
Interactive Presenter - Mobile Collaboration Application

Ben Callis

School of Computing Science
Sir Alwyn Williams Building
University of Glasgow
G12 8QQ

Level 4 Project — March 22, 2013

Abstract

This project focuses on creating an iOS application, Interactive Presenter, which can be used to present docu-
ments to others in an engaging way. Presenters can use their iOS device to control a presentation to an audience
of other iOS devices via Wi-Fi or Bluetooth, without any additional hardware. During a presentation, presenter’s
interactions are monitored and automatically distributed to the audience to keep the presentation synchronised
across devices. Presenters can also send out questions, to assess the audiences understanding. Results are auto-
matically collated on the presenters device and they can choose whether to share the answer and results with the
audience. Viewers can also raise questions through the application without disrupting the presenter or revealing
their identity.

Education Use Consent

I hereby give my permission for this project to be shown to other University of Glasgow students and to be
distributed in an electronic format. Please note that you are under no obligation to sign this declaration, but
doing so would help future students.

Name: Signature:

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 1

1.3 Aim . 2

1.4 Outline . 2

2 Requirements 3

2.1 Questionnaire . 3

2.2 Existing Products . 4

2.2.1 Voting Handsets . 4

2.2.2 Existing mobile applications . 5

2.3 Functional Requirements . 6

2.4 Non-functional Requirements . 7

3 Design 9

3.1 User Experience . 9

3.1.1 Preparing for a Presentation . 9

3.1.2 Presenting a document . 9

3.1.3 Viewing a presentation . 10

3.1.4 Document syncing . 11

3.1.5 Scenarios . 11

3.1.6 User Feedback . 12

3.2 User Interface . 12

ii

3.2.1 Interface Background . 12

3.2.2 iPad Wireframes . 13

3.2.3 User Feedback . 15

3.2.4 iPad Final Design . 16

3.2.5 iPhone Wireframes and Detailed Design . 17

3.3 System Structure . 18

3.3.1 Document Viewer . 18

3.3.2 Network . 19

3.3.3 Question Manager . 19

3.3.4 Data Store . 19

4 Implementation 20

4.1 Initial Implementation . 20

4.1.1 Home Screen . 20

4.1.2 Document Viewer . 23

4.1.3 Data Model . 24

4.1.4 Document Importing . 26

4.1.5 Networking . 28

4.1.6 Questions and Voting . 35

4.2 User Feedback and Refinement . 38

4.2.1 Evaluation Design . 38

4.2.2 Results . 38

4.2.3 Additional features to implement . 39

4.3 Second Implementation cycle . 40

4.3.1 Addressing identified defects . 40

4.3.2 Passcode . 40

4.3.3 Viewer List . 42

4.3.4 Viewer Questions . 42

4.3.5 Navigation Lock/Unlock . 43

iii

4.3.6 ‘Open In’ support . 43

4.3.7 Store PDF from presentation . 44

4.3.8 Live PDF View Modifications . 44

4.3.9 User Guide . 45

4.4 Summary . 45

5 Testing 46

5.1 Usability Test . 46

5.1.1 Short-term Evaluation . 46

5.1.2 University Trial . 48

5.2 Performance Testing . 49

6 Conclusion 50

6.1 Summary . 50

6.2 Future Development . 50

6.3 Lessons Learnt . 50

Appendices 53

A User Guide 54

B iOS 58

C Application files 61

C.1 Libraries Used . 61

C.2 Main View Controllers . 62

C.3 Networking Classes . 63

C.4 Miscellaneous . 64

C.5 Visual representation of key View Controllers . 64

D Full Size Storyboards 67

E Requirements Survey 71

iv

F User Feedback and Refinement Survey 88

G Code listings 97

H Usability Evaluation 99

H.1 Scoring SUS . 99

H.2 Task Sheet . 99

H.3 Survey results . 101

I Full-size images 110

v

Chapter 1

Introduction

1.1 Motivation

Presentations are often delivered using slides displayed with a computer and digital projector. However, exist-
ing computer-based presentation systems limit flexibility in delivery, requiring a certain room layout with the
presenter situated towards the front. This form of presentation has limited interaction, where audience members
are passive recipients of information. Presenters often attempt to increase interaction by asking questions to
gain feedback on how well the audience understand the presented material. This approach is severely limited in
presentations with a large audience, as only a few selected viewers will be given the chance to answer questions.
Interactivity can also occur in the form of spontaneously asked questions by members of the audience. However,
not everyone is willing to ask questions due to social fear or time constraints.

In recent years, electronic voting systems have been employed as a means to increase interactivity during pre-
sentations. These systems utilise wireless technology to allow members of the audience to respond anonymously
to questions posed by the presenter. Audience responses can be visually displayed during the presentation, to
give immediate feedback to the presenter and the audience. However, these systems are rarely deployed due to
increased hardware configuration and cost.

Audience members are increasingly likely to carry mobile devices with large graphical displays and net-
working capabilities. These devices could be used to deliver presentations in any room configuration without the
need for a projector, whilst increasing interactivity by providing mechanisms found in electronic voting systems.
Furthermore, this system would ensure that all members of the audience have the same viewing experience,
irrespective of their position within the room.

1.2 Background

Electronic Voting Systems
Several studies have been performed to assess the benefits of using interactive voting systems in academia. In
2011, interactive handsets were trialled in several lectures at the University of Glasgow[13]. Results showed
that EVS handsets were generally well received by students and lectures. One lectured commented “I found
the handsets very beneficial in my lecture and speaking with some students afterwards they also appreciated it”.
During the trial, 61 philosophy students were asked to rate the usefulness of the EVS, 77% of students rated the
system between useful - extremely useful. These students identified anonymity as a key benefit “The anonymity
allows students to answer without embarrassing themselves”.
Additional research by Simpson and Olivier, concluded that voting systems are best understood as a tool rather
than a teaching approach, which when used in lectures can support increased motivation and attainment [15].

1

Mobile Devices
One of the ways in which mobile devices are often used together is for wireless multiplayer gaming. For example,
iOS devices1 support a large catalogue of multiplayer games, which users can play locally across devices with
minimal configuration. There are several toolkits available to aid the development of networked games. However,
this technology has not been appropriated for use in productivity environments.

There are two major operating systems that run on mobile devices: AndroidAndroid is a Linux-based operat-
ing system designed primarily for touchscreen mobile devices and iOS. Android has a consumer market share of
70% [12]; however, in enterprise the iOS platform dominates due to increased security. A recent report from Cit-
rix, revealed that 58% of devices enrolled in its enterprise mobility services were running iOS[7]. Cook revealed
that iOS devices are deployed in 94% of companies in the Fortune 500 2 [9]. As presentations are common in
corporate environments, this project produces a solution for the iOS platform. An overview of the iOS platform
and development tools is included in appendix B.

1.3 Aim

The aim of this project is to develop a tool that allows presentations to be conducted in an interactive way using
mobile devices, without any additional hardware or configuration. The application should:

• Allow a presenter to control a presentation from a single device.

• Support presentation viewing on multiple devices.

• Allow presenters to interact with the audience by distributing questions.

• Allow members of the audience to interact with the presenter by raising questions.

1.4 Outline

The remainder of this document is divided into the following chapters:

Chapter 2 - Requirements
This chapter discusses the projects requirements and the variety of ways in which they were elicited.

Chapter 3 - Design
This Chapter describes the visual and architectural design of the application.

Chapter 4 - Implementation
This chapter describes the implementation of the project in detail and describes user feedback obtained
during development.

Chapter 5 - Testing
This chapter covers evaluations carried out on the project.

Chapter 6 - Conclusion
This chapter summarises the report and describes ideas for future development.

1mobile devices designed and marketed by Apple Inc. that run a Unix-like operating system named iOS. http://www.apple.
com/uk/ios/

2The 500 largest corporations in the United States., compiled by Fortune magazine

2

http://www.apple.com/uk/ios/
http://www.apple.com/uk/ios/

Chapter 2

Requirements

This chapter discusses the projects requirements and the variety of ways in which they were elicited.

2.1 Questionnaire

To gain user feedback towards existing voting handsets, an online questionnaire was created. The questionnaire
included specific questions targeted at participants who had used voting systems when presenting, and questions
for participants who had used handsets when viewing a presentation. The majority of the questions were closed
format, with the exception of a few which allowed for elaboration. There were 34 participants in total. 23 of
these participants were currently in full-time education and 11 were in current employment. A summary of the
results is included below.

Over half of the participants owned at least one iOS device.
For question 1, Which of the following devices do you own?, 55% stated that they had an iOS device. This
suggests that developing the application for the iOS platform will make it accessible to a wide audience.

The majority of participants who had used voting handsets whilst presenting felt it increased engagement.
During question 5, Have you ever used interactive voting handsets when presenting?, eight participants stated
they had used voting handsets whilst presenting. 70% of these participants said the audience appeared more
engaged due to the handsets.

Two different voting handsets were identified
Presenters were asked to state which voting handsets they had used. The most popular handset identified was
ActiVote1, followed by SMART Response2. These two handsets are discussed in detail in section 2.2.1.

Presenters who had used voting handsets stated question set-up time and cost could be improved
For question 11, What do you think could be improved?, the majority of presenters (71%) stated that question set-
up time and cost could be improved in future systems. Based on this, quick question set-up time was identified
as a non-functional requirement. The project should also reduce costs as it makes use of existing hardware.

Hardware set-up complexity can prevent voting handsets being used.
During question 11, What do you think could be improved?, one participant stated “Handsets are difficult to use
when lessons are frequently held in different rooms due to the set-up time. Often have to get the IT Admins to

1ActiVote - http://www.prometheanworld.com/us/english/education/products/assessment-and-
student-response/activote/

2SMART Response - http://smarttech.com/Solutions/Education+Solutions/Products+for+education/
Complementary+hardware+products/SMART+Response/SMART+Response+PE

3

http://www.prometheanworld.com/us/english/education/products/assessment-and-student-response/activote/
http://www.prometheanworld.com/us/english/education/products/assessment-and-student-response/activote/
http://smarttech.com/Solutions/Education+Solutions/Products+for+education/Complementary+hardware+products/SMART+Response/SMART+Response+PE
http://smarttech.com/Solutions/Education+Solutions/Products+for+education/Complementary+hardware+products/SMART+Response/SMART+Response+PE

install software onto computers before lesson. Which in many cases is not feasible”. This indicates that voting
handsets may be used more frequently if they did not need to be configured.

Viewers sometimes see voting handsets as a toy or game.
One participant commented “I feel that the handsets are sometimes seen as a toy or a gimmick. They do have
real value but it can be lost on some pupils who just want a ’game’ instead of a lesson”. To overcome this, the
application should hide the voting controls until required.

The majority of participants who had used voting handsets whilst presenting felt it increased engagement.
Twenty-four participants stated they had used voting handsets when viewing a presentation. During question 13,
Do you feel using the interactive handset helped you to become more engaged in the presentation?, 90% of these
users stated the handsets increased their engagement. One user stated it had no effect on their engagement and
another user said it decreased their engagement. These results are similar to findings by Jim Boyle (Professor
at Strathclyde University). Boyle revealed that students generally regard interactive equipment as an advantage
“70% for it, 20% indifferent, 10% definitely opposed to it” [10]. This indicates that the application could be of
benefit to students and professionals.

Almost all participants stated they would be willing to use a voting system as a viewer or presenter
For question 14, Would you be open to using a voting system as a viewer in a presentation?, the majority (93%)
answered yes. The same participants also stated they would be willing to use a voting system when presenting.
These results are significantly higher than the number of participants who have used voting handsets during a
presentation, which suggests that the unavailability of the voting handsets is limiting their use.

The full set of questions and results are included in appendix E.

2.2 Existing Products

2.2.1 Voting Handsets

Following on from the questionnaire, research was carried out on two voting handsets identified by presenters.

ActiVote
ActiVote is a student response system that enables teachers to poll students at any time during class to assess
progress and, based on responses, tailor lessons to specific student needs. The system compromises of three
parts: voting handsets, networking receiver and computer software. These components are illustrated in figure
2.1. Before the system can be used, software and device drivers need to be installed on a computer. Once
installed, each device must be manually paired with the networking receiver (illustrated in figure 2.1b). The
software allows multiple choice questions to be created and integrated with PowerPoint slide sets. Each question
can support up to six possible answers. Viewers can answer questions by selecting one of the choice buttons
labeled A-F. However, the handsets provide almost no feedback when answering a question, as they lack a
physical display. The system is sold with 32 handsets for approximately £600.

(a) Handset and receiver (b) Handset pairing (c) Results screen

Figure 2.1: ActiVote student response system

SMART Response
The SMART Response interactive response system combines handheld wireless handsets, a receiver and pow-

4

erful assessment software (illustrated in figure 2.2). Users are required to install software and pair the handsets
before using the system. The handsets include a small screen to allow users to view their response, and a tele-
phone style keypad to allow textual responses. The system supports six question types: true or false, yes or no,
multiple choice, multiple answer, numeric and text response. The software includes a 92 page user guide which
describes how to configure and use the system. The software and 32 handsets cost approximately £1000.

(a) Handset and receiver (b) Handset buttons (c) Results screen

Figure 2.2: SMART Response voting handsets

2.2.2 Existing mobile applications

There are a few applications in the iOS AppStore that allow collaboration across devices. However, no ap-
plications exist which allow users to present information and interact with users through the use of questions.
Three existing applications were analysed, to help capture requirements. User feedback towards each of these
applications was assessed to determine what users want and expect from applications in this category.

(a) Conference Pad (b) Idea Flight (c) ResponseWare

Figure 2.3: Three collaboration applications currently available in the AppStore.

Conference Pad3 allows PDFs to be wirelessly presented to up to fifteen iPads, iPhones, and iPod Touches.
The user interface for the application is extremely simple consisting of just two screens: a presentation list and a
document viewer. The document viewer allows the presenter to change page, zoom and use a laser pointer. These
actions are instantly replicated on all connected devices. Users are required to load PDFs4 onto their device using
proprietary PC software.
Feedback is generally positive towards this application; however, the following issues were identified from user
reviews in the AppStore:

• Importing PDF documents into the application from a computer is limited and time consuming.
• The application has no help section or user guide.
• All viewers need to purchase the application. Feedback suggests that their should be a free ’viewer’

version.
• No way to unlock the presentation to allow viewers to navigate the PDF at their own speed.
• Viewers have no way to save the presentation.

Idea Flight5 is similar to Conference Pad, in that it allows PDFs to be wirelessly presented to other devices,
although it only supports iPads. The application offers the following additional features:

3Conference Pad - http://www.regularrateandrhythm.com/apps/conference-pad/
4Portable Document Format (PDF) is a file format used to represent documents
5Idea Flight - http://www.ideaflight.com

5

http://www.regularrateandrhythm.com/apps/conference-pad/
http://www.ideaflight.com

• Presenters can unlock the presentation to allow viewers to navigate the slides at their own pace.
• Presenters can annotate slides.
• Linkedin6 integration - allowing the presenter to get to know their audience
• Note taking - allowing viewers to take textual notes during a presentation.
• Multiple import options - DropBox and ’Open in’ support

Although this application is more feature-rich when compared to Conference Pad, it does not include the
laser pointer functionality. It was also found to be fairly slow during testing on the original iPad. User feedback
indicates that users are happy with the features on offer. However, there are several negative reviews relating to
the cost and reliability of the application.

ResponseWare is a web-based service that allows questions to be created and responses to be obtained through
smartphones or any web-enabled device. Voting via ResponseWare is an alternative to using traditional voting
handsets. To use the mobile application, users need to pay a subscription fee and sign into the application. Once
signed in, users can view current polls and submit answers to the questions. Results are presented to voters
visually using graphs, making them easy to interpret. The service provides support for multiple-choice and
open-ended questions; however, they must be created using the web based interface, which increases set-up time.

2.3 Functional Requirements

From the various requirement capture activities, a list of functional requirements was formalised. Functional
requirements capture the intended behaviour of the system. These requirements were structured in terms of
priority using the MoSCoW method7, which splits requirements into four priorities: ’must have’, ’should have’,
’could have’ and ’would be nice to have’. Requirements are unordered within each priority, as it is likely that
multiple requirements have the same importance.

The following requirements represent functionality the application must have to be considered a success.

FR Requirement Description
1 View Documents Allow users to view and navigate through documents
2 Wirelessly send

Documents
Users must be able send a document wirelessly to other users running the ap-
plication.

3 Synchronised page
switching

Presenter page changes should automatically be replicated on viewers’ devices.

4 Ask multiple choice
questions

Presenters must be able to send multiple choice questions to viewers. Viewers
must be able to select and send an answer to the presenter. Presenters must be
able to share the answer or results with viewers.

The following requirements represent functionally the application should have, if possible. These items have
high-priority and should be included in the final product.

FR Requirement Description
5 Laser pointer support Presenter should be able to point to parts of the document using a laser pointer.

This should show on viewer’s devices
6 Zoom support Presenters should be able to zoom in, to enlarge content on the page. This

should automatically propagate to viewer’s devices.
7 Cloud storage

integration
Users should be able to import documents into the application from online
cloud storage services.

6 Linkedin is a social networking website for people in professional occupations - http://www.linkedin.com
7MoSCow prioritisation method - http://www.coleyconsulting.co.uk/moscow.htm

6

http://www.linkedin.com
http://www.coleyconsulting.co.uk/moscow.htm

The following requirements are considered desirable but not necessary. They could be included in the final
application if feasible within the time allocated to development.

FR Requirement Description
8 Navigation lock\unlock Presenters should be able to toggle lock\unlock a presentation, so viewers

can navigate slides at their own pace.
9 Save documents from a

presentation
Allow the presenter to specify if viewers can store the document at the end
of presentation.

10 Ask viewers open-ended
questions

Allow presenters to send out open-ended questions to viewers during a pre-
sentation. Viewers should be able to submit a textual answer. Presenters
would have the option to select the top answers and send them out to all
viewers.

11 ’Open in’ support Documents should be able to be brought into the application from other
applications on the device.

12 Import documents from a
PC

Allow documents to be imported into the application from a computer.

13 Note taking via keyboard Allow viewers to make textual notes when viewing a presentation.
14 Passcode Secure

presentations
Allow presenters to add passcodes to presentations to ensure only specific
viewers can join the presentation.

15 Ask the presenter
questions

Allow viewers to ask the presenter questions during a presentation.

16 Document syncing Documents should be synced across all of the user’s iOS devices.

This final set of requirements are unlikely to be included in the final implementation. They are considered as
would be nice to have requirements and may be added in future releases.

FR Requirement Description
17 Presenter document

annotation
Allow the presenter to annotate documents during a presentation, the anno-
tations would appear on all devices viewing the presentation.

18 Viewer document
annotation

Allow the viewers to directly annotate the document. These annotations
would be saved locally with the document (providing the presenter granted
the viewer permision to save the document) and could be looked at later.

As over half of the functional requirements were identified with a ‘Could have’ or ‘Would be nice to have’
priority, a user feedback and refinement evaluation was scheduled to take place after the major functionality
had been implemented (discussed in section 4.2). This evaluation was performed to capture user feedback and
further prioritise the requirements during development, to ensure any remaining development time was spent on
user requested features.

2.4 Non-functional Requirements

Non-functional requirements describe how well a system performs its goals. They are fundamentally different to
functional requirements, which describe the intended behaviour of the system.

