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Abstract
Human fallibility, unpredictable operating environments, and the heterogeneity of hardware devices
are driving the need for software to be able to adapt as seen in the Internet of Things or telecom-
munication networks. Unfortunately, mainstream programming languages do not readily allow a
software component to sense and respond to its operating environment, by discovering, replacing, and
communicating with components that are not part of the original system design, while maintaining
static correctness guarantees. In particular, if a new component is discovered at runtime, there is no
guarantee that its communication behaviour is compatible with existing components.

We address this problem by using multiparty session types with explicit connection actions, a type
formalism used to model distributed communication protocols. By associating session types with
software components, the discovery process can check protocol compatibility and, when required,
correctly replace components without jeopardising safety.

We present the design and implementation of EnsembleS, the first actor-based language with
adaptive features and a static session type system, and apply it to a case study based on an adaptive
DNS server. We formalise the type system of EnsembleS and prove the safety of well-typed programs,
making essential use of recent advances in non-classical multiparty session types.
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1 Introduction

The era of single monolithic stand-alone computers has long been replaced by a landscape of
heterogeneous and distributed computers and software applications. Technologies such as
the IoT [56], self-driving cars [55], or autonomous networks [7] bring the new challenge of
needing to successfully operate in face of ever-changing environments, technologies, devices,
and human errors, necessitating the need to adapt.
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10:2 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Here, we define dynamic self-adaptation – hereafter referred to as adaptation – as the ability
of a software component to sense and respond to its operating environment, by discovering,
replacing, and communicating with other software components at runtime that are not part
of the original system design [6, 52]. There are many examples of adaptive systems, as well
as the mechanisms of adaptation they leverage, such as discovery [37], modularisation [27],
dynamic code loading and migration [12, 24]. Commercially, Steam’s in-home streaming
system1 enables video games to dynamically transfer their input/output across a range of
devices. Academically, REX [50] enables software to self-assemble predefined components,
using machine learning to reconfigure the software in response to environmental changes.

Despite strong interest in adaption and substantial work on the mechanisms of adaptation,
current programming languages either lack the capabilities to ensure that adaptation can be
achieved safely and correctly, or they check correctness dynamically, resulting in runtime
overheads which may not be acceptable for resource-constrained devices.

Specifically, if an adaptive system discovers new software components at runtime, these
components must interact with the system in a purposeful manner. In concurrent and
distributed systems, such interaction goes beyond a simple function call / return expressed
with standard types and type systems: interaction involves complex communication protocols
that constrain the sequence and type of data exchanged. For example, knowing that two
components communicate integers and strings does not describe if or when they will be sent
or received. In spite of growing interest in the topic, for example, the recent formation of the
United Nations group considering creative adaptation2, mainstream programming languages
do not support the specification and verification of communication protocols in concurrent
and distributed systems. In turn, errors are discovered late in the development process and
potentially after deployment.

Even where all components are known statically, communication safety cannot be guar-
anteed: as an example, the REX system’s programming language specifies sequential call /
return interfaces for components, but not communication protocols for concurrent compon-
ents. The adaptation in the Steam in-home streaming system is even more limited, being
restricted to detection of input/output devices from a set of compatible possibilities. In both
cases, the adaptive aspects of the software have been defined and designed ahead of time,
as opposed to being composed on-demand at runtime, leaving no scope for extending the
system via runtime discovery and replacement.

This situation brings us to a key research question:

RQ: Can a programming language support static (compile-time) verification of safe runtime
dynamic self-adaptation, i.e., discovery, replacement and communication?

The problem of static verification of safe communication is addressed by multiparty session
types [29, 30, 31]. Multiparty session types (MPSTs) are a type formalism used to specify
the type, direction and sequence of communication actions between two or more participants.
Session types guarantee that software conforms to predefined communication protocols,
rather than risking errors manifesting themselves at runtime.

There is already some work in the literature on adaptation and session types, but it does not
answer our research question. We discuss related work in §6, but in brief, the state-of-the-art
has some combination of the following limitations: theory for a formal model such as the
π-calculus [13, 11, 19, 18], rather than a real-world programming language; omission of some
aspects of adaptation, such as runtime discovery [32]; or verification by runtime monitoring
[47, 49, 21], as opposed to static checking.

1 http://store.steampowered.com/streaming/
2 https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

http://store.steampowered.com/streaming/
https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx
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Global protocol
1 global protocol Bookstore
2 (role Sell, role Buy1, role Buy2) {
3 book(string) from Buy1 to Sell;
4 book(int) from Sell to Buy1;
5 quote(int) from Buy1 to Buy2;
6 choice at Buy2 {
7 agree(string) from Buy2 to Buy1, Sell;
8 transfer(int) from Buy1 to Sell;
9 transfer(int) from Buy2 to Sell;

10 } or {
11 quit(string) from Buy2 to Buy1, Sell;
12 } }

Local protocol for Sell
1 local protocol Bookstore_Sell
2 (self Sell,role Buy1,role Buy2) {
3 book(string) from Buy1;
4 book(int) to Buy1;
5 choice at Buy2{
6 agree(string) from Buy2;
7 transfer(int) from Buy1;
8 transfer(int) from Buy2;
9 } or {

10 quit(string) from Buy2;
11 } }

Figure 1 Global and local protocols for Bookstore.

To answer our research question, we implement EnsembleS, the first actor language
leveraging MPSTs to provide compile-time verification of safe dynamic runtime adaptation:
we can statically guarantee that a discovered actor will comply with a communication protocol,
and guarantee that replacing an actor’s behaviour (e.g., to fix a bug) will not jeopardise
communication safety. Key to our approach is the combination of the actor paradigm [28], for
its process addressability and explicit message passing, with explicit connection actions [32]
in multiparty session types, which allow discovered actors to be invited into a session.

Contributions. The overarching contribution of this work is the design, implementation,
and formalisation of a language which supports dynamic self-adaptation while guaranteeing
communication safety. We achieve this through a novel integration of an actor-based language
and multiparty session types with explicit connection actions. Specifically, we introduce:

1. EnsembleS and its compiler (§ 3): we present an actor language, EnsembleS, which
supports safe adaptable applications using MPSTs. Our framework supports:

MPST specifications, both standard and using explicit connection actions (§ 3.3);
MPSTs to provide guarantees of protocol compliance in runtime discovery (§ 3.4);
automatic generation of application code from MPSTs (§ 3.2)

2. An adaptive DNS case study (§ 4): using MPSTs and runtime discovery to show safe
dynamic self-adaptation can be achieved in a non-trivial software service

3. A core calculus for EnsembleS (§ 5): we formalise EnsembleS and prove type safety
and progress.

The formalism makes several technical contributions: it is the first actor-based calculus
with statically-checked MPSTs; and it is the first calculus to provide a language design and
semantics for explicit connection actions, which had previously only been explored at the
type level. Our design requires exception handling in the style of Mostrous & Vasconcelos [45]
and Fowler et al. [22], and the metatheory makes essential (and novel) use of non-classical
multiparty session types [54].

The implementation and examples are available in the paper’s companion artifact.

2 Multiparty Session Types

Multiparty session types [31] are a type formalism used to describe communication protocols
in concurrent and distributed systems. An MPST describes communication among multiple
software components or participants, by specifying the type and the direction of data
exchanged, which is given as a sequence of send and receive actions.

ECOOP 2021
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1 explicit global protocol OnlineStore
2 (role Customer, role Store, role Courier) {
3 login(string) connect Customer to Store;
4 do Browse(Customer, Store, Courier);
5 }
6
7 aux global protocol Deliver
8 (role Customer, role Store, role Courier) {
9 address(string) from Customer to Store;

10 deliver(string) connect Store to Courier;
11 ref(int) from Courier to Store;
12 disconnect Courier and Store;
13 ref(int) from Store to Customer;
14 disconnect Store and Customer;
15 }

1 aux global protocol Browse
2 (role Customer, role Store, role Courier) {
3 item(string) from Customer to Store;
4 price(int) from Store to Customer;
5 choice at Customer {
6 do Browse(Customer, Store, Courier);
7 } or {
8 do Deliver(Customer, Store, Courier);
9 } or {

10 quit() from Customer to Store;
11 disconnect Store and Customer;
12 }
13 }

Figure 2 Global protocol for OnlineStore.

We first introduce MPSTs (formalised in § 5) via Scribble [57], a specification language for
communicating protocols based on the theory of multiparty session types. We start with a
global type, which describes the interactions among all communicating participants. Using
the Scribble tool, a global protocol can be validated, guaranteeing its correctness, and then
projected for each participant. Projection returns a local type, which describes communication
actions from the viewpoint of that participant.

Bookstore example. Fig. 1 shows the classic Bookstore (also known as Two-Buyer) ex-
ample, written in Scribble. We have three communicating participants (roles): two buyers
Buy1 and Buy2, and one seller Sell, where the buyers wish to buy a book from the seller.
Buy1 sends the title of the book of type string to Sell (line 3). Next, Sell sends the
price of the book of type int to Buy1 (line 4). At this stage, Buy1 invites Buy2 to share the
cost of the book, by sending them a quote of type int that Buy2 should pay (line 5). It is
Buy2’s internal choice (line 6) to either agree (line 7), or quit the protocol (line 11). After
agreement, both Buy1 and Buy2 transfer their quote to Sell (lines 8 and 9, respectively).

Projecting the Bookstore global protocol into each of the communicating participants
returns their local protocols. Fig. 1 shows the local protocol for Sell; we omit Buy1 and
Buy2 as they are similar. Note that the local protocol only includes actions relevant to Sell.

Explicit connection actions. The Bookstore protocol assumes that all roles are connected
at the start of the session. This is undesirable when a participant is only needed for part of
a session, or the identity of a participant depends on data exchanged in the protocol.

