
Submitted to:
PLACES 2023

© M.A. Le Brun & O. Dardha
This work is licensed under the
Creative Commons Attribution License.

MAGπ: Types for Failure-Prone Communication

Matthew Alan Le Brun
University of Glasgow

m.le-brun.1@research.gla.ac.uk

Ornela Dardha
University of Glasgow

ornela.dardha@glasgow.ac.uk

This talk proposal is based on work accepted for publication at ESOP’23 [7]. We introduce MAGπ—
Multiparty, Asynchronous and Generalised π-calculus—an extension of generalised session type the-
ory [10] into a calculus capable of modelling non-Byzantine faults, for various physical topologies
and network assumptions. Our contributions are: (1) a calculus and type-system enriched with time-
outs and message loss semantics—capable of modelling the widest set of non-Byzantine faults; (2)
a novel and most general definition of reliability, allowing MAGπ to model physical topologies of
distributed systems; (3) a generalised theory capable of specifying assumptions of underlying net-
work protocols; and (4) type properties that lift the benefits of generalised MPST into our realm of
failure-prone communication.

1 Modelling Failure

It is common for session type theories to assume that communication failures do not occur. The few
(and rapidly increasing) works that consider failures tend to make heavy assumptions that impede their
viability for realistic complex distributed applications. E.g., asynchronous theories [8, 6, 10] model
distributed communication under ideal “TCP-like” assumptions; affine sessions [9, 5, 3] do not support
arbitrary failures that may stem from hardware faults, network inconsistencies etc.; coordinator model
approaches [1, 4, 11] assume strict degrees of reliability (resilient processes, reliable broadcasts, etc.).

MAGπ is the first language to support the widest set of non-Byzantine faults, including message
loss, message delays and message reordering; crash failures and link failures; and network partition-
ing. We achieve this by extending the multiparty session calculus [10] with a failure-handling timeout
branch c&i∈I{[qi]?mi(d).P, �.Q }, and operational semantics that directly model message delay and
message loss (figure 1). The combination of timeouts and message loss allows MAGπ to model all the
aforementioned faults.

We also equip the type system with optional timeout branches &i∈I{pi ?mi(Ti).Si [, �.S′] }. This
allows arbitrary failures to be reasoned about at the type level. An example session type of the Ping
utility from the Internet Control Message Protocol is given in appendix A.

[R-�] s[q]&i∈I{[pi]?mi(xi).Pi,�.Q}|s : σ −→ Q | s:σ (message delay)
[R-↓] s : h · σ −→ s : σ (message loss)

Figure 1: Reduction rules modelling primitive failures in MAGπ

2 Reliability

Reliability refers to defining where failures may (not) occur within the communication system. Previous
related works [2, 1, 12] adopt various definitions. Generally, either one central reliable node, or a single

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 MAGπ: Types for Failure-Prone Communication

set of globally reliable nodes, are statically configured and assumed to not be affected by any failures. We
introduce a novel definition of reliability to model physical topologies of distributed systems—by taking
into account the viewpoint of each participant. We allow reliability to be defined for each communicating
entity, as every participant has a unique observation of the global system. E.g. consider two processes
running on the same physical hardware, and two more processes residing on a geographically co-located
server. Every entity in this configuration has a different outlook on which communication channels are
prone to network failures.

Our theory is generic enough to handle both extremes: (i) totally unreliable configurations where all
communication is prone to failure (example use-cases are consensus algorithms); or (ii) totally reliable
configurations where no network failures occur.

3 Generalising Network Assumptions

Distributed algorithms are not all designed to operate over the same network assumptions. Low-level
distributed programming generally makes minimal network assumptions by running over the User Data-
gram Protocol (UDP); application-level programming tends to assume the conveniences provided by the
Transmission Control Protocol (TCP). The assumptions made on underlying network protocols heavily
impact the design of distributed systems. MAGπ can be configured accordingly, based on the network
protocols the target source code should operate on. E.g. for UDP-based programs one may configure
MAGπ with total message reordering. Contrastively, TCP-based programs may see MAGπ configured
to assume partial message reordering (messages of a single channel are not scrambled).