7

NFR Requirement Description
1 Run on iPhone & iPad The application should also be universal to cater for differing screen sizes.
2 Support iOS 5 + Recent statistics from AudioBooks; a popular iOS app developed by David

Smith show that 86% of devices using the application run iOS 6, 12% run
iOS 5 and only 2% run iOS 4 [2]. To attract a large potential audience and
use recent APIs the application should support iOS 5+.

3 Application should be
under 50MB

Apple imposes a 50MB over-the-air download limit for the AppStore. The
application size should be within this limit to allow the application to be
downloaded without the need for a Wi-Fi connection.

4 Presentation privacy
controls

The application should allow presenters to secure their presentations to con-
trol audience access. Presenters should also be able to specify if a presen-
tation can be saved.

5 Viewer privacy When viewers ask questions they should have the ability to remain anony-
mous.

6 Conserve battery life Processor intensive tasks should be kept to a minimum to conserve the de-
vices battery as much as possible.

7 Allow for future
expansion

The application should be built to allow for additional features to be added.

8 Orientation support The application should support both orientations.
9 Quick to add questions Users should be able to add questions to a document within seconds of

launching the application.
10 Automatic configuration The application should automatically discover live presentations with no

advanced set-up.

8

Chapter 3

Design

This chapter discusses the design of the application, presenting an overview of the overall system structure, as
well as an in-depth account of the user interface design decisions.

3.1 User Experience

A series of storyboards were created to illustrate how the application will satisfy the key functional requirements.
The first four storyboards focus on the functionality accessible to the two key actors of the system: a presenter or
a viewer. The remaining three storyboards have a greater level of detail, illustrating the application in real-word
scenarios. Each segment of a storyboard focuses on one primary task which usually directly maps to one screen
of the application, allowing the flow of the application to be determined. The storyboards were roughly sketched
with pen and paper and presented to potential users to explain how the application will work. Each storyboard is
briefly described below stating the requirements it satisfies and a list of screens required is formalised.

3.1.1 Preparing for a Presentation

Figure 3.1 illustrates the steps required in preparing for a presentation. Before giving a presentation, slides
need to be loaded into the application. On a traditional computer, slides are often created directly within a
presentation program or downloaded from an external source. The application stays true to this well known
workflow, allowing slides to be imported from multiple external sources including: other applications on the
device (FR11), online file storage (FR7) and through desktop computers via iTunes (FR12). Once the slides are
imported, presenters can rehearse their presentations (FR1) and add questions prior to presenting to others (FR4,
FR11). To ensure the audience has the application installed, they can be notified ahead of time by sending a
notification the application. From this storyboard the following screens were identified:

• Document list
• Document viewer

• Question list
• Add question

• Invite Friends

3.1.2 Presenting a document

Figure 3.2 demonstrates the application flow when presenting a document. To present, a document first needs to
be imported into the application (explained above in section 3.1.1). Once imported, a user can open the document
(FR1) and start the broadcast by tapping the broadcast button (FR2). This allows other devices to find and join
the presentation. The user can then present their document to others, knowing the audience’s devices are all in
sync (FR3). During the presentation, the presenter can zoom (FR6), point (FR5), annotate (FR17) and send out

9

Figure 3.1: Preparing to present Figure 3.2: Presenting a document

questions to users (FR4, FR10). User’s responses will automatically be collected and presented to the presenter.
This storyboard uses many of the screens identified in the first storyboard and also requires the following screens:

• List of viewers • Answers view

3.1.3 Viewing a presentation

Figure 3.3 shows the series of actions required to view a live presentation. The flow of the application is similar
to that of a presenter except that the user has to select a presentation from the available presentations list. When
the user selects the presentation it will automatically download to their device (FR2). Once downloaded, the
presentation will open and display the same content as on the presenters device (FR1, FR3, FR5, FR6, FR17).
During the presentation, a user can ask a question through the application to avoid interrupting the presenter
(FR15). The presenter will receive an unobtrusive notification so they can answer the question at a convenient
time. The presenter can also send out questions during the presentation (FR4, FR10). These question will
instantly display on viewer’s devices, allowing them to submit an answer. At the end of a presentation viewers
are asked if they would like to save the presentation providing the presenter has given their consent (FR9).
This storyboard identified three additional screen:

• Available presentations list • Ask presenter question screen • Answer question screen

Figure 3.3: Viewing a presentation Figure 3.4: Document syncing

10

3.1.4 Document syncing

Figure 3.4 illustrates how document syncing will work between devices. When a new file is added to one device
it is automatically synced with other devices, ensuring documents are always accessible to users (FR16). The
storyboard demonstrates a user saving a document to an iPad at the end of a presentation (FR9) and viewing it
later on an iPhone. No additional screens were uncovered through this storyboard.

3.1.5 Scenarios

(a) Personal use (b) Academic use (c) Business use

Figure 3.5: Detailed storyboards illustrating specific scenarios
(full size storyboards included in appendix D)

Personal scenario
Figure 3.5a gives an example of the application being used in a public area by two individuals: a presenter and
a viewer. The presenter secures the broadcast with a passcode to limit who can access the presentation (FR14).
This successfully stops an intruder from accessing the presentation without consent.

Academic scenario
Figure 3.5b shows how the application could be used within academia. Here, a teacher sends a document to
himself and imports the file into the application using the ’open in’ functionality (FR11). He then opens the
document (FR1) and adds questions to it (FR4, FR10), which he will send out later when presenting. He reads
through the document ahead of time to familiarise himself with its contents. Just before the class starts, he re-
launches the application and broadcasts his document with a passcode, to ensure only his class have access to
it (FR14). As the pupils arrive, they launch the application on their devices and join the live broadcast (FR1,
FR2). He then talks the class through the document and sends out questions whenever appropriate, allowing him
to determine if the class are having any difficulties with the lesson.

Business scenario
Figure 3.5c describes how the application could be used in a business environment, where it can often be difficult
to book a room with a projector at short notice. The application is used to contact the attendees, advising them
to install the application prior to the meeting. No paper handouts are printed as viewers are given the option to
save the presentation (FR9). As the presentation contains confidential information, a passcode is added to the
broadcast (FR14). During the presentation, a user raises a question via the application without disturbing the
presenter (FR15). The question is stored on the presenter’s device allowing it to be answered at a convenient
time. At the end of the presentation, all viewers save the presentation so they can refer to it later.

The three scenarios described above, depend on the ability to add a passcode to a broadcast. This functionality
will require a Broadcast Options Screen.

11

3.1.6 User Feedback

The storyboards were presented to several potential users from different backgrounds. Users were asked to walk
through the storyboards and state if anything was unclear. All users were able to understand the storyboards and
commented that they could relate to many of the situations. Users did not identify any screens that were omitted,
and were able to follow the storyboard without asking questions, which implies that the flow of the application
is logical. The passcode functionality proved popular with users in employment. They also noted the application
would save them a lot of time at the printer. Students commented that they thought the application would make
lectures more interactive.

3.2 User Interface

This section describes the transition from requirements and key screens to detailed screen designs. Research into
the platform was carried out to determine the platform conventions and constraints.

3.2.1 Interface Background

The main element of today’s smartphone is a large touch screen display, which acts as a blank canvas, giving de-
velopers the freedom to innovate and create totally unique applications. Developers have published over 700,000
applications[11], many of which perform similar tasks. In this competitive market, where applications can be
installed within minutes (and removed within seconds), users have come to expect elegant design combined with
efficient usability. If an application does not meet this criteria, there will be little incentive to keep the application,
as there is likely to be a similar application readily available in the App Store.

In order to create an application which will be valued by users, attention to detail is crucial. To help de-
velopers, Apple have published a set of Human Interface Guidelines1, which are based on the way people think
and interact with mobile devices. These guidelines discuss common standard human interface principles (such as
consistency and feedback) as well as platform specific principles. One extremely important principle is getting to
grips with the platform’s unique characteristics: screen size, orientation and gesture support. Figure 3.6a shows
the four different screen sizes which iOS currently runs on.

(a) iOS screen comparison (b) Safari running on iPhone 5 and iPhone 4

Figure 3.6: iOS screen differences

Although there are four different screen sizes, they can be split into two main categories: tablet (iPad and iPad
Mini) and phone (iPhone and iPod Touch). The iPad and iPad mini both share the same screen resolution and
aspect ratio, which means applications look identical on each device. The iPhone 5 has larger screen compared
to all previous iPhones (and iPod touches). However, as the width of the screen remains the same, developers
can create just one interface for all iPhones and apply minor alterations to optimise it for the taller screen. Figure
3.6b illustrates how Safari (a web browser) makes use of the extra screen real-estate to show the user content,
without modifying the design.

1Apple Human Interface Guidelines - http://developer.apple.com/library/ios/#documentation/
UserExperience/Conceptual/MobileHIG

12

http://developer.apple.com/library/ios/##documentation/UserExperience/Conceptual/MobileHIG
http://developer.apple.com/library/ios/##documentation/UserExperience/Conceptual/MobileHIG

Several iOS devices now include a high density “Retina display”, which has four times more pixels than
their non-retina counterparts. Although the pixel count is dramatically higher on retina displays, there is no
need to create a custom interface for these devices, as the screen size and aspect ratio is identical to the low
density versions. However, applications should include multiple graphical assets optimised for each display. For
example, a 44 x 44 pixel image designed for a non retina display, will need to be 88 x 88 pixels for the retina
display, to avoid visible pixelation whilst maintaining the same apparent dimensions.

3.2.2 iPad Wireframes

Following on from identifying the flow of the application and considering the platform constraints, wireframes
were created for the major screens. Wireframing is a interface planning process which takes place before actual
application development. It involves planning the layout of the app, making it easier to visualise where features
will be accessible. Wireframes also help when it comes to the development phase, as they are broken down into
separate views (screens), which helps separate the development into distinct steps. Different levels of detail can
be used when wireframing, which can be broken up into two categories in terms of fidelity, or how closely they
resemble the finished product. In order to gain feedback from potential users a high-fidelity approach was taken,
with a high level of detail that closely follows the actual design of the application. Despite using this approach,
the wireframes were purposely made to look like rough sketches, to encourage users to give honest feedback.

During the design stage button dimensions were carefully considered to ensure that they are easy to touch
with a human finger. The Human Interface Designs guidelines recommend keeping touch targets above 44x44
pixels. This particular guideline has not been revised despite the launch of the iPad mini, which has the same
amount of pixels as the original iPad into a smaller display. To ensure targets are easily tapped on all iPads, a
minimum of 50x50 pixels has been used in all designs.

(a) Design 1 (b) Design 2

Figure 3.7: iPad Main Screen Wireframes

Main screen - Design One
The main goal for this design was accessibility, focusing on reducing the number of steps required to perform
tasks. Figure 3.7a shows the main screen presented to the user when they launch the application. The screen is
divided into two panels: a navigation panel (left), providing access to other screens and live presentations; and
a large detailed panel (right), which shows content relating to the selected item in the navigation panel. When
the application is launched ’My Presentations’ is selected by default, allowing the user to instantly access all the
presentations stored on their device. Each presentation is represented by a large thumbnail (taken from the first
slide) and some accompanying descriptive text. The descriptive text includes the presentation name, number of
slides and the number of questions attached to the presentation. The design also included a toolbar along the top
edge of the screen, which allows users to search, sort and manage their documents.
When the user holds the device in portrait orientation, the panels are automatically resized. The left panel
maintains its width to ensure that live presentations are still easy to locate. The right detail panel adjusts to
display two columns of cells, allowing the cells to maintain their dimensions.

13

Main screen - Design Two
In the second design menus and other controls are kept to a minimum, allowing users to focus on their documents
(see figure 3.7b). Each document is represented by a large cell, containing a thumbnail and a textual description.
A single menu is located along the left hand edge of the display, giving users quick access to different views. A
list of live presentations can be viewed by selecting the second tab from this menu. Live presentations are also
displayed visually in grid format, keeping the interface consistent. The menu maintains its position along the
left hand edge of the display in both orientations, to ensure the menu remains within the zone reachable with an
average thumb-span (illustrated in figure 3.8c and 3.8c). As the tabs within the menu are located within this zone,
users are able to comfortably switch tab with their left thumb whilst holding the device (shown in figure 3.8b).
The menu provides similar functionality to the default tabbar view which is part of the iOS SDK. However, the
default tabbar can only be displayed along the bottom of the screen (see the bottom of figure 3.8c) which can be
difficult to reach on the iPad.

(a) Two hands along bezel (b) Left hand along bezel (c) Left thumb reach

Figure 3.8: Custom tab bar designed based on thumb reach when holding iPad

In both orientations the document grid contains three columns. This allows users to locate their documents
based on their position in the list. To achieve this, cell dimensions are slightly smaller in portrait orientation.

Document cells
Figure 3.9 illustrates three cell styles, which could be used in either of the main screen designs.

Figure 3.9: Three different cell styles used to represent a document.

Document Viewer screen
The document viewer screen, shown in figure 3.10, allows users to view and navigate documents. Presenters and
viewers have access to different functionality from the top toolbar (shown in 3.10). For example, the presenter
has access to a list of questions which can be sent out to all viewers. This button is not in the menu for viewers
as the functionality is presenter specific.
To make presentations more immersive, all controls can be hidden/shown by tapping the screen (see figure
3.10c). A page scroller is situated within the bottom toolbar, allowing users to quickly change page. Users can
also navigate a document through direct manipulation, by using a swipe gesture (illustrated in figure 3.10d).
The screen also allows users to configure and start broadcasting their document, by selecting the ’Broadcast’
button (located in the upper right corner of the presenter view). Once a document has been broadcast other users
can join, allowing them to watch the presentation. During a broadcast, presenters can access a list of current
viewers and their questions, by tapping the ‘broadcast’ button (shown in figure 3.10e).

Question screens
From the document screen, users can access the questions associated with the presentation, by selecting the
‘Questions’ button (situated in the top toolbar). This screen presents existing question in a list and allows users
to add additional questions. Users can select existing questions from within the list to reveal their full details and

14

(a) Presenter View (b) Viewer view

(c) Full screen (d) Page changing (e) List of viewers visible to presenter

Figure 3.10: Document Viewer

send them out to viewers by selecting the ’Send’ button. When a question is distributed to viewers, an additional
screen is displayed, allowing the presenter to monitor the audience’s responses. This screen includes a graph to
give a visual representation of the results. When a viewer receives a question, it is automatically presented with
the possible answers, allowing them to submit an answer to the presenter.

Figure 3.11: Question screens for presenter and viewers.

3.2.3 User Feedback

The designs were presented to six potential users to gain feedback, allowing a final design to be constructed.

Design one
Users liked how it was possible to instantly see how many live presentations were currently available. However,
many stated that this section was too small. Users also commented on the amount of wasted space along the left
panel in portrait orientation. They noted that only 10 documents were visible in portrait orientation, compared to
12 in landscape. Based on this, they stated that they would be less likely to use the application in portrait mode.
Design two
Users preferred the smaller menu bar, as it allowed them to focus on their documents without being distracted
by large menus and controls. Users liked how live presentations were displayed in a similar way to their local
documents. It was noted that live presentations could easily go unnoticed, as they are not instantly visible when
the application is first launched. As with design 1, users commented on the amount of wasted space along the
menu bar when the application is in portrait mode.

15

Cell Styles
Overall, cell style 3 was most preferred, although negative points were raised about all three styles. One user
commented that placing text over the thumbnail in style 1 could obscure distinctive parts of the thumbnail,
making it difficult to identify documents. Users also asked if tapping the text in style 2 would perform the same
actions as tapping the thumbnail. The curved border used in style 3 was criticised as it did not match the straight
lines used by the thumbnail.
Document Viewer
Feedback received for the document viewer screen was extremely positive. Users particularly liked how it was
possible to hide the toolbars with a single tap. One user noted that the close button should prompt the user for
confirmation, to ensure that a presenter doesn’t end the presentation by mistake. Users also asked if it would be
possible to remove the status bar to give more room to the document.
Question Screens
Feedback was towards the question screen was extremely positive. Users appreciated how simple it was to add
and distribute questions.

3.2.4 iPad Final Design

A final design was developed, taking into account the user feedback and using concepts from the original de-
signs. Figure 3.12 shows the final main screen design, which combines the accessibility of design one with the
simplicity of design two.

(a) Landscape (b) Portrait (c) Close prompt.

Figure 3.12: Final Design - Menu sticks to smallest edge in both orientations

The menu bar has seen the biggest change in the final design, addressing the wasted space issue (reported
by users). The height of all buttons on the menu have been increased to make use of all the available space.
When the device is rotated into a portrait orientation, the menu sticks to the short edge of the device and all
buttons rotate (see 3.13b), using all available space. Moving the menu to the top in portrait orientation leaves
more space for the document grid, allowing three columns to be displayed in both orientations with just a small
change to the cell size. Design two placed all menu buttons within reach of the users left thumb. Increasing the
size of the buttons makes it more difficult to reach the buttons located right at the bottom of the menu. However,
the two most frequently used buttons: ’My PDFs’ and ’Live PDFs’ are positioned within the thumb reach zone,
maintaining quick access. Based on the feedback from design one, a badge is included in the ’Live PDFs’ menu
button to indicate the number of live broadcasts currently available.
The document viewer was also slightly modified based on user feedback. Figure 3.12c shows the final document
viewer, with the addition of a confirmation popover triggered by tapping ’close’ button. The status bar has also
been removed, allowing documents to fill the entire screen.

After finalising the wireframes, work began on the visual aspects of the application. To experiment with
different colours and textures, a vectorised version of main screen was designed in Adobe Fireworks 2. This

2Adobe Fireworks - http://www.adobe.com/products/fireworks.html

16

http://www.adobe.com/products/fireworks.html

made it possible to experiment with different design by applying colours and textures to individual vectors.

(a) Final design including graphics (b) Vectorised design created in Fireworks

Figure 3.13: Final detailed design

Figure 3.13a shows the complete design which uses five bold colours to give the application a fresh identity.
Each button in the menu bar uses a different colour background which outlines the size of the button and allows
users to identify a screen with a certain colour. Each cell has a white background with a slight drop shadow to
add a sense of depth to the documents. Cell titles are styled with the same colour as the active tab, to link the
documents grid with the bold colour palette.

3.2.5 iPhone Wireframes and Detailed Design

After finalising the iPad user interface design, work began on design the user interface for the iPhone. The design
needed to provide access to all functionality of the iPad version on a significantly smaller screen. To achieve this
many iPhone applications only support portrait orientation, due to the limited height available in landscape. This
approach is not viable for this application as many documents will be best suited for landscape viewing. Having
just some screens support landscape orientation would damage the flow of the application, requiring the user to
change the way they hold their device frequently. As a result, it was decided that the main home screen should
also support landscape orientation.

(a) Designs using a table view (b) Design with iPad style menu (c) Final design standard tabbar

Figure 3.14: Different iPhone designs.