Consider Figure 2, which details the protocol for an online shopping service, inspired by
the travel agency protocol detailed by Hu & Yoshida [32]. The protocol is organised as
three subprotocols: OnlineStore, the entry-point; Browse, where the customer repeatedly
requests quotes for items; and Deliver, where the store requests delivery from a courier. In
contrast to Bookstore, each connection must be established explicitly (note that connect
replaces from when initiating a connection).

Note in particular that Courier is only involved in the Deliver subprotocol. The store
can therefore choose which courier to use based on, for example, the weight of the item or the
customer’s location. Furthermore, it is not necessary to involve the courier if the customer
does not choose to make a purchase.
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1 type Isnd is interface(out integer output)
2 type Ircv is interface(in integer input)
3
4 stage home {
5 actor sender presents Isnd {
6 value = 1;
7 constructor() {}
8 behaviour {
9 send value on output;

10 value := value + 1;
11 } }
12 actor receiver presents Ircv {

13 constructor() {}
14 behaviour{
15 receive data from input;
16 printString("\nreceived: ");
17 printInt(data);
18 } }
19 boot {
20 s = new sender();
21 r = new receiver();
22 establish topology(s, r);
23 }
24 }

Figure 3 A simple EnsembleS program.

3 EnsembleS: An Actor Language for Runtime Adaptation

In this section, we present EnsembleS, a new session-typed actor-based language based on
Ensemble [25, 26]. EnsembleS actors are addressable, single-threaded entities with share-
nothing semantics, and communicate via message passing. However, differently from the
classic definition of the actor model [28, 1], the communication model in EnsembleS is
channel-based. EnsembleS supports both static and dynamic topologies:
Static Topologies All participants are present at the start of the session and remain involved

for the duration of the session. This is based on traditional MPSTs [31].
Dynamic Topologies Participants can connect and disconnect during a session. This builds

on the more recent idea of explicit connection actions [32].

3.1 EnsembleS: basic language features
An EnsembleS actor has its own private state and a single thread of control expressed as

a behaviour clause, which is repeated until explicitly told to stop. Every actor executes
within a stage, which represents a memory space. Actors do not share state, but instead
communicate via message passing along half-duplex, simply-typed channels.

Fig. 3 shows a simple EnsembleS program which defines, instantiates and connects two
actors, one of which sends increasing values to the other. The program defines two interfaces
Isnd and Ircv, declaring an output and input channel respectively. The boot clause (lines 19–
23) is executed first and creates an instance of each actor (lines 20–21), using the appropriate
constructor (lines 7 and 13, respectively). This creates and begins executing new threads for
each actor, which follow the logic of the relevant behaviour clause. Next, the boot clause
binds the actor’s channels together (line 22, discussed in §3.3). Once bound, the sender actor
sends the contents of value on its channel, increments it, and goes back to the beginning of
its behaviour loop (lines 8–11). The receiver actor waits for a message, binds the message
to data, displays it, and returns to the top of its behaviour loop (lines 14–18). EnsembleS
inherits Ensemble’s support for runtime software adaptation actions [26]:

Discover The ability to locate an arbitrary actor or stage reference at runtime, given an
interface and query.

Install Given an actor type, the ability to spawn it at a specified stage.
Migrate The ability for an executing actor to move to another stage.
Replace The ability to replace an executing actor A by a new instantiation of actor B, the

latter continuing at the same stage as A, if A and B have the same interface.
Interact : Given an actor reference (either spawned, discovered, or communicated), the

ability to connect to its channels at runtime and then communicate.

ECOOP 2021



10:6 Multiparty Session Types for Safe Runtime Adaptation in an Actor Language

Scribble
Global Protocol

Scribble
Local Protocol

EnsembleS
Template Executable

Scribble Tool StMungo EnsembleS Compiler

Figure 4 Automatic Actor Skeleton Generation Process.

We focus on the underlined actions and apply session types to guarantee communication
safety. The reason for this choice is that discover, replace and interact are actions that
modify how actors operate, whereas the other actions, install and migrate, affect where actors
operate, but not their behaviour.

3.2 Session types in EnsembleS
A session type in EnsembleS represents a communication protocol for an actor, i.e., a local
protocol (or local session type) validated and projected from a global session type.

We extend the StMungo [40] tool to generate EnsembleS template code that supports
session types. Fig. 4 shows an overview of the actor template code generation from a global
session type, and Fig. 5 shows an example of the generated code.

First, a developer defines a global session type in Scribble [57] (Fig. 4, first stage). The
Scribble tool checks that the protocol is well-formed and valid according to MPST theory
and projects the global protocol into local protocols for each participant (Fig.4, second stage).
For each local protocol, the StMungo tool produces (Fig. 4, third stage) i) the session type,
ii) the interface and type definitions, and iii) the actor template. The generated code is
parsed by the EnsembleS compiler, producing executable code (Fig. 4, fourth stage).

Let us now look at the Buy1 local protocol, given in Fig. 1. Following the code generation
process in Fig.4, the EnsembleS template items i), ii) and iii) for Buy1 correspond respectively
to the code blocks starting in lines 3, 14, and 24 in Fig. 5.

The Buy1 local protocol is translated as an EnsembleS session type in Fig. 5 (lines 3–12).
It shows a sequence of send and receive actions (lines 4–6), followed by a choice at Buy2
(lines 7–12), which determines the next set of communication actions.

Following session type specifications, EnsembleS channels define both the payload type and
the session that this channel expects to interact with (lines 14–21, Fig. 5). The EnsembleS
compiler uses this information to ensure that the session of each channel matches the
session associated with the actor it is connected to.

An actor may follow a session type (line 24, Fig. 5). This tells the EnsembleS compiler
that the logic within the behaviour clause of that actor must follow the communication
protocol defined in the session.

It is important to note that the code generation in Fig. 4 is optional and the EnsembleS
typechecker is independent of this process.

3.3 Channel connections: static and dynamic
If an actor follows a session type, then its channel connections must be 1-1. This is the
standard linearity requirement for session types: if there are multiple senders on one channel,
then their messages can interfere and it is not possible to statically check that the session
is followed correctly. EnsembleS avoids this problem by using a single channel for each
message type between each pair of participants. For example, in Fig. 1, each of the three
actors communicates strings and integers with both of the other actors. Because channels are
unidirectional, each actor therefore has 8 channels: 2 to send strings and 2 to send integers
to both other actors, and similarly 4 channels for receiving.
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1 // FILE AUTOMATICALLY GENERATED
2 //************SESSIONS**************
3 type Buy1 is session(
4 book(string) to Sell;
5 book(int) from Sell;
6 quote(int) to Buy2;
7 choice at Buy2{
8 Choice0_agree(string) from Buy2;
9 transfer(int) to Sell;

10 } or {
11 Choice0_quit(string) from Buy2;
12 } )
13 //***********INTERFACES*************
14 type Buy1I is interface(
15 out {Seller, string} toSell_string,
16 in {Seller, integer} fromSell_integer,
17 out {Buy2, integer} toBuy2_integer,
18 in {Buy2, Choice0} fromBuy2_agreequit,
19 in {Buy2, string} fromBuy2_string,
20 out {Sell, integer} toSell_integer,
21 )
22 //*************ACTORS***************
23 stage home{
24 actor Buy1A presents Buy1I follows Buy1 {
25 constructor() {}
26 behaviour {

27 payload1 = "";
28 send payload1 on toSell_string;
29 receive payload2 from fromSell_integer;
30 payload3 = 42;
31 send payload3 on toBuy2_integer;
32 // Receive choice from other actor
33 receive payload4 from fromBuy2_agreequit;
34 switch(payload4) {
35 case Choice0_agree:
36 receive payload5 from fromBuy2_string;
37 payload6 = 42;
38 send payload6 on toSell_integer;
39 break;
40 case Choice0_quit:
41 receive payload7 from fromBuy2_string;
42 break;
43 }
44 } }
45 // Omitted: Buy2A and SellA actors
46 boot {
47 buyer1 = new Buy1A();
48 buyer2 = new Buy2A();
49 seller = new SellA();
50 // other actors...
51 establish topology(buyer1,buyer2,seller);
52 } }

Figure 5 EnsembleS static session template.

Static connections. When using session types with static topologies, and all actors in the
session are known from the beginning of the application, EnsembleS provides the establish
topology statement to create the connections between the specified session actors (line 22,
Fig. 3; line 51, Fig. 5). A compile-time error is generated if the topology is ill-defined (e.g., if
the sessions do not compose or if the channels do not match).

Dynamic connections. EnsembleS supports reconfigurable channels and dynamic connec-
tions, via link and unlink statements. The link statement takes two references to actors
which follow sessions (line 5, top of Fig. 6), and connects all of the channels of the two
specified actors such that the actors’ sessions match. A compile-time error is raised if the
sessions are incompatible. Conversely, the unlink statement disconnects (line 8).

3.4 Adaptation via discovery and replacement
EnsembleS supports runtime discovery of local or remote actor instances. As an example,
in a sensor network, it may be desirable to connect to a sensor which has a battery level
above a certain threshold. The EnsembleS query language allows us to define a query on
non-functional properties (such as battery level or signal strength), as well as the channels
exposed by an actor’s interface. This ensures that any discovered actor has the correct
number and type of channels, and satisfies user’s preferences. To ensure that the discovered
actor also obeys a declared protocol, EnsembleS uses session types in the discovery process.
The green box in Fig. 6 shows how a session is used in the actor discovery process, and
the yellow box shows how such actors are connected together. Runtime discovery does not
appear in the session because it does not affect the communication behaviour of an actor.

