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This talk proposal is based on work accepted for publication at ESOP’23 [7]. We introduce MAGπ—
Multiparty, Asynchronous and Generalised π-calculus—an extension of generalised session type the-
ory [10] into a calculus capable of modelling non-Byzantine faults, for various physical topologies
and network assumptions. Our contributions are: (1) a calculus and type-system enriched with time-
outs and message loss semantics—capable of modelling the widest set of non-Byzantine faults; (2)
a novel and most general definition of reliability, allowing MAGπ to model physical topologies of
distributed systems; (3) a generalised theory capable of specifying assumptions of underlying net-
work protocols; and (4) type properties that lift the benefits of generalised MPST into our realm of
failure-prone communication.

1 Modelling Failure

It is common for session type theories to assume that communication failures do not occur. The few
(and rapidly increasing) works that consider failures tend to make heavy assumptions that impede their
viability for realistic complex distributed applications. E.g., asynchronous theories [8, 6, 10] model
distributed communication under ideal “TCP-like” assumptions; affine sessions [9, 5, 3] do not support
arbitrary failures that may stem from hardware faults, network inconsistencies etc.; coordinator model
approaches [1, 4, 11] assume strict degrees of reliability (resilient processes, reliable broadcasts, etc.).

MAGπ is the first language to support the widest set of non-Byzantine faults, including message
loss, message delays and message reordering; crash failures and link failures; and network partition-
ing. We achieve this by extending the multiparty session calculus [10] with a failure-handling timeout
branch c&i∈I{[qi]?mi(d).P, �.Q }, and operational semantics that directly model message delay and
message loss (figure 1). The combination of timeouts and message loss allows MAGπ to model all the
aforementioned faults.

We also equip the type system with optional timeout branches &i∈I{pi ?mi(Ti).Si [, �.S′] }. This
allows arbitrary failures to be reasoned about at the type level. An example session type of the Ping
utility from the Internet Control Message Protocol is given in appendix A.

[R-�] s[q]&i∈I{[pi]?mi(xi).Pi,�.Q}|s : σ −→ Q | s:σ (message delay)
[R-↓] s : h · σ −→ s : σ (message loss)

Figure 1: Reduction rules modelling primitive failures in MAGπ

2 Reliability

Reliability refers to defining where failures may (not) occur within the communication system. Previous
related works [2, 1, 12] adopt various definitions. Generally, either one central reliable node, or a single
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set of globally reliable nodes, are statically configured and assumed to not be affected by any failures. We
introduce a novel definition of reliability to model physical topologies of distributed systems—by taking
into account the viewpoint of each participant. We allow reliability to be defined for each communicating
entity, as every participant has a unique observation of the global system. E.g. consider two processes
running on the same physical hardware, and two more processes residing on a geographically co-located
server. Every entity in this configuration has a different outlook on which communication channels are
prone to network failures.

Our theory is generic enough to handle both extremes: (i) totally unreliable configurations where all
communication is prone to failure (example use-cases are consensus algorithms); or (ii) totally reliable
configurations where no network failures occur.

3 Generalising Network Assumptions

Distributed algorithms are not all designed to operate over the same network assumptions. Low-level
distributed programming generally makes minimal network assumptions by running over the User Data-
gram Protocol (UDP); application-level programming tends to assume the conveniences provided by the
Transmission Control Protocol (TCP). The assumptions made on underlying network protocols heavily
impact the design of distributed systems. MAGπ can be configured accordingly, based on the network
protocols the target source code should operate on. E.g. for UDP-based programs one may configure
MAGπ with total message reordering. Contrastively, TCP-based programs may see MAGπ configured
to assume partial message reordering (messages of a single channel are not scrambled).

4 Type Properties

MAGπ is built on generalised MPST [10], hence it inherits all of the same benefits. Notably, instead
of syntactically guaranteeing specific properties, programs can be checked against a number of desired
properties (deadlock-freedom, termination, liveness, etc.) a posteriori. Additionally, the two main results
which follow from our type system are failure-handling safety, guaranteeing that all failure-prone com-
munication has defined failure-handling branches (timeout branches); and reliability adherence, ensuring
that no redundant timeouts are defined.

The significance of this work shines when combining the benefits of generalised MPST with our result
of failure-handling safety. That is to say that if a program is, e.g., deadlock-free, then all of the failure-
handling timeout branches preserve this deadlock-freedom. This holds for all verifiable properties.

5 Conclusion and Future Work

To conclude, we presented MAGπ—a Multiparty, Asynchronous and Generalised π-calculus addressing
the widest set of non-Byzantine faults by using timeouts and a novel viewpoint-specific definition of
reliability. Our language builds on generalised and asynchronous MPST, and has configurable network
assumptions. As future work, we wish to develop a model checking tool to verify a program’s adherence
to a desired list of properties. We also aim to investigate linear logic for Curry-Howard correspondences
to understand the canonical meaning of faults and reliability. Lastly, our ambition is extend this work
into the realm of Byzantine faults in combination with the non-Byzantine addressed thus far.
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A Ping

To demonstrate the expressiveness of MAGπ we present a session-typed encoding of the Ping utility
from the Internet Control Message Protocol (ICMP). The ping utility consists of a total of three roles
(participants) communicating amongst each other: two roles, p and r, communicate reliably with each
other, and both communicate unreliably with a third role q.

Our definition of reliability takes into account the viewpoint of each role, thus allowing roles to have
their own (possibly empty) reliability set. Following the assumptions above, the reliability set for p is
{r}, for r is {p}, and for q is /0.

Below we give the session types, denoted Sr, Sp and Sq for roles r, p and q respectively, for the
3-attempt Ping utility.

Sr = &{p?ok().end, p?ko().end}

Sp = q !ping().&


q?pong().r !ok().end,

�.q !ping().&


q?pong().r !ok().end,

�.q !ping().&
{

q?pong().r !ok().end,
�.r !ko().end

Sq = &


p?ping().p !pong().end,

�. &


p?ping().p !pong().end,

�. &
{

p?ping().p !pong().end,
�.end

Role r is the receiver (&–called branching), which waits on two options: it receives from p either the
label ok or ko and then it terminates the protocol (end). Role p is the sender (⊕1–called selection), and
it tries to obtain information on the status of q. It begins by sending a ping message to q (q !ping()), then
waits to receive from q. If a pong is received (q?pong()) in the top branch, then it concludes that the
status of q is reachable and sends this information to r (r !ok()), after which it terminates. Alternatively,
p enters a timeout branch (�). For simplicity, we assume p will attempt to communicate with q three
times (shown in the three-time indentation of the timeout branch) before assuming q is unreachable; after
which the session will terminate by sending ko to r, followed by end. In the same lines, the protocol for
role q is given by the session type Sq, where its timeout branches match the timeouts from Sp.

1For readability, we adopt a shorthand notation for sending towards a single role and for payloads of type unit, such that
⊕{s !m(unit).S} is represented by s !m().S.
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