A naive design approach would be to simply scale the iPad version to fit the smaller iPhone screen. However,
this would create a frustrating user experience, as many onscreen targets would be smaller than the recommended
44x44 pixels. Figure 3.14 shows three different designs, each making use of slightly different UI components.
Due to the limited width available, one design was created using a table to present the documents (shown in
figure 3.14a). In this design, rows span across the whole width of the device acting as large touch targets. Due
to the limited height available in each cell, thumbnails have to be considerably smaller, making the textual labels
more significant. Although this design is practical and extremely common in many iPhone applications, it is not
consistent with the iPad version.
To improve consistency across devices, a second design was created which used the grid view found in the
iPad version (shown in figure 3.14b). As with the iPad version the menu bar is attached to the shorter edge of
the device in both orientations. However, there are two noticeable differences. Firstly, the settings and import
buttons are positioned at the opposite side of the screen due to the limited amount of width available on the
device. Secondly, the menu bar is located at the bottom of the screen when the device is in portrait orientation, to
make it easier to reach. This menu bar looked extremely similar to the standard iOS tabbar when used in portrait

17

orientation. However, as previously mentioned the standard tabbar is always located at the bottom of the screen
in both orientations. As the menu bar appeared similar to the standard tabbar it was felt that repositioning it in
landscape orientation could confuse users.
Figure 3.14c shows the final iPhone design, which builds on the two previous designs. A standard iOS tabbar is
used in this design, allowing users to be instantly familiar with the application. The import and settings button
are located in a navigation bar at the top of the screen, which also displays the application name. In portrait
orientation the tabbar stays at the bottom of the screen allowing users to quickly change tabs whilst holding the
device. The increase width in portrait orientation allows the number of columns in the grid view to increase to
three, making the most out of the limited screen real-estate.

(a) iPad styled tabbar (b) Plain tabbar (c) Final design

Figure 3.15: iPhone detailed designs

The same palette and custom graphics were used when creating the detailed design. Figure 3.15a shows the
initial design which includes a styled tabbar mimicking the menu bar found on the iPad version. Whilst the use of
bold colours worked well on the iPad, it was decided that excessive use of these colours on a smaller display put
to much focus on the tabbar. Based on this, a second design was created with a single colour tabbar (see figure
3.15b). Although limiting the use of colours in this design helped emphasise the importance of the documents
contained in the grid above, consistency between the two versions was reduced. To improve consistency across
devices, a final design was created making additional use of the bold colours (illustrated in figure 3.15c). This
design builds on the second design, by adding an additional thin colour strip to the bottom of the tabbar, giving
each tabbar item a unique colour corresponding to the iPad version. The selected tab is represented by the
addition of colour to the icon as well as a subtle change to the background. A small triangle pointer has also been
added to indicate which tab is selected, similar to the one found in the iPad design.
This design also works with the iPhone 5, as the menus are anchored at the top and bottom of the screen, allowing
the grid of documents to fill the rest of the display.

3.3 System Structure

The user interface is the central component of the overall system. In order for the application to satisfy all of
the requirements outlined in section 2.3, four additional components are required: Document Viewer, Network,
Question Manager and Data Store. Each components is described below.

3.3.1 Document Viewer

To enable users to present and view presentations, a Document Viewer is required. The Document Viewer must
render individual pages and allow users to navigate though the document. This component will interact with three
other components in the system: rendered pages will be sent to the UI component to be displayed to the user,
navigation events will be sent to viewers via the networking component and documents will be read from the
backend storage. Navigation events will be triggered when a presenter changes page, zooms in on the document
or uses the laser pointer. The events will be forwarded to all viewers to keep all displays synchronised. Events

18

will be triggered by the following gestures:

Left swipe or right edge tap Move to next page
Right swipe or left edge tap Move to previous page

Pinch-out Pinch-in Zoom in/out
Tap and hold Laser pointer

3.3.2 Network

In order for devices to communicate together, a network needs to be formed between them. The two most
common networking architectures: client-server and peer-to-peer are shown in figure 3.16.

(a) Client-Server topology (b) Peer-to-peer

Figure 3.16: Common network architectures

A client-server network involves multiple clients connecting to a single server. The server is in charge of all
shared data and can communicate with all clients. However, clients can only interact with the server. Peer-to-
peer networks impose no such constraints. There is no dedicated server and all clients can communicate with
each other. The client-server architecture is a perfect fit for the application, as only one device in a connected
network can take the role as a presenter. When the application is launched, the device will act as a client and
automatically search for servers. A device will become a server when they present a document. The presenter
will then be able to transmit the document to clients upon request and send navigation events to viewers to keep
the presentation synchronised. Once a client has joined a presentation it will be able to communicate with the
server, allowing questions to be raised.

3.3.3 Question Manager

To allow presenters to send questions to viewers a question managing component is required. This component
will allow users to add, edit and view questions attached to a document. The component should allow users
to add questions before and during a presentation. To allow questions to be persistently stored the component
will need to interact with the Data Store. During a presentation, the component should communicate with the
networking component to send questions to viewers. The component will also interact with the user interface to
present viewer answers in a chart, giving the presenter a visual overview of the results.

3.3.4 Data Store

For documents and questions to be available between application launches, they need to be stored in persistent
memory on the device. This can be achieved with a database and a folder with write permissions (on the device).
Each document will correspond to one entity in the database. Each entity will have several attributes: title,
thumbnail path, file path, number of pages and a set of questions. The actual file and thumbnail will be stored on
the devices file system rather than directly in the database, to avoid converting between data types. Questions and
relating answers will also be stored in the database. An entity relationship diagram was created to illustrate the
entities required in the database (figure 3.17). The diagram illustrates the cardinality of the relationship between
entities. A document can have many questions, which can have many possible answers.

Figure 3.17: Entities required in the application

19

Chapter 4

Implementation

This chapter describes two implementation cycles and a user evaluation which took place between the cycles.
The initial phase included implementing all ‘must have’ and the majority of ‘should have’ requirements. A user
evaluation was performed after the initial development cycle to gain feedback and further refine the functional
requirements. The final implementation phase was based on the user feedback and fulfilled all the remaining
‘should have’ and a large majority of the ‘could have’ requirements.

4.1 Initial Implementation

4.1.1 Home Screen

Implementation began with the creation of the home screen. In order to allow the application to adapt to the
current device, different code and views need to be loaded at runtime. This is achieved by wrapping device
specific code in conditional statements, using the [UIDevice currentDevice] method. As this check is
used frequently throughout the application, macros were created to indicate the current device type.

1 #define deviceIsIpad () ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPad)
2 #define deviceIsIPhone () ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone)

These macros were added to a constants files (TPConstants), which is imported into the applications prefix
file1 so it is automatically imported by into all classes throughout the project. The iOS platform loads device
specific resources at runtime based on naming conventions. The ‘ @2x’ suffix can be used to denote resources
for retina display devices. Device specific recourses can also be defined using the ‘∼ipad’ and ‘∼iphone’
suffix. For example, an interface file (XIB2) named IPViewController∼ipad would automatically load
on an iPad when a request for IPResultsViewController is made.

When the application is launched the applicationdidFinishLaunchingWithOptions: method
is invoked within the application delegate to create and present the first screen to the user. The code below
illustrates how this method uses the macros to configure the view hierarchies accordingly.

1 − (BOOL)application:(UIApplication ∗) application didFinishLaunchingWithOptions:(NSDictionary ∗)launchOptions{
2 self .window = [[UIWindow alloc] initWithFrame :[[UIScreen mainScreen] bounds]];
3 if (deviceIsIPhone ()) // macro defined in constants file
4 [self setupiPhoneViewHieararchy]; // configure iPhone view hierarchy (uses tabbar)
5 else // must be iPad
6 [self setupiPadViewHieararchy]; // configure iPad view hierarchy using custom navigation style

1prefix file - a project specific precompiled header
2XIB files (also known as NIB files) are used to create interfaces graphically using Xcode - https://developer.apple.com/

library/mac/#documentation/Cocoa/Conceptual/LoadingResources/CocoaNibs/CocoaNibs.html

20

https://developer.apple.com/library/mac/##documentation/Cocoa/Conceptual/LoadingResources/CocoaNibs/CocoaNibs.html
https://developer.apple.com/library/mac/##documentation/Cocoa/Conceptual/LoadingResources/CocoaNibs/CocoaNibs.html

iPad
The iPad view hierarchy revolves around the custom navigation bar. To implement this, a view controller3

(IPCustomNavigationViewController) was created to control the menu buttons and manage other
view controllers. A visual representation of this view controller is shown in figure 4.1a). Each menu button in
the navigation bar is a custom view containing a title, icon and badge (illustrated in figure 4.2a). When a button
is pressed, the corresponding view controller is loaded and its view is presented in the detail view. To preserve
memory on the device the current view is unloaded before the new one is presented.

(a) Custom navigation VC (b) Landscape orientation (c) Portrait orientation

Figure 4.1: iPad main screen with custom navigation bar fixed to the smallest edge

To implement the rotating menu bar, the IPCustomNavigationViewController overrides the
willAnimateRotationToInterfaceOrientation: method which is invoked on rotation of the de-
vice. In this method the frames4 of all onscreen views are adjusted to their correct position. The frames for each
view are stored in the constants file, making them easy to modify in the future if additional devices are released.

1 − (void) willAnimateRotationToInterfaceOrientation :(UIInterfaceOrientation) toOrientation duration :(NSTimeInterval)d{
2 // tell all buttons to adjust
3 [btnMyPDFs adjustForOrientation : toOrientation];
4 ...
5 // sort out the main view frame and other buttons
6 if (UIInterfaceOrientationIsPortrait (toOrientation)) { // Portrait frames
7 detailView .frame = kGridViewFramePort; // frames defined in constant file
8 btnPreferences .frame= kButtonSettingsFramePort ;
9 btnImport . frame=kButtonImportFramePort;

10 }else { .. } // Landscape frames
11 }

To ensure the selected menu button indicator (triangle point) remains attached to the details view additional
layout logic was required to transform the view.

1 −(void) adjustForOrientation :(UIInterfaceOrientation) interfaceOrientation {
2 if (UIInterfaceOrientationIsPortrait (interfaceOrientation)) { // Portrait
3 self . frame = CGRectMake(btnNumber ∗ BUTTON WIDTH , 0, BUTTON WIDTH, BUTTON HEIGHT); // move button frame
4 selectedTriangle . transform = CGAffineTransformMakeRotation(90 ∗M PI/180); // rotate trainlge point so it faces the detailed view
5 selectedTriangle . frame = kButtonSelectedTriagnleFramePort ; // move triangle point
6 } else {...} // Landscape
7 }

Figure 4.1b illustrates the ‘MY PDFs’ menu button selected in the custom navigation bar. When this but-
ton is selected the IPMyFilesViewController is loaded and its view is displayed in the detailed view.
The IPMyFilesViewController displays the user’s documents in a grid layout using GM-Grid-View5.
GM-Grid-View requests content from its delegate (IPMyFilesViewController), which is responsible for
creating the individual cells and responding to user interactions, such as cell selections. Figure 4.2b shows the
cells custom view, which is created and configured by the delegate. In order to minimise memory use, the Grid
view reuses any existing cells in memory before instantiating new cells.

3View controller objects manage communication between view objects and model objects.
4A view’s frame is the position of its rectangle in the superview’s coordinate system. It is made up of four floats: x position, y position,

width and height.
5An open source performant Grid-View for iOS (iPhone/iPad) - https://github.com/gmoledina/GMGridViewreadme

21

(a) Menu Button View (b) Grid Cell View

Figure 4.2: Custom Views

Figure 4.2b illustrates the custom cell view, which contains a document thumbnail, title and description label.
Each thumbnail is generated from the first page of the document and stored in persistent storage for future access.
This is done in a background thread to keep the UI smooth and responsive.
When the orientation of the device changes, the cell dimensions are modified to allow three columns in both
orientations.

iPhone
The iPhone navigation hierarchy revolves around a UITabBarController, which is part of the Cocoa Touch
framework6. This controller manages multiple other view controllers, which users can access by selecting a
tabbar item. Rotation is handled automatically and the tabbar stays situated along the bottom of the screen in
both orientations (illustrated in figure 4.3).

(a) iPhone Landscape (b) iPhone Portrait

Figure 4.3: iPhone main screen with the tabar managing multiple ViewControllers.

Each tabbar item contains an icon, label and an optional notification badge. The tabbar is customised using
the UIAppearance protocol7, which allows global appearance properties to be specified. The UIAppearance
protocol creates an appearance proxy, which is used to modify the appearance of all subsequent instances of that
class.

1 [[UITabBar appearance] setBackgroundImage:[[UIImage imageNamed:@”tabbarBg”] resizableImageWithCapInsets:UIEdgeInsetsZero]];
2 [[UITabBar appearance] setSelectionIndicatorImage :[[UIImage imageNamed:@”tabbarSelectedTabBg”] resizableImageWithCapInsets:UIEdgeInsetsZero]];

To implement the triangle indicator (shown in figure 4.3a), a subclass of UITabViewControllerwas cre-
ated, which overrode several methods, including the didSelectViewController method which is called
when a new tab is selected. This method adjusts the triangle indicator’s x co-ordinate, positioning it above the
selected tabbar item. To provide a visual fluid transition between states, the indicator’s frame is adjusted within
an animation block8. The code for this method is shown below.

1 − (void) tabBarController :(UITabBarController ∗) theTabBarController didSelectViewController :(UIViewController ∗)vc{
2 CGRect frame = tabBarArrow.frame;
3 frame. origin .x = [self horizontalLocationFor : self . selectedIndex]; // gets the centre x coordinate of the selected tab
4 [UIView animateWithDuration:0.2 animations :ˆ{ tabBarArrow.frame = frame; }];
5 }

6Coca Touch is a UI framework created by Apple
7A protocol is a list of method declarations that are not bound to any particular class.
8Block objects are a C-level syntactic and runtime feature.

22

To include a navigation bar at the top of the screen, each view controller within the tabbar is embedded
within a UINavigationController. This allows each view controller to set a title and add buttons to the
navigation bar. The navigation bar’s background and text colour is styled using the UIAppearance protocol.

The bar buttons located within the navigation bar, are customised with a background image (figure 4.4a). As
the image contains a gradient and border, it is not possible to alter the image’s width without causing the button
to appear stretched (figure 4.4b). To allow the background image to be used for buttons of any size, cap insets are
applied to the image using the resizableImageWithCapInsets: method. The insets are applied using
the UIEdgeInsets structure, which specifies the top, left, bottom and right insets to apply to an image. During
scaling or resizing of the image, areas covered by a cap are not scaled or resized (figure 4.4c.

(a) Scaleable button image (b) Stretched button (c) Scaled button

Figure 4.4: Custom resizable navigation button
1 #define kNavBarButtonImageCapsets UIEdgeInsetsMake (3, 3, 3, 3)

1 [[UIBarButtonItem appearance] setBackgroundImage:[[UIImage imageNamed:@”navButton”] resizableImageWithCapInsets:kNavBarButtonImageCapsets] forState:
UIControlStateNormal barMetrics:UIBarMetricsDefault];

As the background images border is 3 pixels on each edge, all insets are set to 3, to ensure that these pixels are
not resized when scaling the image. A button using these insets is shown in figure 4.4c. The complete iPhone
home screen is shown in figure 4.3.

4.1.2 Document Viewer

As identified in section 3.3 the application needs a component to display documents. Within the Cocoa Touch
framework it is possible to render several common document types9, including PDF, Doc and PTT, using a
UIWebView. However, as the view was created for accessing web content, navigation controls are limited. This
is apparent when displaying PDF and PPT documents, as all pages are displayed vertically. Although, this may
be adequate for displaying textual documents, it is restrictive for displaying full page presentations. An example
of a UIWebView displaying a full screen PDF presentation is shown in figure 4.5.

Figure 4.5: UIWebView navigation Figure 4.6: Customised VFR Reader Figure 4.7: Laser pointer

As the UIWebView would not allow for all the gestures identified in section 3.3.1, several alternatives
were considered, before deciding on VFR Reader10. VFR Reader is a universal open source PDF library which
supports iOS 4+. Although the library only supports PDF documents, it was considered the best choice due its
full screen rendering capabilities and extensive navigation features. PDF is also a well known commonly used
format, which many office applications export to. The PDF library allow users to change page in a document
with horizontal swipe gestures or via a page scroller situated along the bottom of the display (illustrated in figure
4.6).

9UIWebView supported file types - https://developer.apple.com/library/ios/#qa/qa2008/qa1630.html
10VFR Reader - https://github.com/vfr/Reader

23

https://developer.apple.com/library/ios/##qa/qa2008/qa1630.html
https://github.com/vfr/Reader

Modifications
Although the library was able to render PDFs without any changes, several modifications were made to customise
its appearance and increase its extensibility. As the library supports iOS 4 it uses manual memory management,
rather than ARC11. To make the library easier to extend and maintain, all memory management was converted to
automatic reference counting

When displaying a PDF, the library overlaid all controls onto toolbars at the top and bottom of the screen.
These toolbars were not the standard toolbars from the Cocoa Touch framework. This made it difficult to cus-
tomise as it could not interact well with other UIKit components and UIAppearance customisation was not
automatically applied. Based on this, the library was refactored, replacing all instances of the custom toolbar
with the standard UIToolbar. Buttons were added to the top toolbar to support broadcasting and questions
which are discussed in later sections. The final document viewer running on an iPhone is shown in figure 4.6.

Gestures
The PDF library includes page changing gestures, which animate the transition between pages. This animation
was removed when using the left or right side edge of the screen to change page, to allow users to notice subtle
changes between slides in a presentation. To do this the increment and decrement page methods were modified
to accept an additional boolean argument, which is used to determine if the page change should be animated.
When swipe gestures are used to change the page, the method is invoked with animated set to YES. When the
screen edges are tapped the method is called with animated set to NO.

1 − (void)incrementPageNumberAnimated:(BOOL)animated{ // called when changing page with a swipe gesture or by tapping the edge of doc
2 ...
3 [theScrollView setContentOffset : contentOffset animated:animated]; // change page with the animation if animated variable is YES

The library also includes a single tap gesture to toggle the visibility of the navigation controls and a pinch
gesture to zoom in on documents. However, to implement all gestures defined in section 3.3.1, an additional
gesture recogniser was required for the laser pointer. iOS allows gesture recognisers to be added to any view and
allows several options to be set. The laser pointer was implemented by adding a long tap gesture to the document
viewer. A dependency relationship is defined between the long tap gesture and the single tap gesture, to ensure
they are both not trigged for one action.

1 UILongPressGestureRecognizer ∗longPress = [[UILongPressGestureRecognizer alloc] initWithTarget : self action :@selector(handleLongTap:)];
2 longPress . delegate = self ;
3 [longPress requireGestureRecognizerToFail :singleTapOne]; // don’ t want single tap to occur as well
4 [self .view addGestureRecognizer: longPress];

When this gesture is recognised, the handleLongTap method is invoked. This method checks the state of the
gesture to determine if the laser pointer should be shown or removed.

1 switch (tapGesture . state)
2 case UIGestureRecognizerStateChanged:
3 [self showLaserPointerAtAbsolutePoint :[tapGesture locationInView : self .view]]; break;
4 case UIGestureRecognizerStateEnded:
5 [self hideLaserPointer]; break;

The laser pointer is presented by adding an image to the document viewer, with an alpha transparency of 0.8 to
make it appear more realistic. To ensure the point is not obscured by the user’s finger, the image is positioned
slightly above the touch point. This method is listed in appendix G.1 on page 97. When the gesture ends, the
laser pointer fades out over a small time period. This is achieved by setting the alpha transparency value to zero
in an animation block. The laser pointer is shown in figure 4.7.