4 Type Properties

MAGπ is built on generalised MPST [10], hence it inherits all of the same benefits. Notably, instead
of syntactically guaranteeing specific properties, programs can be checked against a number of desired
properties (deadlock-freedom, termination, liveness, etc.) a posteriori. Additionally, the two main results
which follow from our type system are failure-handling safety, guaranteeing that all failure-prone com-
munication has defined failure-handling branches (timeout branches); and reliability adherence, ensuring
that no redundant timeouts are defined.

The significance of this work shines when combining the benefits of generalised MPST with our result
of failure-handling safety. That is to say that if a program is, e.g., deadlock-free, then all of the failure-
handling timeout branches preserve this deadlock-freedom. This holds for all verifiable properties.

5 Conclusion and Future Work

To conclude, we presented MAGπ—a Multiparty, Asynchronous and Generalised π-calculus addressing
the widest set of non-Byzantine faults by using timeouts and a novel viewpoint-specific definition of
reliability. Our language builds on generalised and asynchronous MPST, and has configurable network
assumptions. As future work, we wish to develop a model checking tool to verify a program’s adherence
to a desired list of properties. We also aim to investigate linear logic for Curry-Howard correspondences
to understand the canonical meaning of faults and reliability. Lastly, our ambition is extend this work
into the realm of Byzantine faults in combination with the non-Byzantine addressed thus far.

M.A. Le Brun & O. Dardha 3

References
[1] Manuel Adameit, Kirstin Peters & Uwe Nestmann (2017): Session Types for Link Failures. In Ahmed

Bouajjani & Alexandra Silva, editors: Formal Techniques for Distributed Objects, Components, and Systems
- 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of the 12th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22,
2017, Proceedings, Lecture Notes in Computer Science 10321, Springer, pp. 1–16, doi:10.1007/978-3-319-
60225-7_1.

[2] Adam D. Barwell, Alceste Scalas, Nobuko Yoshida & Fangyi Zhou (2022): Generalised Multiparty
Session Types with Crash-Stop Failures. In Bartek Klin, Slawomir Lasota & Anca Muscholl, edi-
tors: 33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022,
Warsaw, Poland, LIPIcs 243, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 35:1–35:25,
doi:10.4230/LIPIcs.CONCUR.2022.35.

[3] Sara Capecchi, Elena Giachino & Nobuko Yoshida (2016): Global escape in multiparty sessions. Math.
Struct. Comput. Sci. 26(2), pp. 156–205, doi:10.1017/S0960129514000164.

[4] Tzu-Chun Chen, Malte Viering, Andi Bejleri, Lukasz Ziarek & Patrick Eugster (2016): A Type Theory for
Robust Failure Handling in Distributed Systems. In Elvira Albert & Ivan Lanese, editors: Formal Techniques
for Distributed Objects, Components, and Systems - 36th IFIP WG 6.1 International Conference, FORTE
2016, Held as Part of the 11th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, Lecture Notes in Computer Science
9688, Springer, pp. 96–113, doi:10.1007/978-3-319-39570-8_7.

[5] Simon Fowler, Sam Lindley, J. Garrett Morris & Sára Decova (2019): Exceptional asynchronous
session types: session types without tiers. Proc. ACM Program. Lang. 3(POPL), pp. 28:1–28:29,
doi:10.1145/3290341.

[6] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. J. ACM
63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[7] Matthew Alan Le Brun & Ornela Dardha (2023): MAGπ: Types for Failure-Prone Communication,
doi:10.48550/ARXIV.2301.10827. Available at https://arxiv.org/abs/2301.10827.

