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Abstract

This note summarizes our recent work [6], in which we develop a comparative study of
different type systems for message-passing processes that guarantee deadlock freedom. We
actually compare two classes of deadlock-free typed processes, denoted L and K. The class
L stands out for its canonicity: it results from Curry-Howard interpretations of classical
linear logic propositions as session types. The class K, obtained by encoding session types
into Kobayashi’s linear types with usages, includes processes not typable in other type
systems. We show that L is strictly included in K, and identify the precise conditions
under which they coincide. We also provide two type-preserving translations of processes
in K into processes in L.

1 Introduction

We are interested in formally relating different type systems for concurrent processes specified
in the π-calculus [10]. More precisely, our interest is in session-based concurrency, the model
of concurrency captured by session types. Session types promote a type-based approach to
communication correctness: dialogues between participants are structured into sessions, basic
communication units; descriptions of interaction sequences are then abstracted as session types
which are checked against process specifications. In session-based concurrency, types enforce
correct communications through different safety and liveness properties. Two basic (and inter-
twined) correctness properties are communication safety and session fidelity. A very desirable
liveness property for safe processes is that they should never “get stuck”, namely the property
of deadlock freedom.

In our recent work [6], we present the first formal comparison between different type sys-
tems for the π-calculus that enforce liveness properties related to (dead)lock freedom. More
concretely, we compare L and K, two salient classes of deadlock-free (session) typed processes,
which are induced by different type systems:

• The class L contains session processes that are well-typed under the Curry-Howard corre-
spondence between (classical) linear logic propositions and session types [1, 2, 12]. Requir-
ing well-typedness suffices, because the type system derived from such a correspondence
simultaneously ensures communication safety, session fidelity, and deadlock freedom.

• The class K contains session processes that enjoy communication safety and session fidelity
(as ensured by the type system of Vasconcelos [11]) as well as satisfy deadlock freedom.
This class of processes is defined indirectly, by combining Kobayashi’s type system based
on usages [7, 8, 9] with encodability results by Dardha et al. [5].
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Figure 1: Summary of type systems, languages with deadlock freedom (DF), and encodings
between them (indicated by solid black arrows). Main results are denoted by purple lines: our
separation result, based on the coincidence of L and µK is indicated by the solid line with
reversed arrowheads; our unifying result is indicated by the dashed arrow.

2 Contributions

Our work develops two kinds of technical results, summarized by Figure 1. On the one hand,
we give results that separate the classes L and K by precisely characterizing the fundamental
differences between them; on the other hand, we precisely explain how to unify these classes by
showing how their differences can be overcome to translate processes in K into processes into
L. More in details:

• To separate L from K, we define µK: a sub-class of K whose definition internalizes the key
aspects of the Curry-Howard interpretations of session types. In particular, µK adopts
the principle of “composition plus hiding”, a distinguishing feature of the interpretations
in [1, 12], by which concurrent cooperation is restricted to the sharing of exactly one
session channel.

We show that L and µK coincide (Theorem A.2). This gives us a separation result: there
are deadlock-free session processes that cannot be typed by systems derived from the
Curry-Howard interpretation of session types [1, 2, 12], but that are admitted as typable
by the (indirect) approach of [3, 4].

• To unify L and K, we define two translations of processes in K into processes in L
(Definition A.1). Intuitively, because the difference between L and K lies in the forms of
parallel composition they admit (restricted in L, liberal in K), it is natural to transform
a process in K into another, more parallel process in L. In essence, the first translation,
denoted #·$ (Definition A.1), exploits type information to replace sequential prefixes with
representative parallel components; the second translation refines this idea by considering
value dependencies, i.e., causal dependencies between independent sessions not captured
by types. We detail the first translation, which satisfies type-preservation and operational
correspondence properties (Theorems A.3 and A.4).
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A Results

A.1 DF in Sessions, Linear π and Linear Logic

For any P , define live(P ) if and only if P ≡ (ν!n)(π.Q | R), where π is an input, output,
selection, or branching prefix.

