Session Type Systems Compared:
The Case of Deadlock Freedom

Ornela Dardha'*and Jorge A. Pérez?

1 School of Computing Science, University of Glasgow, UK
ornela.dardha@glasgow.ac.uk
2 University of Groningen, The Netherlands
j.a.perez@rug.nl

Abstract

This note summarizes our recent work [6], in which we develop a comparative study of
different type systems for message-passing processes that guarantee deadlock freedom. We
actually compare two classes of deadlock-free typed processes, denoted £ and K. The class
L stands out for its canonicity: it results from Curry-Howard interpretations of classical
linear logic propositions as session types. The class K, obtained by encoding session types
into Kobayashi’s linear types with usages, includes processes not typable in other type
systems. We show that L is strictly included in K, and identify the precise conditions
under which they coincide. We also provide two type-preserving translations of processes
in K into processes in L.

1 Introduction

We are interested in formally relating different type systems for concurrent processes specified
in the m-calculus [10]. More precisely, our interest is in session-based concurrency, the model
of concurrency captured by session types. Session types promote a type-based approach to
communication correctness: dialogues between participants are structured into sessions, basic
communication units; descriptions of interaction sequences are then abstracted as session types
which are checked against process specifications. In session-based concurrency, types enforce
correct communications through different safety and liveness properties. Two basic (and inter-
twined) correctness properties are communication safety and session fidelity. A very desirable
liveness property for safe processes is that they should never “get stuck”, namely the property
of deadlock freedom.

In our recent work [6], we present the first formal comparison between different type sys-
tems for the m-calculus that enforce liveness properties related to (dead)lock freedom. More
concretely, we compare £ and K, two salient classes of deadlock-free (session) typed processes,
which are induced by different type systems:

e The class £ contains session processes that are well-typed under the Curry-Howard corre-
spondence between (classical) linear logic propositions and session types [1, 2, 12]. Requir-
ing well-typedness suffices, because the type system derived from such a correspondence
simultaneously ensures communication safety, session fidelity, and deadlock freedom.

e The class K contains session processes that enjoy communication safety and session fidelity
(as ensured by the type system of Vasconcelos [11]) as well as satisfy deadlock freedom.
This class of processes is defined indirectly, by combining Kobayashi’s type system based
on usages [7, 8, 9] with encodability results by Dardha et al. [5].

*Work supported by the EU H2020 MSCA RISE project BehAPI and by the Dutch Research Council (NWO)
under project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).




Comparing Type Systems for Deadlock Freedom Dardha and Pérez

[-Je: Sessions to Linear Logic [-]{: Sessions to Linear 7

(processes and contexts) (processes and contexts)

K

[rD4 =2 [PDY

e
[T]f =< [P1E
DF: Corollary A.1

[PTe Fre [TTe
DF: Theorem A.1

~ -
---------

Definition A.1:Translation (-

Figure 1: Summary of type systems, languages with deadlock freedom (DF), and encodings
between them (indicated by solid black arrows). Main results are denoted by purple lines: our
separation result, based on the coincidence of £ and pkC is indicated by the solid line with
reversed arrowheads; our unifying result is indicated by the dashed arrow.

2 Contributions

Our work develops two kinds of technical results, summarized by Figure 1. On the one hand,
we give results that separate the classes £ and K by precisely characterizing the fundamental
differences between them; on the other hand, we precisely explain how to unify these classes by
showing how their differences can be overcome to translate processes in I into processes into
L. More in details:

e To separate L from KC, we define ukC: a sub-class of K whose definition internalizes the key
aspects of the Curry-Howard interpretations of session types. In particular, pu/C adopts
the principle of “composition plus hiding”, a distinguishing feature of the interpretations
in [1, 12], by which concurrent cooperation is restricted to the sharing of ezactly one
session channel.

We show that £ and u/C coincide (Theorem A.2). This gives us a separation result: there
are deadlock-free session processes that cannot be typed by systems derived from the
Curry-Howard interpretation of session types [1, 2, 12], but that are admitted as typable
by the (indirect) approach of [3, 4].

e To unify £ and K, we define two translations of processes in K into processes in L
(Definition A.1). Intuitively, because the difference between £ and K lies in the forms of
parallel composition they admit (restricted in £, liberal in K), it is natural to transform
a process in K into another, more parallel process in £. In essence, the first translation,
denoted () (Definition A.1), exploits type information to replace sequential prefixes with
representative parallel components; the second translation refines this idea by considering
value dependencies, i.e., causal dependencies between independent sessions not captured
by types. We detail the first translation, which satisfies type-preservation and operational
correspondence properties (Theorems A.3 and A.4).