[8] Rupak Majumdar, Madhavan Mukund, Felix Stutz & Damien Zufferey (2021): Generalising Projection in
Asynchronous Multiparty Session Types. In Serge Haddad & Daniele Varacca, editors: 32nd International
Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference, LIPIcs 203,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 35:1–35:24, doi:10.4230/LIPIcs.CONCUR.2021.35.

[9] Dimitris Mostrous & Vasco T. Vasconcelos (2018): Affine Sessions. Log. Methods Comput. Sci. 14(4),
doi:10.23638/LMCS-14(4:14)2018.

[10] Alceste Scalas & Nobuko Yoshida (2019): Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), pp. 30:1–30:29, doi:10.1145/3290343.

[11] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu & Lukasz Ziarek (2018): A Typing Discipline
for Statically Verified Crash Failure Handling in Distributed Systems. In Amal Ahmed, editor: Programming
Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, Lecture Notes in Computer Science 10801, Springer, pp. 799–826, doi:10.1007/978-3-
319-89884-1_28.

[12] Malte Viering, Raymond Hu, Patrick Eugster & Lukasz Ziarek (2021): A multiparty session typing discipline
for fault-tolerant event-driven distributed programming. Proc. ACM Program. Lang. 5(OOPSLA), pp. 1–30,
doi:10.1145/3485501.

https://doi.org/10.1007/978-3-319-60225-7_1
https://doi.org/10.1007/978-3-319-60225-7_1
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.1017/S0960129514000164
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1145/3290341
https://doi.org/10.1145/2827695
https://doi.org/10.48550/ARXIV.2301.10827
https://arxiv.org/abs/2301.10827
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.1145/3290343
https://doi.org/10.1007/978-3-319-89884-1_28
https://doi.org/10.1007/978-3-319-89884-1_28
https://doi.org/10.1145/3485501

4 MAGπ: Types for Failure-Prone Communication

A Ping

To demonstrate the expressiveness of MAGπ we present a session-typed encoding of the Ping utility
from the Internet Control Message Protocol (ICMP). The ping utility consists of a total of three roles
(participants) communicating amongst each other: two roles, p and r, communicate reliably with each
other, and both communicate unreliably with a third role q.

Our definition of reliability takes into account the viewpoint of each role, thus allowing roles to have
their own (possibly empty) reliability set. Following the assumptions above, the reliability set for p is
{r}, for r is {p}, and for q is /0.

Below we give the session types, denoted Sr, Sp and Sq for roles r, p and q respectively, for the
3-attempt Ping utility.

Sr = &{p?ok().end, p?ko().end}

Sp = q !ping().&


q?pong().r !ok().end,

�.q !ping().&


q?pong().r !ok().end,

�.q !ping().&
{

q?pong().r !ok().end,
�.r !ko().end

Sq = &


p?ping().p !pong().end,

�. &


p?ping().p !pong().end,

�. &
{

p?ping().p !pong().end,
�.end

Role r is the receiver (&–called branching), which waits on two options: it receives from p either the
label ok or ko and then it terminates the protocol (end). Role p is the sender (⊕1–called selection), and
it tries to obtain information on the status of q. It begins by sending a ping message to q (q !ping()), then
waits to receive from q. If a pong is received (q?pong()) in the top branch, then it concludes that the
status of q is reachable and sends this information to r (r !ok()), after which it terminates. Alternatively,
p enters a timeout branch (�). For simplicity, we assume p will attempt to communicate with q three
times (shown in the three-time indentation of the timeout branch) before assuming q is unreachable; after
which the session will terminate by sending ko to r, followed by end. In the same lines, the protocol for
role q is given by the session type Sq, where its timeout branches match the timeouts from Sp.

1For readability, we adopt a shorthand notation for sending towards a single role and for payloads of type unit, such that
⊕{s !m(unit).S} is represented by s !m().S.

	Modelling Failure
	Reliability
	Generalising Network Assumptions
	Type Properties
	Conclusion and Future Work
	Ping