Theorem A.1 (Deadlock Freedom). If P ⊢LL · and live(P ) then P −−→ Q, for some Q.

The following result states deadlock freedom by encodability, following [3].

Corollary A.1. Let ⊢ST P be a session process. If ⊢≺ !P "fu is deadlock-free then P is deadlock-
free.

A.2 Relating L, µK and K
Theorem A.2. L = µK.

Definition A.1 (Translation into L). Let P be such that Γ ⊢ST P and P ∈ K. The set of L
processes #Γ ⊢ST P $ is defined in Figure 2.

We present two important results about our translation. First, it is type preserving, up to
the encoding of types:
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#Γun ⊢ST 0$ ≜
"
0
#

#Γ, x : !T.S, v : T ⊢ST x〈v〉.P ′$ ≜
"
x(z).([v↔z] | Q) : Q ∈ #Γ, x : S ⊢ST P

′$
#

#Γ1,Γ2, x : !T.S ⊢ST (νzy)x〈y〉.(P1 | P2)$ ≜"
x(y).(Q1 | Q2) : Q1 ∈ #Γ1, z : T ⊢ST P1$ ∧Q2 ∈ #Γ2, x : S ⊢ST P2$

#

#Γ, x : ?T.S ⊢ST x(y : T ).P ′$ ≜
"
x(y).Q : Q ∈ #Γ, x : S, y : T ⊢ST P

′$
#

#Γ, x : ⊕{li : Si}i∈I ⊢ST x ⊳ lj .P
′$ ≜

"
x ⊳ lj .Q : Q ∈ #Γ, x : Sj ⊢ST P

′$
#

#Γ, x : &{li : Si}i∈I ⊢ST x ⊲ {li : Pi}i∈I$ ≜
"
x ⊲ {li : Qi}i∈I : Qi ∈ #Γ, x : Si ⊢ST Pi$

#

#Γ1, [!x : S] $ Γ2, [!y : T ] ⊢ST (ν!x!y : !S)(P1 | P2)$ ≜
"
C1[Q1] | G2 : Q1 ∈ #Γ1, !x : S ⊢ST P1$, C1 ∈ C!x:T , G2 ∈ 〈|Γ2|〉

#

∪
"
G1 | C2[Q2] : Q2 ∈ #Γ2, !y : T ⊢ST P2$, C2 ∈ C!y:S , G1 ∈ 〈|Γ1|〉

#

Figure 2: Translation #·$ (cf. Definition A.1).

Theorem A.3 (The Translation #·$ is Type Preserving). Let Γ ⊢ST P . Then, for all Q ∈ #Γ ⊢ST

P $, we have that Q ⊢LL !Γ"ℓ.

Definition A.2 (Parallelization Relation). Let P and Q be processes such that P,Q ⊢LL Γ. We
write P ≑ Q if and only if there exist processes P1, P2, Q1, Q2 and contexts Γ1,Γ2 such that the
following hold:

P = P1 | P2 Q = Q1 | Q2 P1, Q1 ⊢LL Γ1 P2, Q2 ⊢LL Γ2 Γ = Γ1,Γ2

By definition, the relation ≑ is reflexive. We may now state:

Theorem A.4 (Operational Correspondence for #·$). Let P be such that Γ ⊢ST P for some
typing context Γ. Then, we have:

1. If P → P ′, then for all Q ∈ #Γ ⊢ST P $ there exist Q′, R such that Q →↩→ Q′, Q′ ≑ R,
and R ∈ #Γ ⊢ST P

′$.

2. If Q ∈ #Γ ⊢ST P $, such that P ∈ K, and Q →↩→ Q′, then there exist P ′, R such that
P → P ′, Q′ ≑ R, and R ∈ #Γ ⊢ST P

′$.
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