Comparing Type Systems for Deadlock Freedom Dardha and Pérez

References

A
A.

Luis Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR
2010, volume 6269 of LNCS, pages 222-236. Springer, 2010.

Luis Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Mathematical Structures in Computer Science, 26(3):367—-423, 2016.

Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compositional lock-freedom. In
Coordination Models and Languages - 16th IFIP WG 6.1 International Conference, COORDINA-
TION 2014, Held as Part of the 9th International Federated Conferences on Distributed Computing
Techniques, DisCoTec, volume 8459 of LNCS, pages 49-64. Springer, 2014.

Ornela Dardha. Type Systems for Distributed Programs: Components and Sessions, volume 7 of
Atlantis Studies in Computing. Springer / Atlantis Press, 2016.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In PPDP’12, pages
139-150. ACM, 2012.

Ornela Dardha and Jorge A. Pérez. Comparing type systems for deadlock freedom. J. Log.
Algebraic Methods Program., 124:100717, 2022.

Naoki Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122-159, 2002.

Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR 2006, volume 4137
of LNCS, pages 233-247. Springer, 2006. Full version available at http://www-kb.is.s.u-tokyo.
ac.jp/~koba/papers/concur2006-full.pdf.

Naoki Kobayashi. Type systems for concurrent programs. Extended version of [?], Tohoku Uni-
versity. www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf, 2007.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, 1. Inf. Comput.,
100(1):1-40, 1992.

Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52-70, 2012.

Philip Wadler. Propositions as sessions. In ICFP’12, pages 273286, 2012.

Results

1 DF in Sessions, Linear m and Linear Logic

For any P, define live(P) if and only if P = (vn)(7.Q | R), where 7 is an input, output,
selection, or branching prefix.

Theorem A.1 (Deadlock Freedom). If Pty - and live(P) then P — @, for some Q.

The following result states deadlock freedom by encodability, following [3].

Corollary A.1. Let Fgr P be a session process. If -~ [P]! is deadlock-free then P is deadlock-
free.

A.2 Relating £, uK and K
Theorem A.2. £ = uk.

Definition A.1 (Translation into £). Let P be such that I sy P and P € K. The set of L
processes (' Fsr P) is defined in Figure 2.

We present two important results about our translation. First, it is type preserving, up to

the encoding of types:


http://www-kb.is.s.u-tokyo.ac.jp/~koba/papers/concur2006-full.pdf
www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf

Comparing Type Systems for Deadlock Freedom Dardha and Pérez

qru" Fsr 0) = {0}
(C,z :1T.S,v: T kg T(v).P') £ {Z(2).(ve2] | Q) : Q € (T,2: S Fer P}
(T1,Ta,2 1 1T.S Fer (v2y)Z(y).(Py | Pg)p &
{Z(y)(Q1|Q2) : Q1€ (T1,2:Thst P)AQ2 € (T2, : Stgr Po)}
T,z :?T.S Fer (y : T).P) 2 {2(y).Q : Q€ (T,z: S,y : T bex P')}
T,z : ®{Li : Si}ier Fsr <l P) 2 {241;.Q : Q€ (T,x: 5, bsr P}
(a2 &{ls : Sitier Fsrav {li s Pilicr) 2 {20 {li : Qi}ier : Qi € (T2 Si ber Pi)}
(v [o S #Ta, [y T) o (VG : S)(Py | o)) 2
{C1@] | G2 - Q1 € (T1,7: S kgt P), C1 € Coopr, G € (Ta) }
@]
{G11Ca[Qa] + Qo € (P2, y: T st Pa)), Cs € G, Gr € ()}

Figure 2: Translation () (cf. Definition A.1).

Theorem A.3 (The Translation () is Type Preserving). LetT' bgr P. Then, for all Q € (T Fsr
P), we have that Q Frp [T]e.

Definition A.2 (Parallelization Relation). Let P and Q be processes such that P,Q b1 T'. We

write P = @Q if and only if there exist processes Py, P, Q1,Q2 and contexts 'y, 'y such that the
following hold:

P=P | P Q=01 Q2 P, Q1 Ty Py, Qo i Ty F=T4,T,
By definition, the relation = is reflexive. We may now state:

Theorem A.4 (Operational Correspondence for (). Let P be such that T tgr P for some
typing context I'. Then, we have:

1. If P — P, then for all Q € (U Fsp P) there exist Q', R such that Q —-— Q', Q" = R
and R € (]F }_ST P/D

2. If Q € (T Fsr P), such that P € K, and Q —<— Q', then there exist P', R such that
P—P,Q =R, and Re (T Fgr P’).