EnsembleS also supports the replacement of executing actors, much like the hot-code
swapping in Erlang [12]. The new actor must present the same interface as it takes over the
channels of the actor being replaced at the location it was executing. Replacement happens at
the beginning of an actor’s behaviour loop. Replacement has many uses, such as updating,

ECOOP 2021
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Discovery and explicit connections

1 query alpha() { $serial==823 && $version<4; }
2 actor_s = discover(

3 Buyer1_interface, Buyer1_session , alpha());

4 if (actor_s[0].length > 1){

5 link me with actor_s[0];

6 msg = "book";
7 send msg on toB_string;

8 unlink Buyer1_session;

9 }

Replacement

1 // session and interface definitions
2 actor fastA presents accountingI
3 follows accountingSession{
4 constructor() {}
5 behaviour{
6 receive data on input;
7 quicksort(data);
8 send data on output;
9 }

10 }
11
12 actor slowA presents accountingI
13 follows accountingSession{
14 pS= new property[2] of property("",0);
15 constructor() {
16 pS[0]:= new property("serial",823);
17 pS[1]:= new property("version",2);
18 publish pS;

19 }
20 behaviour{
21 receive data on input;
22 bubblesort(data);
23 send data on output;
24 } }
25
26 actor main presents mainI {
27 constructor() { }
28 behaviour {
29 // Find the slow actors matching query
30 actor_s = discover(accountingI,
31 accountingSession, alpha());
32 // Replace them with efficient versions
33 if(actor_s[0].length > 1) {
34 replace actor_s[0] with fastA();
35 }
36 } }

Figure 6 Session type-based adaptation.

changing, or extending some of the functionalities of existing software, and is particularly
useful in embedded systems [33, 34]. The existing and new actors must follow the same
session type, guaranteeing that replacement will not break existing actor interactions.

Fig. 6 (bottom) shows an example of a main actor searching for actors of type slowA (line
30), and replacing them with new actors of type fastA (line 34). The slowA actors are
located by defining a query (line 1, top) over user-defined properties, which are published
(lines 16–18). The discovery process is the same as above, but now the discovered actors are
used for replacement rather than just communication.

3.5 Implementation

EnsembleS is implemented in C, and supports reference-counted garbage collection and
exceptions. Applications are compiled to Java source code, and then to custom Java class
files for use with a custom VM [10]. These applications can be executed on the desktop,
parallel accelerators (e.g. GPUs), Raspberry Pi, Lego NXT, and Tmote Sky hardware
platforms, and use a range of networking technologies.

Compact representations of session types are retained at runtime in order to support
discovery. EnsembleS skeleton generation code is based on the StMungo tool [40], which is
implemented as an ANTLR listener, and session typechecking is supported by modifying the
original Ensemble typechecker to ensure that each communication action is permitted by the
actor’s declared session type.

Since EnsembleS builds directly on top of the original Ensemble implementation, it inherits
Ensemble’s runtime system. Performance results can be found in [26].
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1 type Client is session(
2 connect RootServer;
3 RootRequest(DomainName) to RootServer;
4 choice at RootServer{
5 TLDResponse(ZoneServerAddress)
6 from RootServer;
7 disconnect RootServer;
8 rec Lookup {
9 connect ZoneServer;

10 ResolutionRequest(DomainName) to ZoneServer;
11 choice at ZoneServer {
12 PartialResolution(ZoneServerAddress)
13 from ZoneServer;
14 disconnect ZoneServer;

15 continue Lookup;
16 } or {
17 InvalidDomain(String) from ZoneServer;
18 disconnect ZoneServer;
19 } or {
20 ResolutionComplete(IPAddress)
21 from ZoneServer;
22 disconnect ZoneServer;
23 }
24 }
25 } or {
26 InvalidTLD(String) from RootServer;
27 disconnect RootServer;
28 }
29 )

Figure 7 EnsembleS DNS client session type.

4 Case study: DNS

To illustrate the use of session types for adaptive programming, we consider a real-world
case study: the domain name system (DNS). DNS is a hierarchical, globally distributed
translation system that converts an internet host name (domain name) into its corresponding
numerical Internet Protocol (IP) address [43].

The process begins by transmitting a domain name to one of many well-known root servers.
This server either rejects bad requests, or provides the information to contact a zone server.
The zone server may know the IP address of the domain name; if not it refers the request to
another zone server. This process continues until either the IP address is returned, or the
name cannot be found.

To develop an adaptive DNS example, we assume no a priori information about server
location, and instead use explicit discovery to find root and zone servers based on session
types and server properties. We use an existing Scribble description of DNS as a starting
point [21]. To illustrate adaptation we focus on the client who is querying DNS.

Fig. 7 shows the session type for the client actor which asks DNS to resolve a domain
name. The client first asks for a root server (lines 2–3), and then either is informed that the
request is invalid (lines 26–27) or recursively queries zone servers (lines 7–23) until the IP
address is found (lines 20–22), or an error is reported (lines 17–18). Based on this session,
StMungo generates EnsembleS types and interface definitions and a skeleton actor. Minimally
completing the generated skeleton produces the code in Fig. 8.

In this example, discovery is used to locate the root server (lines 21–25, in Fig. 8) and the
zone server (line 37). In each case, the session for the relevant server is provided to ensure
that the discovered actor follows the expected protocol. When either server is located, the
client links with it (lines 26 and 39), enabling communication. When communication with
the server is no longer required, the client unlinks explicitly (lines 33, 47, 51, 55, 62).

Although explicit discovery is used at the language level, there is nothing to prevent the
implementation of discovery from caching the addresses of the root and zone servers. This
does not affect the use of sessions in discovery or the safety they provide, as the type-based
guarantees are still enforced. However, this would potentially improve performance of the
system. Additionally, if a cached entry becomes stale, the full discovery process can again be
used without code modification or degradation in trust.

A version of DNS which uses discovery allows the system to become more flexible and
resilient to changing operational conditions, such as topology changes in the servers and their
data. Session types ensure compatibility with the discovered actors.

ECOOP 2021
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1 type Iclient is interface(
2 out{RootServer,string} RootServer_stringOut,
3 in {RootServer,string} RootServer_stringIn,
4 out{ZoneServer,string} ZoneServer_stringOut,
5 in {ZoneServer,string} ZoneServer_stringIn,
6 in {ZoneServer,choice_enum} ZoneServer_choiceIn,
7 in {RootServer,choice_enum} RootServer_choiceIn)
8
9 type choice_enum is

10 enum(TLDResponse,PartialResolution,
11 InvalidDomain,ResolutionComplete,
12 InvalidTLD)
13
14 query find_name(string n){ $name == n; }
15
16 actor c presents Iclient
17 follows Client {
18 dom_name = "nii.ac.jp";
19 constructor() { }
20 behaviour{
21 rootQuery = find_name("jp");
22 // Find Root Server
23 root_s =
24 discover(IServer, RootServer, rootQuery);
25 // search until root_s non−empty
26 link me with root_s[0];
27 send domain_name on RootServer_stringOut;
28 receive c_msg from RootServer_choiceIn;
29 switch(c_msg){
30 case TLDResponse:
31 receive ZoneServerAddr_msg

32 from RootServer_stringIn;
33 unlink RootServer;
34 while(true) Lookup : {
35 // Find ZoneServer
36 zone_s =
37 discover(IServer, ZoneServer,
38 find_name(ZoneServerAddr_msg));
39 link me with zone_s[0];
40 // Ask ZoneServer
41 send dom_name on ZoneServer_stringOut;
42 receive c_msg2 from ZoneServer_choiceIn;
43 switch(c_msg2){
44 case PartialResolution:
45 receive str_msg from ZoneServer_stringIn;
46 ZoneServerAddr_msg := str_msg;
47 unlink ZoneServer;
48 continue Lookup;
49 case InvalidDomain:
50 receive str_msg from ZoneServer_stringIn;
51 unlink ZoneServer;
52 break;
53 case ResolutionComplete:
54 receive str_msg from ZoneServer_stringIn;
55 unlink ZoneServer;
56 break Lookup;
57 }
58 // keep looking
59 }
60 case InvalidTLD:
61 receive str_msg from RootServer_stringIn;
62 unlink RootServer;
63 } } }

Figure 8 EnsembleS DNS client.

5 A Core Calculus for EnsembleS

In this section, we provide a formal characterisation of EnsembleS. In doing so, we show
that our integration of adaptation with multiparty session types is safe, allowing adaptation
while ruling out communication mismatches.

Relationship to implementation. Our core calculus aims to distil the essence of the
interplay between adaptation and session-typed communication with explicit connection
actions. Therefore, we concentrate on a functional core calculus rather than an imperative
one: imperative variable binding serves only to clutter the formalism, and our fine-grain
call-by-value representation can be thought of as an intermediate language.

Interfaces and unidirectional, simply-typed channels in EnsembleS are an implementation
artifact: sending on a channel whose type changes is equivalent to sending on multiple
channels with different types. Moreover, following theoretical accounts of multiparty session
types [31, 14, 32], instead of having send and receive (resp. connect and accept) operations
followed by branching (as done in Mungo and StMungo), we have unified send and receive
constructs which communicate a label along with the message payload.

Since session typing is the interesting part of discovery, we omit properties and queries
from the formalism; their inclusion is routine. Finally, we concentrate on dynamic topologies
with explicit connection actions rather than static topologies since they are important for
adaptation and more interesting technically.
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Syntax of Types and Terms

Actor class names u
Actor definitions D ::= actor u follows S {M}
Roles p, q, s, t
Recursion Labels l
Behaviours κ ::= M | stop
Types A, B ::= Pid(S) | 1
Values V, W ::= x | ()
Actions L ::= return V | continue l | raise

| new u | self | replace V with κ | discover S
| connect ℓ(V ) to W as p | accept from p {ℓi(xi) 7→ Mi}i

| send ℓ(V ) to p | receive from p {ℓi(xi) 7→ Mi}i

| wait p | disconnect from p
Computations M, N ::= let x ⇐ M in N | try L catch M | l :: M | L

Syntax of Session Types

Session Actions α, β ::= p!ℓ(A) | p!!ℓ(A) | p?ℓ(A) | p??ℓ(A) | #↑p
Session Types S, T, U ::= Σi∈I(αi . Si) | µX.S | X | #↓p | end
Communication Actions † ::= ! | ?
Disconnection Actions ‡ ::= #↑ | #↓

Figure 9 Syntax.

