ST P ′M, as desired.

Sub-case (ii). Let Q = H
[
G1 | (νy)

(
y . {li : R∗i }i∈I | y / lj .Pj

)]
be an arbitrary process

in A2, with R∗i ∈ LΓ2, y : Ti `ST RiM. By Definition 5.1, since Py ∈ 〈| ⊕ {li : Si}i∈I |〉y =⋃
i∈I
{
y / li.Pi : Pi ∈ 〈|Si|〉y

}
, it means that Py is one of the processes in the union. We may

then choose Py = y / lj .Pj such that j ∈ I and Pj ∈ 〈|Sj |〉y. By applying Rule (R-ChCase)
(cf. Figure 4) we have:

Q , H
[
G1 | (νy)

(
y . {li : R∗i }i∈I | y / lj .Pj

)]
→ H

[
G1 | (νy)

(
R∗j | Pj

)]
, Q′

Since Pj ∈ 〈|Sj |〉y and P ′y ∈ 〈|Sj |〉y, it is then easy to see that Q′ ∈ B2, and therefore
Q′ ∈ LΓ `ST P ′M, as desired. This concludes the analysis for this case (and for Part 2).

63

	Introduction
	Session -calculus
	Process Model
	Type System
	Deadlock Freedom

	Two Approaches to Deadlock Freedom
	Linear Logic Foundations of Session Types
	Deadlock Freedom by Encodability
	The Dyadic -calculus
	Types with Usages
	Properties
	On Deadlock Freedom by Encoding

	Separating Classes of Deadlock-Free Typed Processes
	Classes of Deadlock-Free Processes
	The Classes L and K
	The Class K

	Main Results

	Translating K into L
	Characteristic Processes and Catalyzers
	Translating K into L
	Properties

	Discussion: Translating K into L Exploiting Value Dependencies

	Discussion
	Related Work
	Concluding Remarks
	Omitted Proofs for s:hier
	Proof of t:cppkoba (Page 24)

	Omitted Proofs for s:enco
	Proof of lem: wtcharacteristic
	Proof of thm:L0-L2
	Proof of thm:oc (Page 31)