4.1.3 Data Model

As discussed previously in section 3.3.4, the application needs to store documents, questions and answers to
ensure they are available between launches. iOS has a comprehensive collection of tools and frameworks for

11Automatic Reference Counting combines the simplicity of garbage collection with the efficiency of manual memory managemen

24

storing and accessing data. It includes the SQLite12 library, a low level relational database engine which is used
in many platforms. Built on top of this is the Core Data framework which provides object-relation mapping, to
integrate well with object-orientated programming. This framework provides an additional level of abstraction,
removing the need to write raw SQL queries. Core Data objects can be created visually within Interface Builder
and data can be fetched, updated or added using Cocoa Touch APIs. Core Data supports a range of common
types, including string, date, and number. It is also possible to store custom types in Core Data by serialising
them to raw binary data. However, this adds an extra overhead as data needs to be converted between types when
reading and writing. To avoid this, PDFs and thumbnails are stored on the file system, within the application’s
sandbox13, with their paths stored in the Core Data model. Each iOS application has its own sandbox, which
contains three folders: Documents, Library and tmp (illustrated in figure 4.8). These directories constitute the
applications primary view of the file system.

Figure 4.8: iOS app sandbox Figure 4.9: Database model.

Contents within the Documents directory are automatically backed up to iTunes when the device is connected
to a computer, allowing its contents to be restored if the device fails. The Library directory is not backed up;
however, data stored in this folder persists between runs of the application. Files kept within the tmp directory
are only stored temporarily and the operating system may purge them when the application is not running. To
ensure PDFs persist between application launches and are recoverable in the event of a device failure, they are
stored within the Documents directory. PDFs received as part of a presentation are stored in the Library directory
during the presentation and are deleted or moved into the Documents directory at the end of the presentation
(discussed in section 4.1.4).
As thumbnails can easily be regenerated, they are stored within the Library directory, to ensure they are not
backed up to iTunes. This directory is never purged by the operating system, so the thumbnail paths stored in the
data model will always be valid.

The schema for the Core Data model is shown in figure 4.9. The model contains three separate entities:
PDF, Question and Answer. The PDF entity consists of four attributes which contain meta information and
details needed by the UI. The Question entity contains a title and a type (multiple choice or open ended).
The Answer entity includes the answer text and choice number (multiple choice answer number). The
cardinality between entities is as follows:

• A PDF can have zero to many Questions.
• A Question has at most one correct Answer.

• A Question may have one or more potential
Answers.

Inserting data
Core Data automatically generates classes to represent each entity in the data model. Additional methods can be
added to these classes using categories14. To allow PDFs to be inserted into the model, the PDFWithPath:
method was implemented within the PDF+Path category. This method inserts a PDF into the data model provid-
ing it does not already exist (method listed in appendix G.2). Similar categories are defined the for Question
and Answer entities.

12SQLlite is a small relational database management system - http://www.sqlite.org
13 A sandbox is a set of fine-grained controls that limit an applications access to files and other resources
14Categories provide the ability to add functionality to a class without subclassing or changing the actual object.

25

http://www.sqlite.org

Accessing data
The data model is accessed through a UIManagedDocument object, which provides mechanisms to request
objects from the model. A UIManagedDocument variable was added to the IPMyFilesViewController
to allow it to retrieve PDFs from the data model. In order for the view controller to access PDF objects, the data
model needs to be opened and configured to request the correct data. When the application is launched for the
first time, the data model needs to be created as it will not exist. This is achieved by calling the saveToURL:
method on the UIManagedDocument. For all subsequent launches the data model will exist so it can be
opened by invoking the openWithCompletionHandler: method.

1 − (void) viewWillAppear:(BOOL)animated{ // IPMyFilesViewController
2 if (! pdfDatabase){ // get a reference to the database
3 NSURL ∗url = [[[NSFileManager defaultManager] URLsForDirectory:NSDocumentDirectory inDomains:NSUserDomainMask] lastObject];
4 self .pdfDatabase = [[UIManagedDocument alloc] initWithFileURL:[url URLByAppendingPathComponent:@”InteractivePresenter”]];
5 [self useDocumet]; // open/ load data model
6 }
7 − (void) useDocument{ // start using document db
8 if (![[NSFileManager defaultManager] fileExistsAtPath :[pdfDatabase .fileURL path]]){ // case 1: data model does not exist
9 [pdfDatabase saveToURL: pdfDatabase.fileURL forSaveOperation:UIDocumentSaveForCreating completionHandler:ˆ(BOOL success){

10 [self fetchPDFsIntoDocument: pdfDatabase]; // fetch PDFs in device storage
11 [self setupFetchedResultsController]; // link table to datasource
12 }];
13 } else if (pdfDatabase .documentState == UIDocumentStateClosed){ //case 2: data model exists but it ’ s closed
14 [pdfDatabase openWithCompletionHandler:ˆ(BOOL success) {
15 [self setupFetchedResultsController]; }]; // link table to datasource
16 }

Once the data model is open, objects can be retrieved using a NSFetchRequest, which defines what data is re-
quested from the database. The IPMyFilesViewController creates a request which states that data should
be extracted in ascending order from the PDF entity. This request is passed to a NSFetchedResultsController,
which efficiently manages the results returned from the Core Data model.

1 − (void) setupFetchedResultsController { // IPMyFilesViewController
2 NSFetchRequest ∗request = [NSFetchRequest fetchRequestWithEntityName:@”PDF”];
3 request . sortDescriptors = [NSArray arrayWithObject:[NSSortDescriptor sortDescriptorWithKey :@”title” ascending:YES selector :@selector(localizedCaseCompare

:)]];
4 self . fetchedResultsController = [[NSFetchedResultsController alloc] initWithFetchRequest : request managedObjectContext: pdfDatabase.managedObjectContext

sectionNameKeyPath:nil cacheName:nil];

The NSFetchedResultsController is then used to determine the number of cells in the grid and configure
their views.

1 − (NSInteger)numberOfItemsInGMGridView:(GMGridView ∗)gridView{
2 id <NSFetchedResultsSectionInfo> sectionInfo = [[self . fetchedResultsController sections] objectAtIndex :0];
3 return [sectionInfo numberOfObjects];
4 }
5 − (GMGridViewCell ∗)GMGridView:(GMGridView ∗)gridView cellForItemAtIndex:(indexPath)indexPath{
6 PDFGridCell ∗cell = (PDFGridCell ∗)[gridView dequeueReusableCell]; // get cell view to configure
7 PDF ∗pdf = [self . fetchedResultsController objectAtIndexPath : indexPath]; // ask NSFRC for the PDF for this row
8 ... // configure and return cell
9 }

4.1.4 Document Importing

Cloud Storage
There are several popular cloud storage providers which offer personal plans, including Dropbox15, Google
Drive16 and Box17. Each service has its own API to allow developers to integrate the service into their appli-
cations. As many developers wish to integrate multiple cloud services into their applications, there are several
third party frameworks which simplify the integration process. In this application, the FilePicker18 framework
is used to allow users to import PDFs from Dropbox, Google Drive, Box, Gmail and GitHub. The framework

15Dropbox Cloud storage service - https://www.dropbox.com
16Google Drive - https://www.google.com/intl/en_GB/drive/start/index.html
17Box - https://www.box.com
18FilePicker - https://developers.filepicker.io/docs/ios/

26

https://www.dropbox.com
https://www.google.com/intl/en_GB/drive/start/index.html
https://www.box.com
https://developers.filepicker.io/docs/ios/

includes an import view controller (FPPickerController), which allows users to sign-in to their cloud stor-
age accounts and access their files. The view controller is initialised, configured and presented to the user when
they tap the ’import’ button. Once the view controller has been initialised, the supported data type is set to PDF
and the delegate is assigned to the presenting view controller (IPMyFilesViewController). When a user
selects a file the didFinishPickingMediaWithInfo: method is invoked on the delegate, providing the
path to the downloaded PDF. This file is then moved into the documents directory and added to the data model,
making it available for selection in the IPMyFilesViewController grid view.

1 − (void) FPPickerController :(FPPickerController ∗)picker didFinishPickingMediaWithInfo :(NSDictionary ∗)info{ // FPPickerControllerDelegate method
2 NSURL ∗tempFilePath = [info objectForKey:@”FPPickerControllerMediaURL”];
3 NSString ∗savedURL = [BCUtility movePDFintoApp:tempFilePath]; // utility method to move pdf into documents directory and add to database
4 [self addPDFAtPath:savedURL]; // add PDF to grid view
5 [picker dismissModalViewControllerAnimated:YES]; // dismiss the filepicker control
6 }

(a) FilePicker presented in a popover on iPad (b) FilePicker presented modally on iPhone

Figure 4.10: PDF import from cloud storage service using FilePicker

To make best use of the screen real-estate available, the application presents the FilePicker differently de-
pending on the device. On the iPad the picker is layered on top of the existing view in a small popover (figure
4.10a). On iPhone the picker is presented in a full screen modal view, covering the existing view (figure 4.10b).

iTunes File Sharing
Unlike other USB storage devices, iOS devices are not mounted as as standard disk drive when connected to a
computer. However, applications can support iTunes File Sharing19, which allows users to transfer files into the
application from their computer using iTunes. This is achieved by adding a key to the application’s information
property list file (Info.plist)20.

1 <key>UIFileSharingEnabled</key> <true/>

Figure 4.11: iTunes file sharing

Once this has been declared, the application appears in the File Sharing list, illustrated in figure 4.11, allowing
files to be added to and copied from the applications Documents directory. It is not possible to declare what files
can be transferred, so users can add files of any type into the application. To address this issue, a method was
created which returns an array of paths to PDF files in the the Documents directory, ignoring other file types.
This method is invoked when the application is launched and the resulting array is traversed to add any new PDFs
into the data model. As there could be several PDFs in the directory, this is asynchronously in a separate thread
to keep the UI responsive.

19iTunes File Sharing - http://support.apple.com/kb/HT4094
20The Info.plist file is a structured text file that contains essential configuration information for a bundled executable

27

http://support.apple.com/kb/HT4094

1 − (void) fetchPDFsIntoDocument: (UIManagedDocument ∗)document{ // adds new PDFs on device into database
2 dispatch async (dispatch queue create (”PDF fetcher”, NULL), ˆ{ // could be slow if there is LOADS of docs so do in another thread
3 NSArray ∗pdfs = [self fetchPDFsOnDevice]; // gets PDFs on the device from iTunes File Sharing
4 [document.managedObjectContext performBlock:ˆ{ // add pdfs to CoreData db. Needs to be done on the documents context thread .
5 for (NSString ∗pdfPath in pdfs)
6 [PDF PDFWithStringPath:pdfPath inManagedObjectContext:document.managedObjectContext]; // create and add pdf to db. If exists ignore

4.1.5 Networking

All iOS devices have Wi-Fi and bluetooth capabilities, which applications can interact with via the iOS SDK.
There are advantages and disadvantages to each wireless technology. For example, Wi-Fi offers speeds of up to
54Mbps (Wireless G), significantly faster than Bluetooth (2.0) which has a maximum data transfer rate of 3Mbps.
Wi-Fi networks also have a larger range of up to 100 metres, compared to Bluetooth’s range of approximately 10
metres. Wi-Fi requires additional hardware to transmit messages between iOS devices, such as a router or access
point. Whereas Bluetooth allows devices to communicate without any additional hardware, making it possible
to transmit data in any location.
As networking is fundamental to the application, a considerable amount of time was spent researching different
approaches, which are described below.

Game Kit is an iOS framework created by Apple and first introduced in iOS 3. The Game Kit framework
contains APIs to allow seamless communication over a Wi-Fi or Bluetooth network. The framework aims to make
cross device communication simple, with a minimal set of interfaces; providing a high level of abstraction over
the Bluetooth and Wi-Fi networking layers. This high level of abstraction allows developers to treat Bluetooth
and Wi-Fi as one big network; significantly reducing the amount of networking code required. The framework
includes methods to discover other devices on the network and supports client-server and peer-to-peer topologies
(discussed in section 3.3.2). It was introduced to allow developers to create local multiplayer games. The
framework allows data to be exchanged between devices in packets (formatted unit of data, sent over a network)
of up to 87 kilobytes. This packet size is adequate for multiplayer gaming applications, as they are only required
to send small updates, such as player location, between devices. However, PDF files are often several megabytes
(Mb), significantly larger than the maximum packet size supported by Game Kit.

CocoaAsyncSocket is an open source networking library for iOS and Mac OSX. The library is essentially a
wrapper21 that sits on top of the low level Berkley Socket API22, removing the need to use standard C functions,
leading to a much easier to use networking framework. The library is frequently updated and has extensive
documentation. Although the library makes networking easier, it does not offer the same level of abstraction
as Game Kit. For example, for a device to receive data over the network it specifically needs to invoke a read
method. In Game Kit when a message is sent, the recipient automatically receives it and invokes a method stating
what has been received. CocoaAsyncSocket does not provide a method to discover other devices, so another piece
of software would be needed in conjunction with this, such as Bonjour (zero configuration networking) 23.

Due to the high level abstraction provided by Game Kit, it was chosen as the networking framework. How-
ever, to integrate the framework into the application several modifications were made to improve the connect
process and allow PDFs to be distributed between devices.

Establishing a connection

Before any data can be exchanged over Game Kit a connection needs to be made. Game Kit offers a stan-
dard user interface for the discovery and connection process (illustrated in figure 4.12). However, this interface
requires the server to manually search and accept clients, which would not be practical during a presentation,
considering viewers could arrive at different times. To allow documents to be presented with little or no planning

21a thin layer of code which adapts a library’s existing interface into a compatible interface
22The Berkeley sockets API comprises a library for developing applications in the C programming language that perform inter-process

communication across a network
23Bonjour enables automatic discovery of devices on a local network - https://developer.apple.com/bonjour/

28

https://developer.apple.com/bonjour/

(ad hoc networking) a custom view controller (LivePDFsVC) and two additional session managing classes were
created: one for the client and one for the server.

Figure 4.12: Standard Game Kit picker Figure 4.13: Live PDFs VC - Custom picker iPad

Figure 4.13 illustrates the custom view, which is controlled by the LivePDFsVC. This view lists all the
available presentations in a GMGridView and allows users to connect to any live presentation by tapping a cell.
The grid is automatically updated when the availability of a presentation changes.

Figure 4.14: Networking States

Figure 4.14 gives a visual representation of the networking states (number 1-4) of the application. When the
application is launched the client session manager IPSearchingPresentationClient is created, which
automatically starts searching for any servers that are broadcasting a presentation (state 1). At this point a user
can either connect to a Live PDF, or become a server by presenting one of their own PDFs. If a user selects a
Live PDF from the IPLivePDFsVC, a connection request is sent the the sever (state 2). When a connection
is established, the PDF is transmitted to the viewer (discussed later in this section) and opened in the document
viewer (state 3). At this point, the device stops searching, as a connection has been established with the server.
In this state, the user receives actions from the presenter which keep the screen synchronised (presenter action re
discussed later in this section). When the user leaves the presentation, the application is returned to the original
state where it searches for servers (state 1).
Alternatively, a user can become a presenter, by selecting a PDF from the ‘My PDFs’ view and selecting the
broadcast button located in the top toolbar (shown previously in figure in 4.6). When a user broadcasts a PDF, an
instance of the IPBroadcast is created to handle networking communication. At this point the PDF becomes
visible to other devices in the IPLivePDFsVC.

The IPBroadcast maintains a list of connected clients and stores a GKSession object, which is used to
transfer data across the network. It interacts directly with the document viewer, allowing presenter actions to be
distributed to the connected clients. The class also conforms to the GKSessionDelegate protocol to receive
important network events and acts as the data handler to receive incoming data. When the class is initialised, a
GKsession instance is allocated in server mode.

1 session = [[GKSession alloc] initWithSessionID :kSessionID displayName:escpaedInfoString sessionMode:GKSessionModeServer];
2 session . delegate = self ;
3 session . available = YES;
4 [session setDataReceiveHandler : self withContext: nil]

Setting the sessionMode to server instructs Game Kit to broadcast the availability of the service. The
sessionID is a unique string which allows clients to identify relevant servers. The application uses the string
INTERACTIVE-PRESENTER which is defined in the constant file. The GKSession object also allows a user-

29

readable name to be set, allowing viewers to identify servers. Initially this name was configured to the presenta-
tion name. However, as there may be times when a presentation can not be identified from its name alone, due to
multiple broadcasts with the same name or bad file naming, the presenter’s name is concatenated onto the end of
the presentation name. In order for the client devices to determine when the presentation name ends, the strings
are separated by ’**’ delimiter, and all ’*’ characters in the strings are escaped with a ’/’ character. This was
implemented by adding the following two class methods to the BCUtility class.

1 + (NSString ∗) escapedStringWithPresenterName:(NSString ∗)name PDTitle:(NSString ∗) title { // performed by server
2 NSString ∗escapedName = [name stringByReplacingOccurrencesOfString:@”∗” withString:@”/∗”]; // if any ∗ in name replace with /∗
3 NSString ∗escapedTitle = [[title stringByReplacingOccurrencesOfString :@”∗” withString:@”/∗”] stringByDeletingPathExtension]; // pdf title
4 return [NSString stringWithFormat :@”%@∗∗%@”, escapedTitle, escapedName]; // title∗∗name
5 }
6 + (NSDictionary∗) pdfInfoDictionaryFromEscapedString :(NSString ∗) str{ // performed by client
7 NSArray ∗parts = [str componentsSeparatedByString:@”∗∗”]; // split the string into title and name
8 ...

When the server receives a connection request, the GKSession invokes the didReceiveConnection
RequestFromPeer: method on its delegate (IPBroadcast). This method is configured to automatically
accept all incoming connection requests without prompting the presenter for confirmation.

1 − (void) session :(GKSession ∗)session didReceiveConnectionRequestFromPeer:(NSString ∗)peerID{
2 [session acceptConnectionFromPeer:peerID error : nil]; // accept all viewers . Once accepted the file transfer can begin
3 }
4 − (void) session :(GKSession ∗)session peer :(NSString ∗)peerID didChangeState :(GKPeerConnectionState)state{
5 switch (state){
6 case GKPeerStateConnected: [self sendPDFtoPeer:peerID]; // send PDF to viewer
7 case GKPeerStateDisconnected: [readyViewersDict removeObjectForKey:peerID]; // viewer left remove from list of viewers

Once the request has been accepted, the session:peer:didChangeState: method is called with a state
value of GKPeerStateConnected, which starts the PDF transfer (discussed in section 4.1.5).

The IPSearchingPresentationClient class acts as a mediator between a GKSession object and
the IPLivePDFsVC, shown in figure 4.13. It stores the session, a list of available servers and defines the
IPSearchingPresentationDelegate protocol, which is used to interact with the IPLivePDFsVC.
The class conforms to the GKSessionDelegate protocol and acts as the data handler for the session. When
the application is launched, an instance of this class is created, which instantiates a GKSession in client mode
and starts searching for available serves with the same sessionID.

1 session = [[GKSession alloc] initWithSessionID : sessionID displayName:nil sessionMode:GKSessionModeClient];

When devices on the network change state, the IPSearchingPresentationClient is informed via
the session:peer:didChangeState: delegate method. This method includes a state parameter and
a peerID, describing a device’s status. There are five states in total; however, the most important states are
GKPeerStateAvailable and GKPeerStateUnavailable. The available state indicates that a new
presentation has become available, and the unavailable state signals that a presentation has ended. When either
of these states occur, the LivePDFViewController is informed via a delegate method, so it can change the
availability of the presentation accordingly.