5.1 Syntax
Definitions. Figure 9 shows the syntax of Core EnsembleS terms and types. We let u range
over actor class names and D range over definitions; each definition actor u follows S {M}
specifies the actor’s class name, session type, and behaviour. Like class tables in Featherweight
Java [36], we assume a fixed mapping from class names to definitions.

Values. Since our calculus is inherently effectful, we work in the setting of fine-grain call-
by-value [41], where we have an explicit static stratification of values and computations and
an explicit evaluation order similar to A-normal form [20]. Values V, W describe data that
has been computed, and for the sake of simplicity, consist of variables and the unit value.
Other base values (such as integers or booleans) can be encoded or added straightforwardly.

Computations. The let x ⇐ M in N construct evaluates M , binding its result to x in N .
The calculus supports exception handling over a single action L using try L catch M , where
M is evaluated if L raises an exception, and labelled recursion using l :: M , stating that
inside term M , a process can recurse to label l using continue l. Actions L denote the basic
steps of a computation. The return V construct denotes a value.

Concurrency and adaptation constructs. The new u construct spawns a new actor of class
u and returns its PID. The self construct returns the current actor’s PID. An actor can
replace the behaviour of itself or another actor V using replace V with κ. An actor can
discover other actors following a session type S using the discover S construct, which returns
the PID of the discovered actor.

Session communication constructs. An actor can connect to an actor W playing role p using
connect ℓ(V ) to W as p, sending a message with label ℓ and payload V . An actor can accept
a connection from another actor playing role p using accept from p {ℓi(xi) 7→ Mi}i, which
allows an actor to receive a choice of messages; given a message with label ℓj , the payload is
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bound to xj in the continuation Nj . Once connected, an actor can communicate using the
send and receive constructs. An actor can disconnect from p using disconnect from p, and
await the disconnection of p using wait p.

Types. Types, ranged over by A, B, include the unit type 1 and process IDs Pid(S); the
parameter S refers to the statically-known initial session type of the actor (i.e., the session
type declared in the follows clause of a definition). Unlike in channel-based session-typed
systems, process IDs themselves need not be linear: any number of actors can have a reference
to another actor, but each actor may only be in a single session at a time. PIDs can be
passed as payloads in session communications.

Session types. Session types are ranged over by S, T, U and follow the formulation of Hu
& Yoshida [32]. A session type can be a choice of actions, written Σi∈I(α . S), a recursive
session type µX.S binding recursion variable X in continuation S, a recursion variable X, a
disconnection action #↓p, or the finished session end. The syntax of session types is more
liberal than traditional “directed” presentations in order to allow output-directed choices to
send or connect to different roles.

Session actions α involve sending (!), receiving (?), connecting (!!), or accepting (??) a
message ℓ(A) with label ℓ and type A; or awaiting another participant’s disconnection (#↑).
As well as disallowing self-communication, following Hu & Yoshida [32], we require the
following syntactic restrictions on session types:

▶ Definition 1 (Syntactic validity). A choice type S = Σi∈I(αi . Si) is syntactically valid if:
1. it is an output choice, i.e., each αi is a send or connection action; or
2. it is a directed input choice, i.e., S = Σi∈I(p?ℓi(Ai).Si) or S = Σi∈I(p??ℓi(Ai).Si); or
3. the choice consists of single wait action #↑p . S.
In the remainder of the paper, we assume that all session types are syntactically valid.

Session correlation. The most general form of explicit connection actions allows a participant
to leave and re-join a session, or accept connections from multiple different participants.
Such generality comes at a cost, since care must be taken to ensure that the same participant
plays the role throughout the session.

To address this session correlation issue, Hu & Yoshida [32] propose two solutions: either
augment global types with type-level assertions and check conformance dynamically, or
adopt a lightweight syntactic restriction which requires that each local type must contain at
most a single accept action as its top-level construct. We opt for the latter, enforcing the
constraint as part of our safety property (§5.4.2), and by requiring that #↓p does not have a
continuation. (Note that the behaviour will repeat, so p will be able to accept again after
disconnecting). As Hu & Yoshida [32] show, this design still supports the most common use
cases of explicit connection actions.

Global types. Traditional MPST works [31, 14] use global types to describe the interactions
between participants at a global level, which are then projected into local types; projectability
ensures safety and deadlock-freedom.

Since we are using explicit connection actions, traditional approaches are insufficiently
flexible as they do not account for certain roles being present in certain branches but not
others. Following [53] and subsequently non-classical MPSTs [54], we instead formulate our
typing rules and safety properties using collections of local types.
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It is, however, still convenient to write a global type and have local types computed
programatically. Global types are defined as follows:

Global Actions π ::= p → q : ℓ(A) | p ↠ q : ℓ(A) | p#q
Global Types G ::= Σi∈I(πi . Gi) | µX.G | X | end

Global actions π describe interactions between participants: p → q : ℓ(A) states that role p
sends a message with label ℓ and payload type A to q. Similarly, p ↠ q : ℓ(A) states that
p connects to q by sending a message with label ℓ and payload type A. The disconnection
action p#q states that role p disconnects from role q.

We can write the OnlineStore example from § 2 as follows:

Customer ↠ Store : login(String) . µBrowse .
Customer → Store : item(String) . Store → Customer : price(Int) . Browse

+
Customer → Store : address(String) . Store ↠ Courier : deliver(String) .
Courier → Store : ref(Int) . Courier#Store . Store → Customer : ref(Int) .
Store#Customer . end

+
Customer → Store : quit(1) . Store#Customer . end

Although projectability in our setting does not necessarily guarantee safety and deadlock-
freedom, we show a projection algorithm, adapted from that of Hu & Yoshida [32], in the
extended version. The resulting local types can then be checked for safety (§5.4.2).

Protocols and Programs. Terms do not live in isolation; they refer to a set of protocols,
and evaluate in the context of an actor. A protocol maps role names to local session types.

▶ Definition 2 (Protocol). A protocol is a set {pi : Si}i mapping role names to session types.

As an example, consider the protocol for the online shop example:



Customer : Store!!login(String) . µBrowse .
Store!item(String) . Store?price(Int) . Browse

+ Store!address(String) . Store?ref(Int) . #↑Store . end
+ Store!quit(1) . #↑Store . end,

Store : Customer??login(String) . µBrowse .
Customer?item(String) . Customer!price(Int) . Browse

+ Customer?address(String) . Courier!!deliver(String) . Courier?ref(Int) .
#↑Courier . Customer!ref(Int) . #↓Customer

+ Customer?quit(1) . #↓Customer,

Courier : Store??deliver(String) . Store!ref(Int) . #↓Store


We can now consider an implementation of a Store actor, which uses discovery to find a

courier. We write receive ℓ(x) from p; M and accept ℓ(x) from p; M as syntactic sugar for
receive from p {ℓ(x) 7→ M} and accept from p {ℓ(x) 7→ M} respectively, and write M ; N as
syntactic sugar for letx ⇐ M inN for a fresh variable x. We assume the existence of a function
lookupPrice, and define CourierType as Store??deliver(String) . Store!ref(Int) . #↓Store.
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actor Store follows ty(Store) {
accept login(credentials) from Customer;
Browse ::

receive from Customer {
item(name) 7→

send price(lookupPrice(name)) to Customer;
continue Browse

address(addr) 7→
let pid ⇐ discover CourierType in
connect deliver(addr) to pid as Courier;
receive ref(r) from Courier;
wait Courier;
send ref(r) to Customer;
disconnect from Customer

quit(()) 7→ disconnect from Customer
}

}
A program consists of actor definitions, protocol definitions, and the “boot” clause to be

run in order to set up initial actor communication.

▶ Definition 3 (Program). An EnsembleS program is a 3-tuple (−→D,
−→
P , M) of a set of

definitions, protocols, and an initial term to be evaluated.

In the context of a program, we write ty(p) to refer to the session type associated with
role p as defined by the set of protocols. Given an actor definition actor u follows S {M},
we define sessionType(u) = S and behaviour(u) = M .

5.2 Typing rules
Figures 10 and 11 show the typing rules for EnsembleS. Value typing, with judgement
Γ ⊢ V :A, states that under environment Γ, value V has type A. Judgement ⊢ D states that
an actor definition actor u follows S {M} is well-typed if its body is typable under, and fully
consumes, its statically-defined session type S. The behaviour typing judgement {S} Γ ⊢ κ

states that given static session type S, behaviour κ is well-typed under Γ. Specifically, stop
is always well-typed, and M is well-typed if it is typable under and fully consumes S.

5.2.1 Term typing
The typing judgement for terms {T} Γ | S ▷ M :A ◁ S′ reads “in an actor following T , under
typing environment Γ and with current session type S, term M has type A and updates
the session type to S′”. Note that the term typing judgement, reminiscent of parameterised
monads [3], contains a session precondition S and may perform some session communication
actions to arrive at postcondition S′.

Functional rules. Rule T-Let is a sequencing operation: given a construct let x ⇐ M in N

where M has pre-condition S and post-condition S′, and where N has pre-condition S′ and
post-condition S′′, the overall construct has pre-condition S and post-condition S′′.