1 − (void) session :(GKSession ∗)session peer :(NSString ∗)peerID didChangeState :(GKPeerConnectionState)state{ // IPSearchingPresentationClient
2 switch (state){
3 case GKPeerStateAvailable: // The client has discovered a new server .
4 [availableServers addObject:peerID]; // add to list of available servers
5 [self . delegate matchmakingClient: self serverBecameAvailable:peerID]; // inform LivePDFsViewContorller so it can add it to the grid
6 case GKPeerStateUnavailable: ... // server gone away. inform the LivePDFsViewContorller so it can remove it from the grid

When a user selects a Live PDF from the IPLivePDFsViewController, a connection request is sent via
the IPSearchingPresentationClient, which starts the file transfer process.

1 − (void)GMGridView:(GMGridView ∗)gridView didTapOnItemAtIndex:(NSInteger)position{
2 LivePDFGridCell ∗cell = (LivePDFGridCell ∗)[gmGridView cellForItemAtIndex: position]; // get the actual cell
3 NSString ∗peerID = [searchingPresentationClient peerIDForAvailableServerAtIndex : position]; // get peerID from IPSearchingPresentationClient
4 [searchingPresentationClient connectToServerWithPeerID:peerID]; // connect
5 ..

30

Transmitting the PDF

As previously mentioned, Game Kit has a maximum packet size of 87k, which is significantly smaller than the
average PDF size. Additional research was carried out to identify different ways to transfer a file between devices
at the start of a presentation. The following three approaches were identified:

Cloud Storage As the application already makes use of online cloud storage services, it would be possible
to upload and share PDFs using these services. For example, DropBox allows files to be uploaded and shared
with other through a public URL. At the start of a broadcast if the file was not already located in cloud storage
it would be uploaded. The presenter would then send the URL of the PDF to each viewer once a connection
had been established. The FilePicker component could be used to do the upload process, so no additional
libraries would be necessary. However, an internet connection would be required and all presentations would be
made publicly available during the presentation. This approach is used by IdeaFlight[1], which was discussed in
section 2.2.2.

Split PDF into packets PDFs could be transmitted solely over Game Kit by splitting the file into multiple
packets. However, additional information would need to be included with each packet to ensure that viewers
could reconstruct the PDF even if packets got lost, corrupt or arrived out of order. While this approach is
complex, it requires no additional frameworks and will work over Bluetooth or Wi-Fi.

HTTP Server The file could be made accessible through a HTTP connection by creating a web server on
the presenting device. Once a viewer establishes a connection with a presenter, the URL to the file would be
transmitted via Game Kit. There are several open source libraries available to embed HTTP servers into iOS
applications, including: CocoaHTTPServer24 and MongooseDaemon25. Using a HTTP server would result in
fast direct file transfer without out the need to split the PDF into multiple packets. However, it would increase
memory usage and require Wi-Fi.

To support Bluetooth and Wi-Fi, it was decided that PDFs should be split into multiple packets and transferred
over Game Kit. This behaviour was implemented in the sendPDFtoPeer method, which is invoked when a
viewer established a connection to a presenter. This method splits the PDF into multiple packets and transmits
each packet reliably (using GKSendDataReliable26) to the viewer.

1 − (BOOL)sendPDFtoPeer:(NSString ∗)peerID {
2 if (! pdfNSData) pdfNSData = [NSData dataWithContentsOfFile: [document.fileURL path]]; // convert pdf to NSData
3 NSArray ∗packets = [self packets]; // split pdf data into packets <87k each
4 for (NSData∗ packet in packets) { // send packets one by one
5 NSError∗ error = nil ;
6 [session sendData:packet toPeers :[NSArray arrayWithObject:peerID] withDataMode:GKSendDataReliable error:&error]; // GKSession method

Each packet contains a PDF identifier (UDID), a PDF MD5, the PDF name, PDF data (payload), payload start
and payload length. The packets are sent as an NDData object which is constructed by serialising a dictionary
of key value pairs. A visual representation of a packet is shown in 4.15.

UniqueID PDF MD5 PDF Name Payload ... PDF Size Payload Start Payload Length

Figure 4.15: PDF packet

When the packets are received, they are reassembled using the additional packet information by the IPSearching
PresentationClient. This is achieved by constructing a NSMutableData object matching the size of
the PDF, and replacing ranges of bytes with the data contained in each packet’s payload.

1 − (void) receiveData :(NSData∗)data fromPeer:(NSString∗)peer inSession :(GKSession∗)s context :(void∗)context{ // in IPSearchingPresentationClient

24CocoaHTTPServer - https://github.com/robbiehanson/CocoaHTTPServer
25MongooseDaemon -https://github.com/face/MongooseDaemon
26In GKSendDataReliable mode a packet is automatically retransmitted if it fails to reach its destination

31

https://github.com/robbiehanson/CocoaHTTPServer
https://github.com/face/MongooseDaemon

2 NSDictionary ∗packet = [NSPropertyListSerialization propertyListWithData : data options :0 format :NULL error:nil]; // Extract data into dict
3 if (received == nil) // if first packet we have received for this file
4 NSMutableData∗ data = [NSMutableData dataWithCapacity:[packet objectForKey:@”PDF Size”] intValue]];
5 [[received objectForKey:@”payload”] replaceBytesInRange:NSMakeRange([[packet objectForKey:@”start”] intValue],
6 [[packet objectForKey:@”length”] intValue]) withBytes :[(NSData∗)[packet objectForKey:@”payload”] bytes]]; // replace bytes in the range
7 ... // check if the file has been fully received . If it has notify the LivePDFsViewController

Once the PDF has been successfully transmitted the IPSearchingPresentationClient informs the
IPLivePDFsViewController, which opens the PDF using the document viewer and creates an instance of
the IPBroadcast using the same session.

Presenter Actions

The document viewer’s appearance and behaviour is different for viewers and presenters. The top toolbar
contains different controls giving each user direct access to the available functionality. For example, the presenter
has access to a ’broadcast’ button, which is not available to viewers. This is illustrated in figure 4.16.

(a) Presenter View (b) Viewer View

Figure 4.16: Presenters and Viewers have different controls when viewing the same PDF

As a presenter, interaction with the document is monitored. Actions such as page changing, zooming and
pointing are forwarded on to all viewers to keep the presentation synchronised. Each action is sent across
the network in a single packet. All action packets contain a header, packet number, packet type and playload
(illustrated in figure 4.17).

Figure 4.17: 10 byte Packet Header

The first four bytes in the header act as an identifier to determine if the packet relates to the application.
Any packets which do not start with this identifier are discarded, to increase the robustness and security of the
application. The succeeding four bytes indicate the packet number, which is used to recognise when a packet
arrives out-of-order. This allows non-important packets which are received late to be discarded. The final two
bytes represent the packet type, which is used to determine the contents of the packet’s payload.

To synchronise the presentation across devices four packet types are required: page change, scroll/zoom,
laser pointer and client ready. As each packet has certain similarities, an abstract packet class IPPacket was
created to provide a level of abstraction to handling packets. This class includes methods and variables which
are common to all packet types. Each packet type can provide different packet semantics through subclassing the
IPPacket class. This packet class hierarchy is illustrated in figure 4.18.

The packetType variable is of type packetType enum. The enum is defined within the IPPacket,
to give a textual name to each numerical packetType. The IPPacket class includes a convenience factory
method packetWithData: which defers instantiation to the appropriate subclass. The class also includes
a data method which returns an NSData object with the contents of the packet. This method creates a muta-
ble data object and appends the packet header (identifier, packet number and packet type) to it as well as any
additional payload data.

1 − (NSData ∗)data{
2 NSMutableData ∗data = [[NSMutableData alloc] initWithCapacity :100];
3 [data rw appendInt32:’PRES’]; // identifier
4 [data rw appendInt32 :0]; // packet number

32

IPPacketClientReadyIPPacketPageChange IPPacketLaserPointerIPPacketScrollZoom

clientName : NSStringlaserPoint : CGPoint

IPPacket

packetType: PacketType
+ (id)packetWithData:(NSData *) data;
 - (id)initWithType:(PacketType)packetType;
 - (NSData *)data;
 - (void)addPayloadToData:(NSData *)data

pageNumber : int rect : CGRect

+(id)packetWithData:
-(void)addPayloadToData:

+(id)packetWithData:
-(void)addPayloadToData:

+(id)packetWithData:
-(void)addPayloadToData:

+(id)packetWithData:
-(void)addPayloadToData:

PacketType

PacketTypePageChange
PacketTypeLaserPostion
PacketTypeScrollZoom,
PacketTypeClientReady

<<enumeration>>

Figure 4.18: Packet classes (initial 4). Using the Factory design pattern.

5 [data rw appendInt16: self .packetType]; // packet type used to identify packet when recived
6 [self addPayloadToData:data]; // gets the subclasses to add any extra data (e .g page number)
7 return data ;

Each subclass of IPPacket includes a custom implementation of addPayLoadToData method, which adds
the necessary payload to the packet. For example, the IPPackerLaserPointer adds the x and y co-ordinate
for the laser pointer to the payload.

1 − (void)addPayloadToData:(NSMutableData ∗)data{
2 [data rw appendInt32: self . laserPoint .x]; // x co−ordinate of the laser
3 [data rw appendInt32: self . laserPoint .y]; // y co−ordinate of the laser

The rw append methods were added to the NSMutableData class within the
NSMutableData+NetworkingAddidtons category.

1 − (void)rw appendInt16:(short)value{
2 value = htons(value) ; // network byte order aka big endian
3 [self appendBytes:&value length :2]; // 2 bytes == 16 bits

In the rw appendInt16 method (listed above) the contents of value are appended to the packet. Before
appending the data, htons (a C function) is called to ensure the value is in network byte order27. This increases
the robustness of the protocol as it guarantees that all packets generated from different devices are transmitted
with the same byte ordering.

An IPPacketLaserPointer is created when the presenter performs a long tap gesture. This packet is
then sent to all connected viewers, which process the packet and display the laser pointer at the specified point.
When a viewer receives a packet it converts the binary data (NSData) back into a subclass of IPPacket using the
packetWithData: factory method.

1 + (id)packetWithData:(NSData ∗)data{ // in IPPacket class
2 if (([data length] < PACKET HEADER SIZE) && (data rw int32AtOffset:0] != ’PRES’)) // check packet length and identifier to see if its valid
3 NSLog(@”Error: Packet has invalid header”); return nil ;
4 int packetNumber = [data rw int32AtOffset :4]; // get the packet number
5 PacketType packetType = [data rw int16AtOffset :8]; // get the packet types
6 IPPacket ∗packet;
7 switch (packetType){ // remake the packet into its concrete type
8 case PacketTypePageChange:
9 packet = [IPPacketServerPageChange packetWithData:data]; break; // details of this method below

10 case PacketTypeScrollZoom:
11 packet = [IPPacketScrollZoom packetWithData:data]; break;
12 case PacketTypeLaserPostion :
13 packet = [IPPacketLaserPointerPosition packetWithData:data]; break;
14 ... // all other packet types
15 default :
16 NSLog(@”Error: Packet has invalid type”); // don’ t crash if receive odd packets . Just ignore them and write to log
17 } return packet ; // The packet is later cast to the concrete type by checking the packetType variable
18 }

27 Network Byte Order - canonical byte order convention for data transmitted over the network

33

Each concrete packet defines its own implementation of the packetWidthData: method, which reconstructs
the binary payload data into the relevant data types.

1 + (id)packetWithData:(NSData ∗)data{ // PPacketLaserPointer
2 size t offset = kPacketHeaderSize; // start reading after the header
3 int laserPointX = [data rw int32AtOffset : offset]; // convert the first 32 bits of data back to the x co−ordinate
4 offset +=4; // 32 bits = 4 bytes so move the offset along
5 int laserPointY = [data rw int32AtOffset : offset]; // convert the next 32 bits of data back to the y co−ordinate
6 return [[self class] packetWithlaserPoint :CGPointMake(laserPointX, laserPointY)]; // return a correctly initialised PPacketLaserPointer packet
7 }

Figure 4.19 illustrates when a IPPackerLaserPointer packet is created and distributed to viewers.

Presenter (Server)

IPBroadcastIPPDFViewController IPPacketLaserPointer

handleLongTap:gesture
serverPointedTo:point

packetWithLaserPoint:point

unreliableSendPacketToAllClients:

GestureRecogniser

Viewers (clients)

IPBroadcast IPPDFViewControllerIPPacketLaserPointer

packetWithData:data

showLaserPointerAtAbsolutePoint:

Figure 4.19: Laser pointer packet creation and distribution

The initial implementation of the laser pointer packet included the x and y co-ordinate of the long tap gesture.
This approach resulted in positioning problems as it did not take into account that viewers may be using different
devices, in multiple orientations. Figure 4.20 shows how the laser pointer appeared on different devices using
this approach.

(a) Presenter View (b) Viewer View

Figure 4.20: Laser point wrongly positioned when using raw touchPoint co-ordinates.

A naive approach to solving this issue would be to send details of the presenters device and orientation to each
viewer. This would allow viewers to scale the co-ordinates for their device accordingly. However, the flexibility
of this solution is limited as the application would need to be modified if a new iOS device was released.
Instead, the gestures’ co-ordinates are converted into the content view of the PDF page before transmission.
The PDF content view co-ordinate system is based on the dimensions of the PDF page, which is identical on all
devices. Figure 4.21 illustrates the two different view co-ordinate systems. When a viewer receives a laser pointer
packet, the co-ordinates are converted to document viewers co-ordinate system before the pointer is displayed.

The initial implementation of IPPacketScrollZoom included two values: a centre screen position and
zoom level. This approach had similar view issues to the initial laser pointer packet. This was resolved by
replacing the two values with a CGRect28 denoting the area of the PDF page currently in view. When this
packet is received by viewers, the zoomToRect:animated: method is invoked which zooms to the specific

28CGRect - a data struct which represents the location and dimensions of a rectangle

34

Figure 4.21: View co-ordinate systems

area of the PDF page so the area contained within the packet it is visible. This method is animated to provide
viewers with additional context.

An IPPacketPageChange is generated every time the presenter switches page in the document. The
packet includes an integer representing the current page number, which is used to keep all devices on the same
page.

The IPPacketClientReady is used to request the current state of the presentation. It is sent by a viewer
to the presenter after the PDF transfer has completed, to accommodate viewers who join after the presentation
starts. When a presenter receives the packet, it sends the current page and scroll/zoom position.

The majority of the packets in the application are transmitted reliably, as delivery guarantees are required.
However, as an IPPacketLaserPointer is created every time the laser pointer moves, they are sent unre-
liably (using GKSendDataUnreliable29) as delivery speed is more significant than guaranteed delivery to
keep the laser pointer movement fluid.

When testing the application over a bluetooth connection, the limited bandwidth resulted in latency issues
with the responsiveness of the laser pointer. To improve performance, the IPPDFViewController was
modified to restrict the number of laser pointer packets generated. This was achieved by only sending laser
pointer packets when the laser moved a distance of three or more pixels from the previous point.

1 float totalDisMoved = fabs (lastSentLaserPosition .x − point.x) + fabs (lastSentLaserPosition .y − point.y) ; // get distance between current point and
previous point

2 if (totalDisMoved >3){ // restrict number of packets sent
3 [broadcast serverPointedToPoint : relativePoint]; // send to viewers

To keep laser pointer transitions smooth, the movement of the laser pointer is animated on the viewer’s device.

1 [UIView animateWithDuration:0.04 animations :ˆ{ [self . laserPointerImageView setFrame:newFrame]; }]; // animate laser move on viewers devices

4.1.6 Questions and Voting

To allow users to add questions, multiple view controllers were created which interact with the Question
and Answer entities in the data model (discussed in section 4.1.3). Users can add questions to a PDF before
or during a presentation by selecting the ‘Questions’ button in the document viewer toolbar. This presents the
IPQuestionListViewController, which lists existing questions, provides the ability to select a question
to view detailed information and allows new questions to be added. Figure 4.22 shows the view controller
presented on the iPhone and iPad. On the iPad, the view is displayed in the centre of the document viewer,
allowing the user to observe changes to the document in the background. Due to the limited screen size on the
iPhone, the view is displayed full screen on this device.

29In GKSendDataUnreliable mode data is sent once so delivery is not guaranteed

35

(a) iPad (b) iPhone

Figure 4.22: Question list presented on iPad and iPhone

Users can select the ‘Add’ button to create a new question, which instantiates the IPAddViewQuestion
ViewController (shown in figure 4.23).

Figure 4.23: Add question

This view includes a custom segmented control, SDSegmentedControl30, which allows the question type
to be set. Currently the control includes two types: multiple choice and open ended. However, more question
types can be added to this control in the future. The view controller also includes a UITableView which loads
custom cells to represent the question and possible answers. The custom cells are of type IPAnswerCell and
contain a choice label, a textfield to allow user input and a button used to mark the answer as correct. Figure 4.24
illustrates XIB interface file for the (IPAnswerCell).

Figure 4.24: Multiple choice custom answer cell

The tableview initially presents two answer cells to inform the user that only two choices are mandatory. The
IPAddViewQuestionViewController is the delegate for each text field in the IPAnswerCell cells,
so it is informed via the textFieldDidEndEditing method when a user edits any text in the cells. When
this method is invoked the content of the cell’s text field is checked to determine if a new cell needs to be added
as all current cells are full.

1 − (void) textFieldDidEndEditing :(UITextField ∗) textField {
2 NSString ∗ text = textField . text ;
3 if (text . length>0){ // if the answer is not blank
4 [answersArray setObject : text atIndexedSubscript : textField . tag]; // answers stored in an array .
5 if ((tag +1)== answersArray.count && answersArray.count <8){ // add a new if all current ones are full −MAX 8
6 [answersArray addObject:@””];

30SDSegmentedControl - https://github.com/rs/SDSegmentedControl

36

https://github.com/rs/SDSegmentedControl

7 [self . tableView reloadData];

The view controller also validates the question before adding it to the data model. If a question is invalid the
user is informed by a customised alert (BlockAlertView31) containing details of the error. An example of
the customised BlockAlertView is shown in figure 4.23.

To allow questions and answers to be sent over the network, additional packet types were created. The
packets were integrated into the IPPacket factory design pattern by subclassing IPPacket and implementing
the required methods. Figure 4.25 shows the four additional packets added to support questions and answers.

IPPacketRevealResultsIPPacketQuestion IPPacketRevealAnswer IPPacketViewerAnswer

IPPacket

Figure 4.25: Four additional packet types defined for transmitting questions and answers

Figure 4.26: Questions and Answer device interaction

Figure 4.26 illustrates the creation and flow of these packets. An IPPacketQuestion packet is created
when a presenter selects the ‘Send’ button from the IPAddViewQuestionViewController. This packet
includes a string representing the question and an array of possible answers. When a viewer receives a packet
of this type the IPQuestionReceivedViewController is presented, displaying the question to the user.
Once an answer has been selected, it is transmitted to the presenter using an IPPacketViewerAnswer packet,
which contains the question and selected answer. The presenter can observe viewers responses visually within
the IPQuestionSendingViewController, which is automatically displayed when a question is sent to
viewers. The presenter can inform all viewers of the correct answer by selecting the ‘Reveal Answer’ button

31BlockAlertView - https://github.com/gpambrozio/BlockAlertsAnd-ActionSheets

37

https://github.com/gpambrozio/BlockAlertsAnd-ActionSheets

situated in the bottom toolbar. This generates and transmits an IPPacketRevealAnswer packet contain-
ing the question, choices and correct answer. The packet includes the question and possible answers, allowing
the results to be displayed to recently joined viewers who did not receive the question. The results can also be
transmitted to viewers, allowing the graph to be displayed on their device. This is achieved by selecting the ‘Re-
veal Answer & Results’ button located in the bottom toolbar. This generates an IPPacketRevealResults
packet, which includes all the details contained in the IPPacketRevealAnswer and the vote counts for each
multiple choice answer.
The results are displayed in a custom bar chart (BCBarChart) created specifically for this application. This
view is a subclass of UIView32, which overrides the drawRect: method to programatically render the chart
at runtime. Each time a new response is received the graph is refreshed to update its content. This is animated to
provide a fluid visual transition between the graphs states. The view automatically resizes the bars to fit within
the view’s frame. The value and colour for each bar is stored within an array, which can easily be set by other
objects. The drawing code for this view is listed in appendix G.3.

4.2 User Feedback and Refinement

4.2.1 Evaluation Design

After implementing all the ‘must have’ and ‘should have’ requirements during the initial development phase, a
small scale evaluation was performed. This evaluation was carried out to assess the networking performance
when broadcasting to multiple device and to further prioritise the unimplemented ‘could have’ and ‘would be
nice to have’ requirements (outlined in chapter 3). The evaluation compromised of three parts:

1. Participants were first introduced to the application by viewing a presentation on their device led by a
demonstrator. This illustrated all the functionality currently implemented in the application.

2. Participants were then encouraged to test the application in pairs, taking on the role as a presenter and
viewer.

3. Users then completed a short questionnaire, which captured usability feedback and ranked additional fea-
ture requests.

4.2.2 Results

Seven iOS users took part in the evaluation: five university students and two employees currently working in the
private sector. The application was tested on iPads, iPhones and iPod Touches running different versions of iOS.

Defects Found
No device had any significant problems, however two defects were identified: firstly, the seventh connected
viewer’s device sporadically lost connection during a presentation; and secondly, there was an issue with loading
customised table views on iPads running iOS 5 (illustrated in figure 4.27). Solutions for both of these defects are
described in section 4.3.1.

Usability issues
Many participants had difficulty using the laser pointer, as they were unaware of the required gesture. A user
guide will be implemented in the second version which includes a list of presenter controls.

One iPad user also tried to select the ’INTERACTIVE PRESENTER’ logo in the custom navigation bar, as it
looked similar to the other tab buttons. The user stated they expected the logo to take them to the applications
’home’ screen as common in other applications, such as websites. This behaviour will be implemented during
the next implementation cycle.

32The UIView class defines a rectangular area on the screen and the interfaces for managing the content in that area.

38

(a) iOS 6 (b) iOS 5 (c) Interface file (XIB)

Figure 4.27: Customised table view displaying incorrectly on the iPad running iOS 5

Questionnaire results
The questionnaire included a series of closed format question as well as a few open ended questions to encourage
participants to give detailed feedback. The most significant results are listed below. Additionally, a complete
listing of questions and results can be found in appendix F.

All participants rated the applications interface as Good or Excellent. ”felt like a really nice hybrid functional
presentation tool and magazine app. A+ job.” One user praised the animations throughout the application and
suggested situations where additional animations would be beneficial. ”Some more animation effects when a
peer device connects to share its presentations.”

When asked to state their favourite feature in the application the majority of participants choose the question
functionality.”Question feature, removes the stigma from presentations.”

One of the closed questions required participants to rank the the unimplemented functional requirements by
importance. The results are listed in figure 4.28.

Figure 4.28: User additional feature rank

Participants ranked Viewer raised questions as the highest priority, with a rating average of 2.57. Save
documents from a presentation and ’Open in’ support were also ranked with significant importance. Lock/unlock
presentation, Open ended questions and Passcode secured presentation were all ranked with a medium priority
(rating average 5-6). However, participants in employment ranked Passcode secured presentation significantly
higher than students, with one participant marking it as the top priority.

The survey also allowed users to suggest any additional features which they felt would improve application.
”Have some analytics features so admins can see who has viewed and saved the slides - good for attendance”
”Could it be possible for the viewers to also highlight things if they were asking a question.”
”Lecturers tend to ask for questions at the end of presentation. Most of the time no questions are asked. Allowing
users to send questions in from the application is likely to improve the number of questions raised especially if
they can be anonymous”

4.2.3 Additional features to implement

Based on the results from the evaluation the following features were prioritised for the second development cycle:

39

• Ask the presenter questions (FR15)
• Ability to ask anonymous questions
• Viewer list
• Save document from a presentation (FR9)
• Passcode secure presentation (FR14)

• Navigation lock\unlock (FR8)
• ’Open in’ support (FR11)
• User guide
• Additional Animations

4.3 Second Implementation cycle

The second implementation phase aimed to address the defects identified during the initial evaluation, and im-
plement the nine features prioritised by users.

4.3.1 Addressing identified defects

Networking defect
After the evaluation it became apparent that other iOS developers using the GameKit framework had experienced
connection dropouts when connecting multiple devices running iOS 5 and iOS 633. This issue only occurs when
a GKSession configured as a server interacts with a mix of iOS 5 and iOS 6 clients. The issue does not arise
if the server is running iOS 5 or all devices are running iOS 6. There is currently no known fix for this issues,
however the author and several other developers have informed Apple about this issue in the hope that it will be
rectified in a future software update.

Table view defect
The issue loading customised table views on iOS 5 related to the way the view was initialised. When a view con-
troller is allocated using its designated initialiser34, it automatically inflates a XIB file matching the class name.
This was working as expected on iOS 6; however, on iOS 5 the UITableViewController initialiser was
not locating the XIB file automatically. To resolve this issue, all subclasses of UITableViewController
were modified to override the designated initialiser and explicitly inflate the interface file.

1 − (id) initWithStyle :(UITableViewStyle) style{ // IPVAddViewQuestionViewController − subclass of UITableViewController
2 self = [super initWithNibName:@”IPVAddViewQuestionViewController” bundle:nil];

4.3.2 Passcode

To implement passcode secure presentations an additional view controller was created to allow broadcast op-
tions to be set (IPBroadcastSetupViewController). This view allows users to set a passcode and state
if viewers can save the PDF at the end of a presentation (discussed in section 4.3.7). Users can enable the
passcode security by interacting with a UISwitch. When the switch’s state is set to true, two textfields are
added to the view in an animation block, allowing a user to define a passcode. Users are required to confirm
their specified passcode to ensure it is valid. Figure 4.29 illustrates this view on the iPad and iPhone. In or-
der to allow the passcode to be transmitted and verified over the network, two additional packets were created:
IPPacketPasscodeRequest and IPPacketPasscodeVerified. An IPPacketPasscodeRequest
packet is created when a presenter broadcasts a presentation with a passcode. The packet includes a hashed ver-
sion of the passcode (produced using the SHA-256 cryptographic hash function35) to ensure it can’t be identified
by an external packet analyser36. The IPBroadcast class was modified, to send this packet when a connection
is established between a viewer and presenter. This packet is received by the IPSearchingPresentation
Client, which invokes the receiveData: method. Additional logic was added to this method to check the

33Game Kit bug identified on the Apple Developer Forums - https://devforums.apple.com/message/764265#764265
34The initialiser of a class that takes the full complement of initialisation parameters.
35SHA-2 cryptographic functions - http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
36Software or hardware that can intercept and log traffic passing over a network

40

https://devforums.apple.com/message/764265##764265
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

(a) Passcode disabled by default (b) Passcode enabled (c) Passcode validation

Figure 4.29: Broadcast options View Controller presented on iPad (left) and iPhone (right)

packet type of the received data (shown below). This enables the class to prompt the user for a passcode when re-
ceiving an IPPacketPasscodeRequest packet, whilst maintaining the ability to assemble PDF documents
from other packets. Figure 4.31 illustrates the passcode prompt which is invoked within the receiveData
method.

1 −(void)receiveData :(NSData∗)data fromPeer:(NSString∗)peer inSession :(GKSession∗)s context :(void∗)context{
2 IPPacket ∗ipPacket = [IPPacket packetWithData:data]; // turn the data into a packet
3 if (ipPacket .packetType == PacketTypePasscodeRequest) { // check if its a passcode request
4 IPPacketPasscodeRequest ∗passcodePacket = (IPPacketPasscodeRequest ∗) ipPacket ; // cast to passcode packet so can access hashed passcode
5 [self displayPasscodePromptForPasscode:passcodePacket .hashedPass peer : peer inSession : s]; // validate then request PDF when validated
6 }else{ // must be PDF packet ...

The passcode input by the user is then hashed with the same cryptographic function before being compared to
the actual passcode received from the server. If the viewer inputs the passcode incorrectly, they are informed and
prompted to try again. Once the passcode has successfully been verified, an IPPacketPasscodeVerified
packet is sent to the presenter, which starts the document transfer process. Figure 4.30 provides a visual repre-
sentation of this behaviour.

Presenter (Server)

IPBroadcastIPPDFViewController IPPacket
PasscodeRequest

startBroadcastWithPasscode
initServerWithPDF: passcode:

packetWithPasscode:hashedPass:

reliableSendPacketToClient: passcodeRequest

IPBroadcastSetupVC

Viewer (client)

IPSearching
PresentationClient

packetWithData:data

verifyPasscode:hashedPass

reliableSendPacketTServer: paascodeSuccess

IPPacket
PasscodeRequest

IPPacket
PasscodeVerified

packet

sendPDFtoPeer:

Figure 4.30: Passcode verification between devices

(a) Viewer passcode prompt (b) Invalid passcode alert (c) Passcode verified successully

Figure 4.31: Passcode prompt when joining a secured presentation

41

4.3.3 Viewer List

During the evaluation, one user suggested the presenter should be able to see a list of viewers. To implement this
an additional view controller was created (IPBroadcastViewersVC), which includes a table of connected
viewers. This table is populated by the array of viewers stored in the IPBroadcast. The presenter can
access this list by tapping the ‘Broadcasting’ button during a presentation. Figure 4.33 illustrates the viewer list
displayed in a popover on the iPad.

4.3.4 Viewer Questions

To allow viewers to create and send questions to the presenter, an additional view controller (IPUserRaised
QuestionViewController) was created. Viewers can access this view by selecting the ‘Ask Question’
button located in the upper right of the top toolbar. Figure 4.32 illustrates this view presented on the iPhone and
iPad.

(a) iPhone (b) Ability to include slide number (c) iPad

Figure 4.32: View to allow users to send questions to the presenter

Viewers are able to include a slide number with their question, and indicate if they would like the question
to be sent anonymously. When a user selects the ‘Send to Presenter’ button the view controller informs the
IPPDFViewController, which subsequently notifies the IPBroadcast object. The IPBroadcast then
creates an IPPacketUserQuestion packet and transmits it reliably to the presenter. The IPPacketUser
Question class inherits from the IPPacket class and implements the required methods. The addPayload
ToData: method appends the question title, slide number and anonymous state.

1 − (void)addPayloadToData:(NSMutableData ∗)data{ // IPPacketUserQuestion
2 [data rw appendString: question . question]; // question
3 [data rw appendInt32: question .slideNum]; // page
4 [data rw appendInt8: (question .annon ? ’1’ : ’0’]; // anonymous state
5 }

Figure 4.33: Viewer List Figure 4.34: Views to allow presenter to access viewer’s questions

Figure 4.34 demonstrates how the presenter can view user submitted questions. When a presenter receives
a question, a subtle notification is temporally displayed at the bottom of their screen. This notification includes
the question and the viewer’s name if available (figure 4.34a and 4.34b) . The questions are stored alongside the
questions author in the viewer list (figure 4.34d). The presenter can view user questions at any time during the
presentation by opening the viewers list and navigating to the question detailed screen (figure 4.34e and 4.34f).
This screen includes the question title and page number which the presenter can select to view the page. The

42

screen also includes an ‘Answered’ button which allows the presenter to discard the question.
To inform the presenter of the number of unanswered questions, a notification badge (MKNumberBadgeView37)
is applied to the ‘Broadcasting’ toolbar (figure 4.34c). The notification badge is cleared when the presenter views
the questions.

4.3.5 Navigation Lock/Unlock

To allow the presenter to enable\disable viewer navigation an additional packet subclass was created (IPPacket
NavigationLock). This packet (illustrated in figure 4.35) includes the lock state (boolean) and the current
page number (integer). To support navigation locking the document viewer class was modified to disable
gestures for viewers when the presentation is locked. An example of one of the modified methods is shown
below.

1 − (void)incrementPageNumberAnimated:(BOOL)animated{
2 if (! interactionLocked || ! isInClientMode){ // can only change page if navigation is unlocked or a presenter

Presenters can toggle the navigation lock the navigation at any time by tapping the ’Lock’\’Unlock’ button
located in the document viewer’s toolbar. This action creates an IPPacketNavigationLock packet and
distributes it reliably to all connected viewers. When the packet has been successfully transmitted the presenter
is informed by a custom on screen alert (illustrated in figure 4.36 and 4.37).

Figure 4.35: Lock packet class Figure 4.36: Locked alert Figure 4.37: Unlocked alert

When a viewer receives a IPPacketNavigationLock packet, the IPBroadcast class informs the
document viewer of the navigation state and notifies the user (shown in figure 4.36 and 4.37). When the navi-
gation is locked, viewers devices are automatically synchronised to the correct page using the pageNumber in
the packet.

To ensure viewers who join a presentation late have the same locked state, the IPBroadcast class was
modified to automatically send a navigation packet to viewers when they join. When a presenter ends the broad-
cast, navigation is automatically unlocked, to allow viewers to explore the content at their own pace.

4.3.6 ‘Open In’ support

To enable the application to open PDF files from other applications on the device, the project’s plist was config-
ured to register support with the system. The modified plist file is included in listing G.4.

Figure 4.38: ’Open in’ support Figure 4.39: PDF successfully added

Figure 4.38 illustrates the application appearing as an option in the ‘open in’ list when a PDF was tapped
in the iOS Mail. When the application is selected from this list, it is launched and the file is copied into the

37 MKNumberBadgeView - http://www.cocoacontrols.com/controls/mknumberbadgeview

43

http://www.cocoacontrols.com/controls/mknumberbadgeview

inbox directory, located within the Documents folder. During the application launch, the application:
openURL:sourceApplication method is invoked to inform the application of the path to the file. This
method moves the file into the documents directory and adds it into the database. The user is informed once the
file has been added via a custom onscreen alert, shown in figure 4.39.

1 − (BOOL)application:(UIApplication ∗) application openURL:(NSURL ∗)url sourceApplication:(NSString ∗)sourceApplication annotation :(id) annotation{
2 NSString ∗savedURL = [BCUtility movePDFintoApp:url];
3 if (savedURL){ // if successfully moved file into documents directory
4 [myPDFsViewController addPDFAtPath:savedURL]; // add to the grid view
5 [SVProgressHUD showSuccessWithStatus:@”PDF added to My PDFs”]; // inform the user of success
6 }else{ [SVProgressHUD showErrorWithStatus:@”Unable to add to My PDFs”]; } // inform the user of a problem

4.3.7 Store PDF from presentation

To allow presenters to specify if a viewer can save the PDF, an additional field was added to the broadcast
options view controller (illustrated in figure 4.40a). Viewers are informed about the presentations saving per-
mission when they join the broadcast. This information is transmitted as a serialised boolean value in an
IPPacketCanSavePDF packet. The IPBroadcast class was modified to store the navigation state. When
the presenter or viewer leaves the presentation the navigation state is checked, to determine if the viewer can
save the presentation. If the presenter has granted saving permissions, a save option is added to the popover (il-
lustrated in figure 4.40b and 4.40c). When the save option is selected, the PDF file is moved into the Documents
directory and added to the data model, allowing it to be accessed from the ‘My PDFs’ view.

(a) Permission set in broadcast options (b) Save PDF when presenter leaves (c) Save PDF when viewer leaves

Figure 4.40: Save PDF from presentation

4.3.8 Live PDF View Modifications

During the initial evaluation users praised the animations used throughout the application. However, one partic-
ipant suggested that newly discovered broadcasts should animate into the ‘Live PDFs’ grid view. Based on this
feedback, the IPLivePDFsViewController was modified to animate the insertion and removal of cells.
Figure 4.41 gives a visual representation of the insertion animation. The animation consists of three parts: firstly,
the ’No Live PDFs’ label is faded out; secondly, a cell is inserted and faded into the view; finally, the notification
badge is updated.

Figure 4.41: Live PDF animation

A short earcon was also added, which sounds when a broadcast is discovered. Blattner defines earcons as
“non-verbal audio messages that are used in the computer/user interface to provide information to the user about
some computer object, operation or interaction” [5]. The earcon provides auditory feedback which supports the

44

animation and the badge notification, helping users recognise new broadcasts. The earcon is played at the current
system audio volume using the System Sound Services38 interface. This allows users to control the exact volume
of the earcon and disable it as necessary by putting their device in silent mode.

1 − (void)matchmakingClient:(IPSearchingPresentationClient ∗) client serverBecameAvailable :(NSString ∗)peerID{ // IPLivePDFsViewController
2 if (noLivePDFsLabel.alpha>0) // if ’No Live PDFS’ label is visible remove it gradually over 1/5 th second as there is now a server
3 [UIView animateWithDuration:0.2 animations :ˆ{ noLivePDFsLabel.alpha = 0.0;} completion :ˆ(BOOL finished){ [noLivePDFsLabel removeFromSuperview];}];
4 [gmGridView insertObjectAtIndex :[presentationClient availableServerCount]−1 withAnimation:GMGridViewItemAnimationFade]; // fade cell in
5 dispatch after (dispatch time (DISPATCH TIME NOW, 0.3 ∗ NSEC PER SEC), dispatch get current queue(), ˆ{ // tie badge update with animation
6 self . navigationController . tabBarItem.badgeValue = [self badgeString]; // update the number badge
7 [self playBeepSound]; }); // play earcon if device is not on silent

4.3.9 User Guide

Figure 4.42: Part of the user guide included within the application

As applications are distributed digitally it is not possible to include a physical user guide. To improve the
usability of the application for first time users, a seven page digital user guide was created for the application
(four pages are illustrated in figure 4.42). The guide is separated into three sections: importing, presenting and
viewing. Each section provides a visual tutorial illustrating how to use the applications key functionality. The
complete user guide is included in appendix A. Users can navigate through the guide by scrolling left or right.
The guide is implemented using AFImageViewer39, an open source custom view. This view was modified to
allow users to change page using the UIPageControl situated along the bottom of the view (shown in figure
4.42). The additional view code is shown in listing G.5.

4.4 Summary

Many techniques and technologies have been employed, encountered and learnt about during the implementation
of this application. The final product contains 92 classes including 11 external libraries. Information about the
key classes and libraries is included in appendix C.
During the implementation phase a large proportion of time was spent developing a highly extensible networking
component. This component currently recognises twelve packet types (illustrated in figure 4.43) and allows
additional functionality to be implemented by subclassing the IPPacket class and modifying a single method
in the IPBroadcast class.

Figure 4.43: 12 packets used in the application

38System Sound Services - http://developer.apple.com/library/ios/#documentation/AudioToolbox/
Reference/SystemSoundServicesReference/Reference/reference.html

39AFImageViewer - https://github.com/AdrianFlorian/AFImageViewer

45

http://developer.apple.com/library/ios/##documentation/AudioToolbox/Reference/SystemSoundServicesReference/Reference/reference.html
http://developer.apple.com/library/ios/##documentation/AudioToolbox/Reference/SystemSoundServicesReference/Reference/reference.html
https://github.com/AdrianFlorian/AFImageViewer

Chapter 5

Testing

5.1 Usability Test

Two evaluation approaches were used to evaluate the application after the second implementation cycle: firstly,
a short-term usability evaluation which focused on an individual user’s experience when interacting with the
system; and secondly, a real-world trial in a university lecture that aimed to gather feedback from a lecturer and
students when using the application in context.