Following Kouzapas et al. [40], we formalise recursion through annotated expressions:
term l :: M states that M is an expression which can loop to l by evaluating continue l.
We take an equi-recursive view of session types, identifying recursive sessions with their
unfolding (µX.S = S{µX.S/X}), and assume that recursion is guarded. Rule T-Rec extends
the typing environment with a recursion label defined at the current session type. Rule
T-Continue ensures that the pre-condition must match the label stored in the environment,
but has arbitrary type and any post-condition since the return type and post-condition
depend on the enclosing loop’s base case.
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Definition typing ⊢ D

T-Def
{S} · | S ▷ M :A ◁ end

⊢ actor u follows S {M}

Value typing Γ ⊢ V :A

T-Var
x : A ∈ Γ
Γ ⊢ x:A

T-Unit
Γ ⊢ ():1

Behaviour typing {S} Γ ⊢ κ

T-Stop
{S} Γ ⊢ stop

T-Body
{S} Γ | S ▷ M :A ◁ end

{S} Γ ⊢ M

Typing rules for computations {T } Γ | S ▷ M :A ◁ S′

Functional Rules

T-Let
{T } Γ | S ▷ M :A ◁ S′ {T } Γ, x : A | S′ ▷ N :B ◁ S′′

{T } Γ | S ▷ let x ⇐ M in N :B ◁ S′′

T-Return
Γ ⊢ V :A

{T } Γ | S ▷ return V :A ◁ S

T-Rec
{T } Γ, l : S | S ▷ M :A ◁ S′

{T } Γ | S ▷ l :: M :A ◁ S′

T-Continue

{T } Γ, l : S | S ▷ continue l:A ◁ S′

Actor / Adaptation Rules

T-New
sessionType(u) = U

{T } Γ | S ▷ new u:Pid(U) ◁ S

T-Self
{T } Γ | S ▷ self:Pid(T ) ◁ S

T-Discover
{T } Γ | S ▷ discover U :Pid(U) ◁ S

T-Replace
Γ ⊢ V :Pid(U) {U} Γ ⊢ κ

{T } Γ | S ▷ replace V with κ:1 ◁ S

Figure 10 Typing rules (1).

Actor and adaptation rules. Rule T-New states that creating an actor of class u returns
a PID parameterised by the session type declared in the class of u. Rule T-Self retrieves
a PID for the current actor, parameterised by the statically-defined session type of the
local actor (i.e., the T in the judgement {T} Γ | S ▷ M :A ◁ S′). Rule T-Discover states
discover U returns a PID of type Pid(U). Finally, given a behaviour κ typable under a static
session type U , and a process ID with the matching static type Pid(U), T-Replace allows
replacement, and returns the unit type.

Exception handling rules. Figure 11 shows the rules for exception handling and session
communication. T-Raise denotes raising an exception; since it does not return, it can
have an arbitrary return type and postcondition. Rule T-Try types an exception handler
tryLcatchM which acts over a single action L. If L raises an exception, then M is evaluated
instead. Since L only scopes over a single action, the try and catch clauses have the same
pre- and post-conditions to allow the action to be retried if necessary.
▶ Remark 4. Following Mostrous & Vasconcelos [45], our try L catch M construct scopes
over a single action and is discarded afterwards. We opt for this simple approach since in our
setting exceptions are a means to an end, but (at the cost of a more involved type system)
we could potentially scope over multiple actions as long as the handler is compatible with all
potential exit conditions [23]. We leave a thorough exploration to future work.

Session communication rules. Rule T-Conn types a term connect ℓj(V ) to W as pj .
Given the precondition is a choice type containing a branch p!!ℓj(Aj) . S′

j , and the remote
actor reference is W of type Pid(S), the rule ensures that S is compatible with the type of
pj , and ensures that the label and payload are compatible with the session type. The session
type is then advanced to S′

j . Rule T-Send follows the same pattern.
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Exception handling rules

T-Raise

{T } Γ | S ▷ raise:A ◁ S′

T-Try
{T } Γ | S ▷ L:A ◁ S′ {T } Γ | S ▷ M :A ◁ S′

{T } Γ | S ▷ try L catch M :A ◁ S′

Session communication rules

T-Conn
pj !!ℓj(Aj) ∈ {αi}i∈I Γ ⊢ V :Aj Γ ⊢ W :Pid(T ) T = ty(pj)

{T } Γ | Σi∈I(αi . Si) ▷ connect ℓj(V ) to W as pj :1 ◁ S′
j

T-Send
pj !ℓj(Aj) ∈ {αi}i∈I Γ ⊢ V :Aj

{T } Γ | Σi∈I(αi . Si) ▷ send ℓj(V ) to pj :1 ◁ S′
j

T-Accept
({T } Γ, xi : Bi | Si ▷ Mi:A ◁ S)i∈I

{T } Γ | Σi∈I(q??ℓi(Bi) . Si) ▷ accept from q {ℓi(xi) 7→ Mi}i∈I :A ◁ S

T-Recv
({T } Γ, xi : Bi | Si ▷ Mi:A ◁ S)i∈I

{T } Γ | Σi∈I(q?ℓi(Bi) . Si) ▷ receive from q {ℓi(xi) 7→ Mi}i∈I :A ◁ S

T-Wait
{T } Γ | #↑q . S ▷ wait q:1 ◁ S

T-Disconn
{T } Γ | #↓q ▷ disconnect from q:1 ◁ end

Figure 11 Typing rules (2).

Given a session type Σi∈I(p??xi(Ai)) . Si, rule T-Accept types term
accept from p {ℓi(xi) 7→ Mi}i∈I , enabling an actor to accept connections with mes-
sages ℓi, binding the payload xi in each continuation Mi. Like case expressions in functional
languages, each continuation must be typable under an environment extended with xi : Ai,
under session type Si, and each branch must have same result type and postcondition. Rule
T-Recv is similar.

Rule T-Wait handles waiting for a participant p to disconnect from a session, requiring a
pre-condition of #↑p . S, returning the unit type and advancing the session type to S. Rule
T-Disconnect is similar and advances the session type to end.

5.3 Operational semantics
We describe the semantics of EnsembleS via a deterministic reduction relation on terms, and
a nondeterministic reduction relation on configurations.

5.3.1 Runtime syntax
Figure 12 shows the runtime syntax and the first part of the reduction rules for EnsembleS.

Whereas static syntax and typing rules describe code that a user would write, runtime
syntax arises during evaluation. We introduce two types of runtime name: s ranges over
session names, which are created when a process initiates a session, and a ranges over actor
names, which uniquely identify each actor once it has been spawned by new.

Configurations. Configurations, ranged over by C, D, E , represent the concurrent fragment
of the language. Like in the π-calculus [42], name restrictions (νn)C bind name n in C, C ∥ D
denotes C and D running in parallel, and the 0 configuration denotes the inactive process.
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Runtime syntax

Names n ::= a | s

Configurations C, D, E ::= (νn)C | C ∥ D | ⟨a, M, σ, κ⟩ |  s[p] | 0
Connection state σ ::= ⊥ | s[p]⟨q̃⟩

Runtime environments ∆ ::= · | ∆, a : S | ∆, s[p]⟨q̃⟩:S

Evaluation contexts E ::= F | let x ⇐ E in M
Top-level contexts F ::= [ ] | try [ ] catch M
Pure contexts EP ::= [ ] | let x ⇐ EP in M

Term reduction M −→M N

E-Let let x ⇐ return V in M −→M M{V/x}
E-TryReturn try return V catch M −→M return V
E-TryRaise try raise catch M −→M M
E-Rec l :: M −→M M{l :: M/continue l}
E-LiftM E[M ] −→M E[N ] if M −→M N

Configuration reduction (1) C −→ D

Actor / adaptation rules

E-Loop
⟨a, return V, ⊥, M⟩ −→ ⟨a, M, ⊥, M⟩

E-New
b is fresh behaviour(u) = M

⟨a, E[new u], σ, κ⟩ −→
(νb)(⟨a, E[return b], σ, κ⟩ ∥ ⟨b, M, ⊥, M⟩)

E-Replace

⟨a, E[replace b with κ′], σ1, κ1⟩ ∥ ⟨b, N, σ2, κ2⟩ −→
⟨a, E[return ()], σ1, κ1⟩ ∥ ⟨b, N, σ2, κ′⟩

E-ReplaceSelf

⟨a, E[replace a with κ′], σ, κ⟩ −→
⟨a, E[return ()], σ, κ′⟩

E-Discover
sessionType(b) = S

¬((N = return V ∨ N = raise) ∧ κ2 = stop)
⟨a, E[discover S], σ1, κ1⟩ ∥ ⟨b, E′[N ], σ2, κ2⟩ −→

⟨a, E[return b], σ1, κ1⟩ ∥ ⟨b, E′[N ], σ2, κ2⟩

E-Self
⟨a, E[self], σ, κ⟩ −→ ⟨a, E[return a], σ, κ⟩

Figure 12 Operational semantics (1).

Actors are represented at runtime as a 4-tuple ⟨a, M, σ, κ⟩, where a is the actor’s runtime
name; M is the term currently evaluating; σ is the connection state; and κ is the actor’s
current behaviour. A connection state is either disconnected, written ⊥, or playing role p in
session s and connected to roles q̃, written s[p]⟨q̃⟩.

Inspired by Mostrous & Vasconcelos [45] and Fowler et al. [22], a zapper thread  s[p]
indicates that participant p in session s cannot be used for future communications, for
example due to the actor playing the role crashing due to an unhandled exception.

To run a program, we place it in an initial configuration. of the form (νa)(⟨a, M, ⊥, stop⟩).