5.1.1 Short-term Evaluation

The short-term evaluation was designed to test the usability of the applications key features in a short period of
time. The evaluation aimed to expose users to both versions of the application whilst testing the presenter and
viewer functionally.
Three devices were used during the evaluation to illustrate the networking multiplicity. Each participant was
issued an iPad at the start of the evaluation and given the chance to read the in-app user guide to familiarise
themselves with the application. Participants were then issued a task sheet containing fourteen short tasks (task
sheet is included in appendix H.2). The initial set of tasks required each participant to present a document.
During these tasks the evaluator connected an iPhone and an iPad to the broadcast to expose participants to both
versions of the application. The second set of tasks required each participant to join a presentation led by the
evaluator. During the set of tasks participants were encouraged to describe their thought process (‘think aloud’)
to allow the demonstrator to take notes. Once the participant had completed all tasks they were allowed to explore
the application freely on the iPhone and iPad. Participants were then asked to fill in a short questionnaire. This
questionnaire included a SUS evaluation and several application specific questions.

The System Usability Scale (SUS) is a simple, ten-item scale giving a global view of subjective assessments
of usability. It was developed by John Brooke in 1986 as a tool to be used in usability evaluations of electronic
office systems. Brooke describes SUS as “a reliable, low-cost usability scale that can be used for global as-
sessments of systems usability” [6]. Each item in the SUS has has five response options, labeled 1 to 5, which
represent Strongly Disagree and Strongly Agree, respectively. Results from the SUS are combined to yield a
single number, which represents a composite measure of the overall usability of the system being studied (full
details of how the overall score is calculated is included in H.1). A recent evaluation performed by the Usability
Professionals’ Association found the SUS to be the most reliable evaluation survey when compared to four other
similar questionnaires [14]. The study also showed that an SUS evaluation with a sample size of twelve, would
lead to the same conclusion of a bigger sample size.

46

Results

Twelve participants took part in the short-term evaluation, nine of which were iOS users. The feedback gained
through the ‘Think Aloud’ observations and online questionnaires is summarised below. Additionally, all feed-
back gained from the online questionnaire is included in appendix H.3.E.

Think Aloud Observations
All participants were able to successfully complete all fourteen tasks. Feedback towards the application was
overwhelmingly positive. Many users commented that the application was extremely polished and specifically
praised the animations used throughout. A few users had some difficulties adding a question due to a few
uninformative button names. For example, one user was unsure if the ‘cancel’ button would discard the question
or dismiss the view. Based on these observations two buttons located on the add question screen had their label
changed. This is illustrated in figure 5.1.

Figure 5.1: Alterations to the question button labels based on feedback.

Two participants found it difficult to locate a file they imported from DropBox. This was mostly due to the
user importing the file whilst the ’User Guide’ tab was selected. Based on this feedback, the import functionality
was modified to automatically present the ’My PDFs’ detailed view when a file was imported.

SUS evaluation
The results of the System Usability Scale are shown in the table below. The application scored 89.78 out of a
possible 100, over 21 points higher than the average score of 68. This implies the application has ‘Excellent’
usability, based on the adjective rating scale, defined by the Journal of Usability Studies [4]. The score is
illustrated on this scale in figure 5.2.

Question Rating Avg Score Contribution
1 I think that I would like to use this application frequently. 4.33 3.33
2 I found this application unnecessarily complex. 1.33 3.67
3 I thought this application was easy to use. 4.75 3.75
4 I think that I would need assistance to be able to use this application. 1.50 3.50
5 I found the various functions in this application were well integrated. 4.75 3.75
6 I thought there was too much inconsistency in this application. 1.67 3.33
7 I would imagine that most people would learn to use this application very quickly. 4.75 3.75
8 I found this application very cumbersome/awkward to use. 1.00 4.00
9 I felt very confident using this application. 4.25 3.25
10 I needed to learn a lot of things before I could get going with this application. 1.42 3.58

SUS Score: 89.78

Figure 5.2: The application received an SUS score of 89.78 denoting ’Excellent usability’.

What would you add to Interactive Presenter?
Participants identified eight additional features for the application. Three of the proposed features had previously
been identified during the requirements capture.

• ‘‘Ability to annotate slides” (FR 17, 18)
• “Text based note support” (FR 13)
• “File synchronisation across devices” (FR 16)
• “Organise saved PDFs into folders”
• “Questions without correct answers”

• “Point to graphs and highlight answers”
• “Audio recording of presentations”
• “Linked with something like Google Hangouts1

or similar app so you wouldn’t need iOS to join”

1Google Hangouts - http://www.google.com/+/learnmore/hangouts/

47

http://www.google.com/+/learnmore/hangouts/

Multiple participants requested the ability to take notes by annotating the documents directly or using a virtual
keyboard. Textual notes support could be implemented using standard Cocoa Touch controls and storing the notes
in the core data model. Document annotation is significantly more complex, as custom controls would need to
be developed. At the time of writing, no open source libraries were available which offered this functionally.
However, it could be implemented by manually tracking gestures and writing them to a PDF file. Unfortunately,
this was considered out of scope for the project due to the time constraints. However, note taking and all other
features will be considered for future versions of the application.

What did you find difficult when using Interactive Presenter?
Half of the participants stated they had no difficulties using the application. One participant declared that they
were confused with the flow of the application at time due to ” a lack of consistency in the names of buttons”.
This issue was directly observed during the ’think aloud’ sessions and has since been rectified (illustrated in
figure 5.1). Others commented that the user guide was fairly large. However, these users also noted that the user
guide was informative and felt that it would only need to be referred to a few times.

When would you imagine using Interactive Presenter?
Participants identified seven environments where they felt the application could be used. Each environment is
listed below with the number of times it was identified.

• Lectures - 8
• Schools (lessons and workshops) - 4
• Small groups (revision and team meetings) - 4
• Business meetings - 2

• Corporate events - 1
• Marketing and Sales - 1
• Training days - 1

As expected, all participants stated the application could be used in a teaching environment. However, par-
ticipants also identified two areas which had not previously been considered: Marketing and Sales, and Training
days. One participant stated the application would be ideal for travelling salesmen as it would allow them to
present material to clients without the need to carry hard copies of presentations.

Would you recommend interactive presenter to somebody who wanted to present?
All participants stated they would recommend the application. This statistic is extremely rewarding as it illus-
trates the success of the application.

5.1.2 University Trial

To assess the application as an educational tool it was used within a lecture at the University of Glasgow and
presented to the engineering manager at Liverpool John Moore University (LJMU)2.

Lecture Trial
The application was tested in a one hour lecture within the Computing Science Department at the University of
Glasgow. Three students and one lecturer participated in this trial. The lecture presented the material using an
iPad 2. Each student was given a different device with the application installed (iPhone 3gs, iPhone 4 and iPad
2). The goal of the trial was to evaluate the networking performance over a long duration and assess the usability
of the application in a real world scenario.

The application worked flawlessly throughout the lecture. Students were able to connect to the broadcast and
obtain the PDF within seconds. Synchronisation between devices was fluid throughout the presentation. The
lecturer made use of all the presenting functionality within the application and students were able to successfully
answer multiple choice questions. Students praised the application and felt the question functionality could add
real value to lecturers. After the presentation the lecture made the following comment:

2LJMU - http://www.ljmu.ac.uk

48

http://www.ljmu.ac.uk

“iPresenter was a very straightforward drop-in replacement for a standard slide show viewer. The UI when
viewing PDF’s is clean and simple, and it was easy to navigate through the slide deck quickly. The automatic
detection of client devices and broadcasting was really neat, and involved no effort on my part whatsoever.
Being able to point and broadcast the pointer to all devices worked nicely. Incoming questions from students
were discreetly displayed but noticeable. Distributing questions was also easy, although I didn’t test this to its
full potential, and being able to instantly reflect the results back to the students was useful and easy to do.”

University Feedback
The application was demonstrated to Paul Wright an Engineering Manager at LJMU. Feedback was extremely
positive:

“After describing this app to some of the staff in the school of engineering, it received very complementary
comments and a number of them saw an immediate use for this App. They were interested in using it in tutorial
groups and liked the way the master device could send out questions to other devices, allowing them to reflect on
their own teaching. They asked about its availability. The app was also described to our schools formula student
team (LJMU Racingteam3), they saw its potential and asked about its availability for them to use in their three
presentations at the 2013 Formula Student competitions in Silverstone, Hockenheim and China. They see that
the being able to link devices will allow them to provide more interactive presentations to the judges.”

5.2 Performance Testing

During the implementation of the project the application was frequently tested on different devices to judge
performance. Although no problems were observed, the application was analysed using the ’Instruments’4 tool
to obtain numerical performance values. The applications CPU usage, outgoing network usage and memory
usage was analysed when presenting a PDF on an iPad 2, to four viewers.

(a) Outgoing network and CPU usage (b) Memory usage

Figure 5.3: Different performance testing metrics

Figure 5.3a illustrates the network usage and CPU usage when presenting a document. The network usage
peaked at 724 kilobytes per second (KBps), when transmitting the PDF to a viewer. Once all users had connected
the outgoing network usage was minimal, even when navigating around the document. The network usage
increased to 4KBps when the laser pointer was used, well within the networks capacity. The number of outgoing
bytes per second will increase in correlation to the number of viewers; however, as the usage is minimal, there
should be no apparent latency issues when a large number of viewers are connected to a presentation.
CPU usage peaked at 36% when zooming in on the document and using the laser pointer. This CPU usage is
likely to be related to updating the display. There was also an apparent CPU spike when splitting the PDF into
packets and transmitting it to viewers (34% CPU usage). Throughout the test, the average CPU load was 12%.
This low CPU usage implies that the application will perform well on the original iPad, which has an inferior
CPU (approximately 65% slower[3]).
Figure 5.3b illustrates the memory usage of the application during the same test. The application used around 2
Megabyte (MB) of memory when displaying the home screen. This increased to just over 5MB when a 2.3MB
PDF was opened and transmitted to viewers. During the presentation the memory usage remained consistent at
5MB, and no memory leaks were observed. As all devices capable of running the iOS 5 have at least 256MB of
memory, there should be no issues when running the application.

3Formula Student is the Europe’s biggest educational motorsport event - http://www.ljmu.ac.uk/racingteam
4Instruments is a performance, analysis, and testing tool for dynamically tracing and profiling iOS code - http://developer.

apple.com/library/ios/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/

49

http://www.ljmu.ac.uk/racingteam
http://developer.apple.com/library/ios/##documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/
http://developer.apple.com/library/ios/##documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/

Chapter 6

Conclusion

6.1 Summary

The aim of this project was to develop a tool that allows presentations to be conducted in an interactive way using
mobile devices, without any additional hardware or configuration. After two cycles of implementation and three
usability evaluations, the author is confident that the finished product has met all the high priority requirements
identified in Chapter 2. User feedback was extremely positive during the usability tests described in Chapter 5.
Several individuals and departments have shown strong interest in the product and are eager for the application to
be released. As no defects were identified during the final evaluation, the author plans to release the application
into the iOS AppStore in summer 2013.

6.2 Future Development

Once the application has been released, the author will continue to develop the application to incorporate ad-
ditional features into future releases. Several additional features were identified by potential users during the
usability test (Chapter 5, section 5.1), six of which are listed below:

• Annotation support

• File synchronisation across devices

• PDF folder management

• Additional question types

• Audio recording of presentations

• Other platform support

These features were not in the scope of the original project, however; they are likely to be included in future
versions of the application.

6.3 Lessons Learnt

Throughout the project the author has become increasingly competent in developing applications for the iOS plat-
form. Creating a universal app which provides the same functionality to all devices proved an exciting challenge,
resulting in a deep understanding of iOS application design. During the implementation phase, the author has be-
come a proficient iOS developer with a strong understanding of the Cocoa Touch framework and the Objective-C
language. As the application involved a substantial amount of networking code, a solid understanding of the
fundamental concepts in networked systems architecture has also been gained.

50

Bibliography

[1] Idea flight technical approach. http://www.ideaflight.com/2011/06/technical-
approach/.

[2] iOS Version Statistics. http://david-smith.org/iosversionstats/. Online; accessed
5/3/2013.

[3] Early ipad 2 apple a5 benchmarks. http://www.iosnoops.com/2011/03/12/early-ipad-
2-apple-a5-benchmarks-up-to-65-percent-faster-than-ipad-apple-a4/, 2011.
Online; accessed 1/3/2013.

[4] Aaron Bangor, Philip Kortum, James Miller. Determining what individual sus scores mean: Adding an
adjective rating scale. JUS — Journal of Usability Studies, 4:114–123, May 2009.

[5] Sumikawa D. Blattner, M. and R. Greenberg. Earcons and icons: Their structure and common design
principles. Human Computer Interaction. 1989.

[6] John Brooke. Sus - a quick and dirty usability scale. 1986.

[7] Citrix. Enterprise mobility cloud report. http://citrix.com/content/dam/citrix/en_us/
documents/products/q4_enterprise_mobility_cloud_report.pdf, Q4 2012. Online;
accessed 15/3/2013.

[8] Joe Conway and Aaron Hillegass. iOS Programming: The Big Nerd Ranch Guide (Big Nerd Ranch Guides).
Big Nerd Ranch Guides, 3 edition, 3 2012.

[9] Tim Cook. Apple worldwide developer conference. http://techcrunch.com/2012/10/
23/tim-cook-apple-has-sold-100m-ipads-in-just-two-and-a-half-years/, 10
2012. Online; accessed 15/3/2013.

[10] S. Draper, J. Cargill, and Q. Cutts. Electronically enhanced classroom interaction. Australian journal of
educational technology, 18(1):13–23, 2002.

[11] Darrell Etherington. ios app store boasts 700k apps, 90 http://techcrunch.com/2012/09/12/
ios-app-store-boasts-700k-apps-90-downloaded-every-month/. Online; accessed
19/03/2013.

[12] Gartner. Gartner says worldwide mobile phone sales declined 1.7 percent in 2012. http://www.
gartner.com/newsroom/id/2335616, 02 2013. Online; accessed 10/3/2013.

[13] Stephen W. Draper and Margaret I. Brown. Use of the prs (personal response system) handsets at glasgow
university. http://www.psy.gla.ac.uk/

[14] Thomas S. Tullis and Jacqueline N. Stetson. A comparison of questionnaires for assessing website usability.
2004.

51

http://www.ideaflight.com/2011/06/technical-approach/
http://www.ideaflight.com/2011/06/technical-approach/
http://david-smith.org/iosversionstats/
http://www.iosnoops.com/2011/03/12/early-ipad-2-apple-a5-benchmarks-up-to-65-percent-faster-than-ipad-apple-a4/
http://www.iosnoops.com/2011/03/12/early-ipad-2-apple-a5-benchmarks-up-to-65-percent-faster-than-ipad-apple-a4/
http://citrix.com/content/dam/citrix/en_us/documents/products/q4_enterprise_mobility_cloud_report.pdf
http://citrix.com/content/dam/citrix/en_us/documents/products/q4_enterprise_mobility_cloud_report.pdf
http://techcrunch.com/2012/10/23/tim-cook-apple-has-sold-100m-ipads-in-just-two-and-a-half-years/
http://techcrunch.com/2012/10/23/tim-cook-apple-has-sold-100m-ipads-in-just-two-and-a-half-years/
http://techcrunch.com/2012/09/12/ios-app-store-boasts-700k-apps-90-downloaded-every-month/
http://techcrunch.com/2012/09/12/ios-app-store-boasts-700k-apps-90-downloaded-every-month/
http://www.gartner.com/newsroom/id/2335616
http://www.gartner.com/newsroom/id/2335616

[15] Vicki Simpson and Martin Oliver. Electronic voting systems for lectures then and now: A comparison of re-
search and practice. http://ascilite.org.au/ajet/ajet23/simpson.html, 2007. Online;
accessed 10/3/2013.

52

http://ascilite.org.au/ajet/ajet23/simpson.html

Appendices

53

Appendix A

User Guide

54

55

56

57

Appendix B

iOS

Introduction

iOS is a mobile operating systems developed and distributed by Apple 1. iOS was previously known as iPhone
OS when it was originally released in 2007 for the iPhone and iPod Touch under. Since it’s launch it has been
extended to support two other Apple devices: the iPad and Apple TV. Unlike other major mobile operating
systems, Apple does not licence out iOS to third party manufactures. This allows the iOS operating system to
be tightly integrated with the hardware to improve performance. Initially it was not possible for developers to
write native application for iOS. Apple released an official software development kit (SDK) alongside iOS 2.0,
allowing the development of third party applications. Applications can only be officially distributed through the
Apple AppStore. As of September 12, 2012, the store contained over 700,000 applications, making it the largest
mobile ecosystem. Developers can currently build applications for two different form factors: mobile (iPhone
and iPod touch) and tablet (iPad).

Figure B.1: Devices capable of running iOS 5

As Apple has total control over the hardware and software, iOS updates can be released to devices in a timely
manor. Apple tends to provide each device at least two major software updates, resulting in an ecosystem with
minimal fragmentation. This streamlines the application development process, as developers need not worry
about supporting hundreds of different devices running different versions of the operating system - a common
problem in other mobile operating systems such as Android.

There have been six major releases of the operating system, with the latest named iOS 6. Each major release
includes a significant number of new user features and hundreds of new APIs. With the released of iOS 5 Apple

1Apple Inc. - http://www.apple.com/uk/

58

http://www.apple.com/uk/

improved the LLVM 2 compiler, adding support for automatic reference counting (ARC). ARC combines the
simplicity of garbage collection with the efficiency of manual memory management. The compiler achieves this
by automatically inserting the necessary memory management calls at compile time. Figure B.1 shows all the
devices which are capable of running iOS 5. Due to the limited screen real-estate on many of these devices,
animation is used frequently to give context to actions. The SDK exposes multiple APIs, allowing developers to
use animations in their applications.

Development

This section gives an insight into iOS development and explains the most common iOS design patterns.

Objective-C

iOS applications are written in the Objective-C language using the Cocoa Touch library. Objective-C is an object
orientated extension to the C language. All C syntax and functions can be used in Objective-C files. Coca Touch
is a UI framework created by Apple. It acts as layer of abstraction to lower levels of the system, providing 3
main features: Animation, Multitasking and Gesture recognisers.

Development Tools

The iOS SDK comes bundled with a suite of software developments tools for OS X (Apple’s desktop OS)
developed by Apple. These tools are used to develop software for iOS and OSX . The main application in this
suite is Xcode - an integrated development environment (IDE). This tool helps developers write/debug code and
create user interfaces with interface builder (built into Xcode). Applications can be deployed to devices for
testing or the built in iOS simulator can be used.
Instruments is also included in the suite. Instruments is a performance analyser and visualise. This tool make it
possible to monitor CPU usage and Memory allocations in real-time.

(a) Xcode IDE (b) iOS Simulator (c) Instruments analysing tool

Figure B.2: The Xcode development tools package

Design Patterns

Model-View-Controller
The Model-View-Controller (MVC) design pattern assigns objects in an application one of three roles: model,
view, or controller. This enhances the reusability of objects as views are not directly coupled to specific data
models. Figure B.3a gives a visual representation of the MVC.