Runtime typing environments. Whereas Γ is an unrestricted typing environment used for
typing values and configurations, we introduce ∆ as a linear runtime environment. Runtime
environments can contain entries of type a : S, stating that actor a has statically-defined
session type S, and entries of type s[p]⟨q̃⟩:S, stating that in session s, role p is connected to
roles q̃ and currently has session type S.
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Configuration reduction (2) C −→ D

Session reduction rules

E-ConnInit
j ∈ I

⟨a, E[F [connect ℓj(V ) to b as q]], ⊥, κ1⟩ ∥ ⟨b, E′[F ′[accept from p {ℓi(xi) 7→ Mi}i∈I ]], ⊥, κ2⟩ −→
(νs)(⟨a, E[return ()], s[p]⟨q⟩, κ1⟩ ∥ ⟨b, E′[Mj{V/xj}], s[q]⟨p⟩, κ2⟩)

E-Conn
q ̸∈ r̃

⟨a, E[F [connect ℓj(V ) to b as q]], s[p]⟨r̃⟩, κ1⟩ ∥ ⟨b, E′[F ′[accept from p {ℓi(xi) 7→ Ni}i∈I ]], ⊥, κ2⟩ −→
⟨a, E[return ()], s[p]⟨r̃, q⟩, κ1⟩ ∥ ⟨b, E′[Nj{V/xj}], s[q]⟨p⟩, κ2⟩

E-ConnFail
((N = return V ∨ N = EP[raise]) ∧ κ2 = stop) ∨ σ2 ̸= ⊥

⟨a, E[connect ℓj(V ) to b as q], σ1, κ1⟩ ∥ ⟨b, N, σ2, κ2⟩ −→ ⟨a, E[raise], σ1, κ1⟩ ∥ ⟨b, N, σ2, κ2⟩

E-Disconn

⟨a, E[F [wait q]], s[p]⟨r̃, q⟩, κ1⟩ ∥ ⟨b, E′[F ′[disconnect from p]], s[q]⟨p⟩, κ2⟩ −→
⟨a, E[return ()], s[p]⟨r̃⟩, κ1⟩ ∥ ⟨b, E′[return ()], ⊥, κ2⟩

E-Comm
j ∈ I q ∈ r̃ p ∈ s̃

⟨a, E[F [send ℓj(V ) to q]], s[p]⟨r̃⟩, κ1⟩ ∥ ⟨b, E′[F ′[receive from p {ℓi(xi) 7→ Mi}i∈I ]], s[q]⟨s̃⟩, κ2⟩ −→
⟨a, E[return ()], s[p]⟨r̃⟩, κ1⟩ ∥ ⟨b, E′[Mj{V/xj}], s[q]⟨s̃⟩, κ2⟩

E-Complete
(νs)(⟨a, return V, s[p]⟨∅⟩, κ⟩) −→ ⟨a, return V, ⊥, κ⟩

Figure 13 Operational semantics (2).

Evaluation contexts. Due to our fine-grain call-by-value presentation, evaluation contexts
E allow nesting only in the immediate subterm of a let expression. The top-level frame
F can either be a hole, or a single, top-level exception handler. Pure contexts EP do not
include exception handling frames.

5.3.2 Reduction rules
Term reduction −→M is standard β-reduction, save for E-TryRaise which evaluates the
failure continuation in the case of an exception. We consider four subcategories of configur-
ation reduction rules: actor and adaptation rules; session communication rules; exception
handling rules; and administrative rules.

Actor / adaptation rules. Given a fully-evaluated actor, E-Loop runs the term specified
by the actor’s behaviour. Rule E-New allows actor a to spawn a new actor of class u by
creating a fresh runtime actor name b and a new actor process of the form ⟨b, M, ⊥, M⟩
where M is the behaviour specified by u, returning the process ID b. Rules E-Replace and
E-ReplaceSelf handle replacement by changing the behaviour of an actor, returning the
unit value to the caller. Rule E-Discover returns the process ID of an actor b if it has the
desired static session type S. Rule E-Self returns the PID of the local actor.

Session communication rules. An actor begins a session by connecting to another actor
while disconnected; such a case is handled by rule E-ConnInit. Suppose we have a
disconnected actor a evaluating a connection statement connect ℓj(V ) to b as p, evaluating in
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Configuration reduction (3) C −→ D
Exception handling rules

E-CommRaise
subj(M) = q

⟨a, E[M ], s[p]⟨r̃⟩, κ⟩ ∥  s[q] −→
⟨a, E[raise], s[p]⟨r̃⟩, κ⟩ ∥  s[q]

E-FailS
⟨a, EP[raise], s[p]⟨r̃⟩, κ⟩ −→

⟨a, raise, ⊥, κ⟩ ∥  s[p]

E-FailLoop
⟨a, EP[raise], ⊥, M⟩ −→

⟨a, M, ⊥, M⟩

Administrative rules

E-LiftM
M −→M M ′

⟨a, E[M ], σ, κ⟩ −→ ⟨a, E[M ′], σ, κ⟩

E-Equiv
C ≡ C′ C′ −→ D′

D′ ≡ D
C −→ D

E-Par
C −→ C′

C ∥ D −→ C′ ∥ D

E-Nu
C −→ D

(νn)C −→ (νn)D

Configuration equivalence C ≡ D

C ∥ D ≡ D ∥ C C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E (νn1)(νn2)C ≡ (νn2)(νn1)C

C ∥ (νn)D ≡ (νn)(C ∥ D) if n ̸∈ fn(C) (νs)( s[p1] ∥ · · · ∥  s[pn]) ∥ C ≡ C C ∥ 0 ≡ C

Figure 14 Operational semantics (3).

parallel with a disconnected actor b evaluating an accept statement accept from p {ℓi(xi) 7→
Mi}i∈I . Rule E-ConnInit returns the unit value to actor a; creates a fresh session name
restriction s, sets the connection state of a to s[p]⟨q⟩ and of b to s[q]⟨p⟩; accepting actor b then
evaluates continuation Mj with V substituted for xj . Since exception handlers only scope
over a single communication action, the top-level frames F, F ′ in each actor are discarded if
the communication succeeds. Rule E-Conn handles the case where the connecting actor
is already part of a session and behaves similarly to E-ConnInit, without creating a new
session name restriction. A connection can fail if an actor attempts to connect to another
actor which is terminated or is already involved in a session; in these cases, E-ConnFail
raises an exception in the connecting actor.

Rule E-Disconn handles the case where an actor b leaves a session, synchronising with an
actor a. In this case, the unit value is returned to both callers, and the connection state of b

is set to ⊥. Rule E-Comm handles session communication when two participants are already
connected to the same session, and is similar to E-Conn. Rule E-Complete garbage collects
a session after it has completed and sets the initiator’s connection state to ⊥.

Exception handling rules. Exception handling rules allow safe session communication in
the presence of exceptions. Rule E-CommRaise states that if an actor is attempting to
communicate with a role no longer present due to an exception, then an exception should
be raised. We write subj(E[M ]) = p if M ∈ {send ℓ(V ) to p, receive from p {ℓi(xi) 7→
Ni}i, wait p, disconnect from p}. Rule E-FailS states that if a connected actor encounters
an unhandled exception, then a zapper thread will be generated for the current role, the
actor will become disconnected, and the current evaluation context will be discarded. Rule
E-FailLoop restarts an actor encountering an unhandled exception.

Administrative rules. The remaining rules are administrative: E-LiftM allows term
reduction inside an actor; E-Equiv allows reduction modulo structural congruence; E-
Par allows reduction under parallel composition; and E-Nu allows reduction under name
restrictions.
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Runtime Typing Rules Γ ⊢ V :A Γ; ∆ ⊢ C

T-Pid
Γ, a : Pid(S); ∆, a : S ⊢ C

Γ; ∆ ⊢ (νa)C

T-Session
∆′ = {s[pi]⟨q̃i⟩:Spi }i∈I φ(∆′) s ̸∈ ∆ Γ; ∆, ∆′ ⊢ C

φ is a safety property
Γ; ∆ ⊢ (νs)C

T-Par
Γ; ∆1 ⊢ C Γ; ∆2 ⊢ D

Γ; ∆1, ∆2 ⊢ C ∥ D

T-Zap
Γ; s[p]⟨q̃⟩:S ⊢  s[p]

T-Zero
Γ; · ⊢ 0

T-DisconnectedActor
T = S ∨ T = end a : Pid(S) ∈ Γ

{S} Γ | T ▷ M :A ◁ end {S} Γ ⊢ κ

Γ; a : S ⊢ ⟨a, M, ⊥, κ⟩

T-ConnectedActor
a : Pid(T ) ∈ Γ

{T } Γ | S ▷ M :A ◁ end {T } Γ ⊢ κ

Γ; a : T, s[p]⟨q̃⟩:S ⊢ ⟨a, M, s[p]⟨q̃⟩, κ⟩

Figure 15 Runtime typing rules.

Configuration equivalence. Reduction includes configuration equivalence ≡, defined as the
smallest congruence relation satisfying the axioms in Figure 14. The equivalence rules extend
the usual π-calculus structural congruence rules with a “garbage collection” equivalence,
which allows us to discard a session where all participants have exited due to an error.

5.4 Metatheory
We now turn our attention to showing that session typing allows runtime adaptation and
discovery while precluding communication mismatches and deadlocks.

5.4.1 Runtime typing
To reason about the metatheory, we introduce typing rules for configurations (Fig. 15): the
judgement Γ; ∆ ⊢ C states that configuration C is well-typed under term typing environment
Γ and runtime typing environment ∆.

Rule T-Pid types actor name restriction (νa)C by adding a PID into the term environment,
and extending the runtime typing environment a : S; the linearity of the runtime typing
environment therefore means that the system must contain precisely one actor with name a.

Session name restrictions (νs)C are typed by T-Session. We follow the formulation of
Scalas & Yoshida [54] which types multiparty sessions using a parametric safety property
φ; we discuss safety properties in more depth in Section 5.4.2. Let ∆′ be a runtime typing
environment containing only mappings of the form s[pi]⟨q̃i⟩:Si. Assuming ∆ does not contain
any mappings involving session s and ∆′ satisfies φ, the rule states that C is typable under
typing environment Γ and runtime typing environment ∆, ∆′. It is sometimes convenient to
annotate session ν-binders with their environment, e.g., (νs : ∆′)C.

Rule T-Par types each subconfiguration of a parallel composition by splitting the linear
runtime environment. Rule T-Zap types a zapper thread  s[p], assuming the runtime
environment contains an entry s[p]⟨q̃⟩:S for any session type S.

Finally, rules T-DisconnectedActor and T-ConnectedActor type disconnected and
connected actor configurations respectively. Given an actor with name a and static session
type T , both rules require that the typing environment contains a : Pid(T ) and runtime
environment contains a : T . Both rules require that the current session type is fully consumed
by the currently-evaluating term and that the actor’s behaviour should be typable under T .
Rule T-DisconnectedActor requires that the currently-evaluating term must be typable
under either T or end, whereas to type a connection state of s[p]⟨q̃⟩ and current session type
S, T-ConnectedActor requires an entry s[p]⟨q̃⟩:S in the runtime environment.
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Labels

Labels γ ::= s:p†q::ℓ(A) | s:p ↠ q::ℓ | s:p‡q
Synchronisation labels ρ ::= s:p, q::ℓ | s:p ↠ q::ℓ | s:p#q

Reduction on runtime typing environments

Local Reduction ∆ γ−→ ∆′

ET-Conn
∃j ∈ I.αj = q!!ℓj(Aj)

ty(q) = Σk∈K(p??ℓk(Bk) . Tk) j ∈ K Aj = Bj

s[p]⟨r̃⟩:Σi∈I(αi . Si)
s:p↠q::ℓj−−−−−−→ s[p]⟨r̃, q⟩:Sj , s[q]⟨p⟩:Tj

ET-Act
∃j ∈ I.αj = q†ℓj(Aj) q ∈ r̃

s[p]⟨r̃⟩:Σi∈I(αi . Si)
s:p†q::ℓj (Aj )
−−−−−−−−→ s[p]⟨r̃⟩:Sj

ET-Wait

s[p]⟨r̃, q⟩:#↑q . S
s:p#↑q−−−−→ s[p]⟨r̃⟩:S

ET-Disconn

s[p]⟨q⟩:#↓q s:p#↓q−−−−→ ·

ET-Rec
∆, s[p]⟨q̃⟩:S{µX.S/X} γ−→ ∆′

∆, s[p]⟨q̃⟩:µX.S
γ−→ ∆′

ET-Cong1
∆ γ−→ ∆′

∆, s[p]⟨q̃⟩:S γ−→ ∆′, s[p]⟨q̃⟩:S

ET-Cong2
∆ γ−→ ∆′

∆, a:S γ−→ ∆′, a:S

Synchronisation ∆ ρ=⇒ ∆′

ET-ConnSync
∆ s:p↠q::ℓ−−−−−−→ ∆′

∆ s:p↠q::ℓ======⇒ ∆′

ET-Comm
∆1

s:p!q::ℓ(A)−−−−−−−→ ∆′
1 ∆2

s:q?p::ℓ(A)−−−−−−−→ ∆′
2

∆1, ∆2
s:p,q::ℓ=====⇒ ∆′

1, ∆′
2

ET-Disconn
∆1

s:p#↑q−−−−→ ∆′
1 ∆2

s:q#↓p−−−−→ ∆′
2

∆1, ∆2
s:p#q====⇒ ∆′

1, ∆′
2

Figure 16 Labelled transition system for runtime typing environments.

5.4.2 Preservation
We now prove that reduction preserves typability and thus that actors only perform commu-
nication actions specified in their session types. Due to our use of explicit connection actions,
classical MPST approaches are too limited for our purposes. Our approach, following that of
Scalas & Yoshida [54], is to introduce a labelled transition system (LTS) on local types, and
specify a generic safety property based around local type reduction. The property can then
refined; in our case, we will later specialise the property in order to prove progress.

Reduction on runtime typing environments. Figure 16 shows the LTS on runtime typing
environments. There are two judgements: ∆ γ−→ ∆′, which handles reduction of individual
local types, and a synchronisation judgement ∆ ρ=⇒ ∆′.

Rule ET-Conn handles the reduction of role p, where the choice session type contains a
connection action q!!ℓj(Aj) . S′

j . If q has a statically-defined session type Σk∈K(p??ℓk(Bk) . Tk)
which can accept ℓj from from p, and the payload types match, reduction advances p’s session
type, adds q to p’s connected role set, and introduces an entry for q into the environment.
The reduction emits a label s:p ↠ q::ℓj .

Given a role p connected to q with a session choice containing a send or receive action
q†ℓj(A) . S′

j , rule ET-Act will emit a label s:p†q::ℓj(Aj) and advance the session type of p.
Rule ET-Wait handles the reduction of #↑q . S actions, s[p]⟨r̃, q⟩:#↑q . S, where p waits

for q to disconnect: the reduction emits label p:q#↑ and removes q from p’s connected roles.
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Similarly, rule ET-Disconn handles disconnection, by emitting label p:q#↓ and removing
the entry from the environment. ET-Rec handles recursive types, and the ET-Cong rules
handle reduction of sub-environments.

Rule ET-ConnSync states that connection is a synchronisation action, and rules ET-
Comm and ET-Disconn handle synchronisation between dual actions in sub-environments,
emitting synchronisation labels s:p, q::ℓ and s:p#q respectively. We omit the congruence
rules for synchronisation actions. We say that a runtime environment reduces, written ∆ =⇒,
if there exists some ∆′ such that ∆ =⇒ ∆′.

Safety. A safety property describes a set of invariants on typing environments which allow
us to prove preservation. Since the type system is parametric in the given safety property,
we can tweak the property to permit or rule out different typing environments satisfying
particular behavioural properties; however, we need only prove type preservation once, using
the weakest safety property. Our safety property is different to the safety property described
by Scalas & Yoshida [54] in order to account for explicit connection actions.

▶ Definition 5 (Safety Property). φ is a safety property of runtime typing contexts ∆ if:
1. φ(∆, s[p]⟨r̃⟩:Σi∈I(αi . Si), s[q]⟨s̃⟩:Σj∈J(p?ℓj(Bj) . Tj)) implies that if q!ℓk(Ak) ∈ {αi}i∈I ,

then k ∈ J , q ∈ r̃, p ∈ s̃, and Ak = Bk.
2. φ(∆, s[p]⟨r̃⟩:Σi∈I(αi . Si)) implies that if αi = q!!ℓj(Aj) ∈ {αi}i∈I , then q ̸∈ r̃,

s[q]⟨s̃⟩ ̸∈ dom(∆), and ty(q) = Σk∈K(p??ℓk(Bk) . Tk) with j ∈ K and Aj = Bj.
3. φ(∆, s[p]⟨q̃⟩:µX.S) implies φ(∆, s[p]⟨q̃⟩:S{µX.S/X})
4. φ(∆) and ∆ =⇒ ∆′ implies φ(∆′)

A runtime typing environment is safe, written safe(∆), if φ(∆) for a safety property φ.

Clause (1) ensures that communication actions between participants are compatible: if p
is sending a message with label ℓ and payload type A to q, and q is receiving from p, then
the two roles must be connected, and q must be able to receive ℓ with a matching payload.

Clause (2) states that if p is connecting to a role q with label ℓ, then q should not already
be involved in the session, and should be able to accept from p on message label ℓ with a
compatible payload type. The requirement that q is not already involved in the session rules
out the correlation errors described in Section 5.2.1. Clause (3) handles recursion, and clause
(4) requires that safety is preserved under environment reduction.

Concretising the safety property. In order to deduce that a runtime typing environment
∆ is safe, we define φ(∆) = {∆′ | ∆ =⇒∗ ∆′} and verify that φ is a safety property by
ensuring that it satisfies all clauses in Definition 5.

Properties on protocols and programs. It is useful to distinguish active and inactive session
types, depending on whether their associated role is currently involved in a session, and
identify the initiator of a session.

▶ Definition 6 (Active and Inactive Session Types). A session type S is inactive, written
inactive(S), if S = end or S = Σi∈I(p??ℓi(Ai) . Si). Otherwise, S is active, written active(S).

▶ Definition 7 (Initiator, unique initiator). Given a protocol P , a role p : Sp ∈ P is an
initiator if Sp = Σi∈I(αi . Si), and each αi is a connection action q!!ℓi(Ai). Role p is a
unique initiator of P if inactive(Sq) for all q ∈ P \ {p : Sp}.

A protocol is well-formed if it is safe and has a unique initiator.
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▶ Definition 8 (Well-formed protocol). A protocol P = {pi : Si}i∈I is well-formed if it has a
unique initiator q of type S and safe(s[q]⟨∅⟩:S) for any s.

By way of example, the online shopping protocol is well-formed: Customer is the protocol’s
unique initiator, and it is straightforward to verify that safe(s[Customer]⟨∅⟩: ty(Customer)).

▶ Definition 9 (Well-formed program). A program (−→D,
−→
P , M) is well-formed if:

1. For each actor definition D = actor u follows S {N} ∈
−→
D , there exists some role p ∈

−→
P

such that ty(p) = S, and {S} · | S ▷ N :A ◁ end
2. Each protocol P ∈

−→
P is well-formed and has a distinct set of roles

3. The “boot clause” M is typable under the empty typing environment and does not perform
any communication actions: {end} · | end ▷ M :A ◁ end

When discussing the metatheory, we only consider configurations defined with respect to a
well-formed program. Specifically, we henceforth assume that each actor definition in the
system follows a session type matched by a role in a given protocol, assume each role belongs
to a single protocol, and assume that all protocols are well-formed.

Given a safe runtime environment, configuration reduction preserves typability; details
can be found in the extended version. We write R? for the reflexive closure of a relation R.

▶ Theorem 10 (Preservation (Configurations)). Suppose Γ; ∆ ⊢ C with safe(∆) and where
C is defined wrt. a well-formed program. If C −→ C′, then there exists some ∆′ such that
∆ =⇒? ∆′ and Γ; ∆′ ⊢ C′.

Preservation shows that each actor conforms to its session type, and that communication
never introduces unsoundness due to mismatching payload types.

5.4.3 Progress
We now show a progress property, which shows that given protocols which satisfy a progress
property, EnsembleS configurations do not get stuck due to deadlocks.

A final runtime typing environment contains a single, disconnected role of type end,
reflecting the intuition that all roles will eventually disconnect from a protocol initiator.

▶ Definition 11 (Final environment). An environment ∆ is final, written end(∆), ∆ =
{s[p]⟨∅⟩:end} for some s and p.

So far, we have considered safe protocols, which ensure the absence of communication
mismatches. We say that an environment satisfies progress if each active role can eventually
perform an action, each potential send is eventually matched by a receive, and non-reducing
environments are final. Let roles(ρ) denote the roles referenced in a synchronisation label
(i.e., roles(ρ) = {p, q} for ρ ∈ {s:p ↠ q::ℓ, s:p, q::ℓ, s:p#q}).

▶ Definition 12 (Progress (Runtime typing environments)). A runtime typing environment ∆
satisfies progress, written prog(∆), if:

(Role progress) for each s[pi]⟨q̃i⟩:Si ∈ ∆ s.t. active(Si), ∆ =⇒∗ ∆′ ρ=⇒ with p ∈ roles(ρ)

(Eventual comm.) if ∆=⇒∗ ∆′ s:p!q::ℓ(A)−−−−−−→, then ∆′
−→ρ==⇒ ∆′′ s:q?p::ℓ(A)−−−−−−−→, with p ̸∈ roles(−→ρ )

(Correct termination) ∆ =⇒∗ ∆′ ̸=⇒ implies end(∆)

The online shopping example satisfies progress, since all roles will always eventually be
able to fire an action once connected, and since all roles disconnect, the non-reducing final
environment will be of the form s[Customer]⟨∅⟩:end.
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▶ Definition 13 (Progress (Programs)). A well-formed program (−→D,
−→
P , M) satisfies progress

if each P ∈
−→
P has a unique initiator q of type S and prog(s[q]⟨∅⟩:S) for any s.

A configuration context G is the context G ::= [ ] | (νs)G | G ∥ C. A session consists
of a session name restriction and all connected actors and zapper threads. A well-typed
configuration can be written as a sequence of sessions, followed by all disconnected actors.

▶ Definition 14 (Session). A configuration is a session S if it can be written:
(νs)(⟨a1, M1, s[p1]⟨q̃1⟩, κ1⟩ ∥ · · · ∥ ⟨am, Mm, s[pm]⟨q̃m⟩, κm⟩ ∥  s[pm+1] ∥ · · · ∥  s[pn])

An actor is terminated if it has reduced to a value or has an unhandled exception, and
has the behaviour stop. An unmatched discover occurs when no other actors match a given
session type. An actor is accepting if it is ready to accept a connection.

▶ Definition 15 (Terminated actor, unmatched discover, accepting actor).
An actor ⟨a, M, σ, κ⟩ is terminated if M = return V or M = EP[raise], and κ = stop.
An actor ⟨a, E[discover S], σ, κ⟩ which is a subconfiguration of C has an unmatched
discover if no other non-terminated actor in C has session type S.
An actor ⟨a, M, σ, κ⟩ is accepting if M = E[accept from p {ℓj(xj) 7→ Nj}j ] for some
evaluation context E and role p.

Unhandled exceptions will propagate through a session, progressively cancelling all roles.
A failed session consists of only zapper threads.

▶ Definition 16 (Failed session). We say that a session S is a failed session, written failed(S),
if S ≡ (νs)( s[p1] ∥ · · · ∥  s[pn]).

The key session progress lemma establishes the reducibility of each session which does not
contain an unmatched discover and is typable under a reducible runtime typing environment.

▶ Lemma 17 (Session Progress). If ·; · ⊢ C where C does not contain an unmatched discover,
C ≡ G[S] and S = (νs : ∆)D with prog(∆), and S is not a failed session, then C −→.

There are several steps to proving Lemma 17 (see the extended version). First, we introduce
exception-aware reduction on runtime typing environments, which explicitly accounts for
zapper threads at the type level, and show that exception-aware environments threads retain
safety and progress. Second, we introduce flattenings, which show that runtime typing
environments containing only unary output choices can type configurations blocked on
communication actions, and that flattenings preserve environment reducibility. Finally, we
show that configurations typable under flat, reducible typing environments can reduce.

We can now show our second main result: in the absence of unmatched discovers, a
configuration can either reduce, or it consists only of accepting and terminating actors.

▶ Theorem 18 (Progress). Suppose ·; · ⊢ C where C is defined wrt. a well-formed program which
satisfies progress, and prog(∆) for each (νs : ∆)C′ in C. If C does not contain an unmatched
discover, either ∃D such that C −→ D, or C ≡ 0, or C ≡ (νb1 · · · νbn)(⟨b1, N1, ⊥, κ1⟩ ∥ · · · ∥
⟨bn, Nn, ⊥, κn⟩) where each bi is terminated or accepting.

The proof eliminates all failed sessions by the structural congruence rules; shows that the
presence of sessions implies reducibility (Lem. 17); and reasons about disconnected actors.

In addition to each actor conforming to its session type (Thm. 10), Theorem 18 guarantees
that the system does not deadlock. It follows that session types ensure safe communication.

Theorem 18 assumes the absence of unmatched discovers. This is not a significant limitation
in practice, however, as unmatched discovers can be mitigated with timeouts, where a timeout
would trigger an exception.
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6 Related Work

Behavioural typing for actors. Mostrous & Vasconcelos [46] present the first theoretical
account of session types in an actor language; their work effectively overlays a channel-based
session typing discipline on mailboxes using Erlang’s reference generation capabilities.

Neykova & Yoshida [49] use MPSTs to specify communication in an actor system, imple-
mented in Python. Fowler [21] implements similar ideas in Erlang, with extensions to allow
subsessions [17] and failure handling. Neykova & Yoshida [48] later improve the recovery
mechanism of Erlang by using MPSTs to calculate a minimal set of affected roles. The
above works check multiparty session typing dynamically. We are first to both formalise and
implement static multiparty session type checking for an actor language.

Active objects (AOs) [15] are actor-like concurrent objects where results of asynchronous
method invocations are returned through futures. Bagherzadeh & Rajan [4] study order
types for an AO calculus, which characterise causality and statically rule out data races.
In contrast to MPSTs, order types work bottom-up through type inference. Kamburjan et
al. [39] apply an MPST-like system to Core ABS [38], a core AO calculus; they establish
soundness via a translation to register automata rather than via an operational semantics.

de’Liguoro & Padovani [16] introduce mailbox types, a type system for first-class, unordered
mailboxes. Their calculus generalises the actor model, since each process can be associated
with more than one mailbox. Their type discipline allows multiple writers and a single
reader for each mailbox, and ensures conformance, deadlock-freedom, and for many programs,
junk-freedom. Our approach is based on MPSTs and is more process-centric.

Non-classical multiparty session types. MPSTs were introduced by Honda et al. [31].
Classical MPST theories are grounded in binary duality: safety follows as a consequence of
consistency (pointwise binary duality of interactions between participants), and deadlock-
freedom follows from projectability from a global type.

Unfortunately, classical MPSTs are restrictive: there are many protocols which are in-
tuitively safe but not consistent. Scalas & Yoshda [54] introduced the first non-classical
multiparty session calculus. Instead of ensuring safety using binary duality, they define an
LTS on local types and safety property suitable for proving type preservation; since the type
system is parametric in the safety property (inspired by Igarashi & Kobayashi [35] in the
π-calculus), the property can be customised in order to guarantee different properties such as
deadlock-freedom or liveness. Hu & Yoshida [32] formalise MPSTs with explicit connection
actions via an LTS on types rather than providing a concrete language design or calculus; in
our setting, a calculus is vital in order to account for the impact of adaptation constructs. A
key contribution of our work is the use of non-classical MPSTs to prove preservation and
progress properties for a calculus incorporating MPSTs with explicit connection actions.

Adaptation. None of the above work considers adaptation. The literature on formal studies
of adaptation is mainly based on process calculi, without programming language design or
implementation. Bravetti et al. [9] develop a process calculus that allows parts of a process
to be dynamically replaced with new definitions. Their later work [8] uses temporal logic
rather than types to verify adaptive processes. Di Giusto and Pérez [19] define a session
type system for the same process calculus, and prove that adaptation does not disrupt active
sessions. Later, Di Giusto and Pérez [18] use an event-based approach so that adaptation can
depend on the state of a session protocol. Anderson and Rathke [2] develop an MPST-like
calculus and study dynamic software update providing guarantees of communication safety
and liveness. Differently from our work, they do not consider runtime discovery of software
components and do not provide an implementation.
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Coppo et al. [13] consider self-adaptation, in which a system reconfigures itself rather
than receiving external updates. They define an MPST calculus with self-adaptation and
prove type safety. Castellani et al. [11] extend [13] to also guarantee properties of secure
information flow, but neither of these works have been implemented. Dalla Preda et al. [51]
develop the AIOCJ system based on choreographic programming for runtime updates. Their
work is implemented in the Jolie language [44], but they do not consider runtime discovery.

In this work we focus on correct communication in the absence of adversaries, and do not
consider security. The literature on security and behavioural types is surveyed by Bartoletti
et al. [5] and could provide a basis for future work on security properties.

7 Conclusion and Future Work

Modern computing increasingly requires software components to adapt to their environment,
by discovering, replacing, and communicating with other components which may not be part
of the system’s original design. Unfortunately, up until now, existing programming languages
have lacked the ability to support adaptation both safely and statically. We therefore asked:

Can a programming language support static (compile-time) verification of safe runtime
dynamic self-adaptation, i.e., discovery, replacement and communication?

We have answered this question in the affirmative by introducing EnsembleS, an actor-
based language supporting adaptation, which uses multiparty session types to guarantee
communication safety, using explicit connection actions to invite discovered actors into a
session. We have demonstrated the safety of our system by proving type soundness theorems
which state that each actor follows its session type, and that communication does not
introduce deadlocks. Our formalism makes essential use of non-classical MPSTs.

Future work. Each actor only takes part in a single session. Unlike dynamically-checked
implementations of session typing for actors [47, 21], this means that a message received by
an actor in one session cannot trigger an interaction in another (e.g., the Warehouse example
in [47]). A key focus for future work will be to allow actors to partake in multiple sessions.

EnsembleS discovery and replacement requires type equality. We expect we could relax this
constraint to subtyping [53] or perhaps bisimilarity on local types to increase expressiveness.

In order to avoid session correlation errors, we require that each role includes at most a
single top-level accept construct (c.f. [32]). It would be interesting to investigate the more
general setting, which would likely require dependent types.
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