2LLVM is a compiler infrastructure written in C++; it is designed for compile-time, link-time, run-time, and ”idle-time” optimisation
of programs written in arbitrary programming languages.

59

Model objects hold data specific to the application and often contain methods that can manipulate and process
the data. Model objects do not directly communicate with view objects, instead its data is made available to
controller objects.
View objects present information stored in model objects to the user. This information is not accessed directly.
Instead controller objects are used as a mediator, instructing view objects of changes in model objects. When
users interact with view objects a message is sent to the controller to notify it of any updates.
Controller objects manage the communication between view objects and model objects. When users interaction
with view objects, controller objects interpret these actions and communicate new or changed data to the relevant
model objects.

Delegation
Delegation is a simple and powerful pattern in which one object hands over a task to another object. The delegat-
ing objects maintains a reference to the other object (known as the delegate) and send messages to it whenever
appropriate. The delegate may respond to a message call by updating it’s state or appearance and can return a
value to it’s caller.

An example of an object which makes use of delegation is the UITableView class (part of the Cocoa Touch
framework) is illustrated in figure B.3b. A TableView frequently sends messages to its delegate to inform it of
events or to request information. Figure B.3b illustrates two of these messages.

HeightForRowAtIndex is an example of a message where a return value is sent back to it’s caller. It allows
the delegate to specify the height of a given cell in the table

DidSelectRowAtIndex is an example of a method call with no return value. The delegate often responds to
this message by updating the current view or pushing a new view onto the screen.

The main value of delegation is that it allows an object to be customised by another object, without editing
the original objects code and without subclassing it. It is also possible for a single object to be a delegate to
multiple other objects.

(a) Modal-View-Controller design pattern [8] (b) TableView delegation example

Figure B.3: Common iOS design patterns

60

Appendix C

Application files

This appendix describes the Libraries used and some of the key classes within the application.

C.1 Libraries Used

Library Purpose License
GMGridView Grid view which supports iOS 4 +. MIT Open Source
VFR PDF Document Viewer MIT Open Source
BlockAlert Customisable Alert View MIT Open Source
JSNotifier Simple notifications Apache 2.0.
hline SVProgressHUD Lightweight progress HUD MIT Open Source
FilePicker Online cloud service integration MIT Open Source
AFImageViewer iOS image viewer using UIScrollView

and UIPageControll
MIT Open Source

ACFileTransfer Class to split up files into packets. Apache 2.0
GrowingTextView UITextView which grows/shrinks with

the text
MIT Open Source

MKNumberBadge A view that replicates and extends the
number badge UI element in iOS

Apache 2.0.

SDSegmentedControl A drop-in replacement for UISegment-
edControl that mimic iOS 6 AppStore
tab controls

MIT Open Source

61

C.2 Main View Controllers

View Controller Description
IPCustomNavigationVC Manages iPad view hierarchy and provides custom navigation bar.
BCArrowTabBarVC Customised TabBar controller which includes an animated tab selected

indictor. Used on iPhone.
IPMyFilesVC Displays documents in a grid to users. Accessible from ’My PDFs’ tab.
IPLivePDFsVC Displays live presentations to user. Controls UI to connect to a presen-

tation.
IPInviteFriendVC iPhone view controller to allow users to invite friends via SMS or Email.
IPInviteFriendGridVC iPad view controller to allow users to invite friends.
IPUserGuideVC Controls the display and interaction with the User Guide.
IPPDFVC Displays PDF and controls all user interaction (page change, zoom, pan

and laser). Communicates with the network to communicate with other
devices. Presents many other views during a presentation. Allows inter-
action to be locked as needed.

IPBroadcastSetupVC Allows users to setup and start a broadcast. Allows passcode to be set.
IPQuestionListVC Displays list of questions attached to a presentation. Allows presenters

to add or select a question.
IPVAddViewQuestionVC Manages adding or displaying of questions attached to a presentation.

Allows presenters to add or send a question.
IPQuestionSendingVC Displays results to a question sent out to the audience. Allows answer

or results to be sent to audience.
IPQuestionRecivedVC Displays on a viewers device when they receive a question. Allows an

answer to be submitted.
IPResultsVC Displays answer and results for a question to a viewer. Presented when

the presenter reveals the results.
IPAnswerVC Displays answer for a question to a viewer. Presented when the presenter

reveals the answer.
IPUserRaisedQuestionVC Allows viewers to send questions to the presenter. Users can input a

question, select a slide number and state if they would like to remain
anonymous.

IPSlideSelectTableVC Manages a list of slides allowing a viewer to select a slide when sending
a question.

IPBroadcastViewersVC Allows presenter to see a list of viewers. Provides access to any ques-
tions raised by viewers.

IPViewerQuestionListVC Manages a list of questions from a single viewer.
IPViewerSpecificQuestionDetailsVC Displays details of a single question from a viewer. Allows presenter to

navigate to navigate to the question page number, and allows presenter
to mark it as answered.

62

C.3 Networking Classes

Class Name Description
IPSearchingPresentationClient Automatically searches for active presentations when the app is launched.

Allows connections to be established to a presenter. Re-assembles the PDF
received from the presenter.

IPBroadcast Presenters a presenter or viewer in the live presentation broadcast. Provides
all the methods to interact between devices. Communicates with PDF VC to
receive actions and to update the UI.

IPViewer Represents a viewer. Includes peer ID, display name and list of questions.
IPPacket Base type for all packets. Acts a factory to generate concrete packets. In-

cludes methods to append the header to all packets and to convert a packet
of raw data back into a concrete packet.

IPPackerPageChange A packet sent from a presenter to viewers containing the page number. Gen-
erated when presenter changes page.

IPPacketScrollZoom A packet sent from a presenter to viewers containing the visible rectangle of
document. Generated when presenter zooms or pans around a page.

IPPacketLaserPointer A packet sent from a presenter to viewers containing the position of laser
pointer. The point is relative to the document so it will display in the same
place on all devices.

IPPacketClientReady A packet sent from a viewer to the presenter to indicate they are ready to re-
ceive action packets. When the presenter receives this packet it automatically
sends the current state to ensure everything is synchronised.

IPPacketQuestion A packet sent from a presenter to viewers containing a question and possible
answers. Generated when the presenter sends out a question.

IPPacketViewerAnswer A packet sent from a viewer to a presenter containing the questions and an-
swer. Generated when a viewer submits an answer to a questions.

IPPacketRevealAnswer A packet sent from a presenter to viewers containing a questions and correct
answer. Generated when a presenter reveals an answer to a question.

IPPacketRevealResults A packet sent from a presenter to viewers containing a question, possible
answers, correct answer and audiences results. Generated when a presenters
shares the results to a question.

IPPacketPasscodeRequest A packet sent from a presenter containing an encrypted passcode. This
packet is generated when a presentation is passcode secured and a viewer
tries to join.

IPPacketPasscodeVerified A packet sent from a viewer to presenter to indicate that the passcode has
been successfully verified. This starts the PDF transfer process.

IPPacketUserQuestion A packet sent from a viewer to the presenter when they have a question. The
packet includes the question, page number and an anonymous boolean value.

IPPacketNavigationLock A packet sent from a presenter to viewers when the navigation lock state is
changed. The packet includes a state boolean value and the page number so
viewers can return the the presenters page when the navigation is locked.

IPPacketCanSavePDF A packet sent to viewers from the presenter. This packet indicates if a viewer
can save the PDF at the end of the presentation.

63

C.4 Miscellaneous

Class Name Description
BCBarChart Custom UIView which draws an elegant colourful bar chart. Used to visualise audi-

ences responses to questions. Can be used in any other project.
BCUtility Includes several static utility methods for managing files within the sandbox, manip-

ulating images, escaping strings and encrypting strings.
TPConstants Includes common macros and application constants such as frames, strings and

colours. This file is automatically imported into all classes in the application.

C.5 Visual representation of key View Controllers

64

Fi
gu

re
C

.1
:M

aj
or

vi
ew

s
ac

ce
ss

ib
le

w
he

n
pr

es
en

tin
g

65

Fi
gu

re
C

.2
:M

aj
or

vi
ew

s
ac

ce
ss

ib
le

w
he

n
vi

ew
in

g
a

pr
es

en
ta

tio
n

66

Appendix D

Full Size Storyboards

This appendix includes three large storyboards to accompany section 3.1.5 on page 11.

67

Fi
gu

re
D

.1
:P

er
so

na
lu

se
sc

en
ar

io

68

Fi
gu

re
D

.2
:A

ca
de

m
ic

us
e

sc
en

ar
io

69

Fi
gu

re
D

.3
:B

us
in

es
s

us
e

sc
en

ar
io

70

Appendix E

Requirements Survey

71

���������	�
���������

������
���

�
�
��

����� �

����� �

����� �

����	� �

����� �

����� �

����	� �

��
�� �

����� �

����� �

����� �

�
���� ��

��
�� �

����������������������������
��������� !"�������#����$��%

&����'��(��)*�$$��(�

�� ��� ��� ��� ��� ����

�����
������
���� ����!

�����
������
�

�����
������
�
"

�����
������
�

�����
������
�
"

�����
������
#

�����
���$
���� ����!

�����
���$
�

�����
���$
�
�������
$�����%!

�����
���$
&�'��
� ��
�

(!

�����
���$
&�'��
� ��
�

��
�!

��$���$
�����

��$���$
&�����

&$$���+���� �'����"�%

&$$���+������

&$$���+������)

&$$���+����

&$$���+����
)

&$$���+�����

&$$���+"� �'����"�%

&$$���+"��

&$$���+"�� '����"���$�"�%

&$$���+��,���� ����-%

&$$���+��,���� �����'�%

&��'���+����

&��'���,".���

&����
)�����$����*
&����
)�����$����*
����

���+��
,������)��������

���������	�
���������

������
���

�
�
��

����� �

������ #

���/�� �

���/�� �

��0�����"��"�&$$���1)������2
������'�3�������"''���������
������������"����������� ��

����"��#�'���"�����1)������2
������"''�"���"����������#

�������%

&����'��(��)*�$$��(��

�� ��� ��� ��� ��� ����

-��.
��+�%�

-��.
/���
�0
���
��/�

-��.
�����������%
��$
+���
�111

2�.
��	��

4��2"��"��

4��2#����������#�

4��2���"����"���"������0*���0������

5�2����'

&����&���� �3�3

���+��
,������)��������

���������	�
���������

������
���

�
�
��

������ �3

��
�� �

��6����������"�"$$���'���'
�������

&����'��(��)*�$$��(�

�� ��� ��� ��� ��� ����

-��

2�

4��

5�

&����&���� ����

4����
�������
�����0%!
4����
�������
�����0%!
��

�
�
!!

7 1���' $��"���$�����% 6"��

 &����
���
��
���������1

���+��
,������)��������

���������	�
���������

������
���

�
�
��

/����� ��

	� �

�
���� ��

����� �

�
�������������������
�"����'���������"�������

&����'��(��)*�$$��(�

�� ��� ��� ��� ��� ����

5��	�����%
"�'$���

"�����
"�'$���

��
6/���%/���

4����
�������
�����0%!

8����'����)������

)�����)������

0�9#$���#���

4����
�������
�����0%!

&����
)�����$����*
&����
)�����$����*
����

7 1���' $��"���$�����% 6"��

� 7������$.
'�����
��
+��8 ����������
�*�#
��

� '��/���%�$
 ��$'��� ����������
�*#�
��

���+��
,������)��������

���������	�
���������

������
���

#
�
��

��� �

/�� ��

��:"��������'��������'"�����
�������"����������$'���������

&����'��(��)*�$$��(�

�� ��� ��� ��� ��� ����

-��

2�

4��

5�

&����&���� ����

���+��
,������)��������

���������	�
���������

������
���

�
�
��

�������0���'"�����;�����
)����#��"�����������$'������

&����'��(
)*�$$��(�	

7 <��$����� 6"��

� ����	�
�������
	����
��$�1 ����3�����
3*��
��

� ����	
������� ����������
�*�3
��

� &��
,"��
��� ����������
�*��
��

� "/�������
"����� ����������
��*��
��

���������	�
���������

������
���

�
�
��

����/� �

����/� �

�
���� �

����/� �

�/:�������������"'��"'��"*�
������$.���'����$'�����"�����

&����'��(/)*�$$��(�/

�� ��� ��� ��� ��� ����

�

�
/��'���

�

#
/��'���

���
/��'���

��
(
/��'���

	=�#������

�=�#������

�=�	#������

��-#������

&����&���� ��

���+��
,������)��������

���������	�
���������

������
���

�
�
��

����� �

�
���� �

����� �

	� �

��:������"$$'�>�#"���������
�"*�"�������'��3������������'
$'�����"���� ��������������#���
���*�����*��������������"'���

���'$'�����"����%�

&����'��(/)*�$$��(�/

�� ��� ��� ��� ��� ����

�

�
/��'���

�

#
/��'���

���
/��'���

��
(
/��'���

	=�#������

�=�#������

�=�	#������

��-#������

&����&���� ��

���+��
,������)��������

���������	�
���������

������
���

3
�
��

��6��������������������'"�����
�����������#���$�����'"�������

.���#�#�'����"��������
$'�����"����?#������?�����'��

&����'��(/)*�$$��(�/

� � � � � #

���
�����!

 ���".��% 	�
�

����/�
�

�����
�

����/�
�

�

�1��

 ,���
"$$�"'��
�������"���

0�"$$�"'��
���"����
$��������'
���"����
������

,���
"$$�"'��
��#���"�
#�'�
���"���

,���
"$$�"'��
#���#�'�
��"���

&���� �	��� �
)����

���������	�
���������

������
���

��
�
��

��	6����������������
����'"������"���������$�����'

"�������������'��"�������������
��$���

&����'��(/)*�$$��(�/

� � � � � #

���
�����!

 ���".��% 	�
�

�/��
�
�

����/�
�

�
����
�

�

�1#�

 0�"$$�"'��
��#"*����
��$���"'��'
��
����'��"��

0��"���
$��������'
���"����
������

0�"$$�"'��
�����$���#
��#���"���
����'��"�����
�����$��

0�"$$�"'��
�����$���#
�'�"�����
����'��"�����
�����$��

&���� �	��� �
)����

���������	�
���������

������
���

��
�
��

/��
�� #

����� �

����� �

/��
�� #

�����"����������*�����.�
�#$'����� !"�������#����$��%

&����'��(/)*�$$��(�/

�� ��� ��� ��� ��� ����

9'������
"��'�
&�/�

:��$+���
"��'�
&�/�

:��$���
�����0���

,���

��������)��=�$,�#�

:"'��"'�)���$,�#�

:"�����0���'�"��

!���

&����
)�����$����*
&����
)�����$����*
��

4����
�������
�����0%!
4����
�������
�����0%!
��

�
�
!!

7 1���' $��"���$�����% 6"��

� �
0���
����
���
���$����
���
��/���/��
����
��
�
��%
��
�
 �/��81
&��%
$�
��	�
����
	��'�
�'�
��
���

��
����
��
��/�
�'����
+��
;'��
+���
�
< �/�<
������$
�0
�
������1

����3�����
3*��
��

���+��
,������)��������

���������	�
���������

������
���

��
�
��

//�
�� ��

������ �

���:"��������'��������'"�����
�������"����������;09�05@"

$'�����"�����'��"#�������

&����'��(��)*�$$��(�

�� ��� ��� ��� ��� ����

-��

2�

4��

5�

&����&���� ����

���+��
,������)��������

���������	�
���������

������
���

��
�
��

���6����������������
����'"������"��������$�������

.���#�#�'����"��������
$'�����"����?#������?�����'��

&����'��(�
)*�$$��(�	

� � � � � #

���
�����!

 ���".��%
��/�
�

��/�
�

������
��

������
�

��

�1��

 0��������
���"���

0��"���
$��������'
���"����
������

0����
��#���"�
#�'�
���"���

0����#���
#�'�
���"���

&���� �	��� �
)����

���������	�
���������

������
���

��
�
��

��
6����������������
����'"������"��������$�������

����'��"������������$���

&����'��(�
)*�$$��(�	

� � � � � #

���
�����!

 ���".��%
��/�
�

�����
��

����/�
�

�	����
#

��

�1��

 0�#"�����
��$���"'��'
��
����'��"���

0��"���
$��������'
���"����
������

0����$��#�
��#���"���
����'��"�����
�����$��

0����$��#�
�'�"�����
����'��"�����
�����$��

&���� �	��� �
)����

���������	�
���������

������
���

�#
�
��

������ ��

���/� �

�����������.��$���������"
�����������#"�";09�9<��"

$'�����"����?#�������

&����'��(�)*�$$��(

�� ��� ��� ��� ��� ����

-��

2�.
����'��

4��

2�.
����'��

&����&���� ����

7 5�2.��"��� 6"��

� �
�������%
$��=�
���
��+
����
���
��
������
����
���8��
��
������1 ����������
�*��
��

� ��=�
;'��
�
 �//��81 ����������
�*��
��

���+��
,������)��������

���������	�
���������

������
���

��
�
��

������ ��

���/� �

�����������.��$���������"
�����������#����A9&605@"

$'�����"����?#�������

&����'��(�)*�$$��(

�� ��� ��� ��� ��� ����

-��

2�.
����'��

4��

2�.
����'��

&����&���� ����

7 5�2.��"��� 6"��

� "��
���	� ����������
�*��
��

� ��
�$$�
������
�0
	��'�.
��$
+�����
�
���
�0
��/�1 ����������
�*��
��

���+��
,������)��������

Appendix F

User Feedback and Refinement Survey

88

���������	�
���������

�������
����

�
�
��

�� �

������ �

�� �

�� �

�	��
� �

������ �

�	��
� �

�	��
� �

����������������������������������
����������������

����� ��!��� "#�����!��

�� ��� ��� ��� ��� ����

�����
������
��

�����
������
�

�����
������
�

�����
������
!

�����
���"
#��������$

�����
���"
�

�����
���"
�
#������
"�����%$

�����
���"
�����
#���
�

&$

�������$�����%&�"

�������$�����	

�������$�����	�"

�������$������

�������$���'� �&����(

�������$����

�������$���%�' �������������(

�������$���)�����'&���%�*(

���������� ''

���(��
)������ *��������

���������	�
���������

�������
����

�
�
��

�������������������#��+��������
���� +�����+�����������������

����� ��!��� "#�����!��

+�" ���� ����,�����
%

-��" ./�������

��0���
#�$

!'0���
#�$

'�����,��(��
�

��
�

��
�

	���-�
�

����	�
�

'

�0!'

� .�� $�� "����+���� � /��� 01������� ����� �	�����

*�����

���������	�
���������

�������
����

�
�
��

�%����������������#�������,�
�2� ���������������� +����

����� ��!��� "#�����!��

3 4�������� 5���

� 1��������
��"
"�,,�����
������2
��
�����������0
3�
��
������
���(���"
���
������
4�	�0
3�
%��

���
��(
4��%
������
��	�
�����"%
���(���"0
5��
����"
���
��(
4��%
������
���
�����
��0
�
��4�

�����
,��
6��������0

��7�����
'8��
�9

� ������:
4���
,�������
����;��
��
4�:�
��
4���
����������
(���
������
�����,���
��"
��
��"���
<������

�,,����
��
��������
�,
���
���"

����������
��8!�
�9

� �������
��"
�4����
���
�4�����
����
=���
-��"�

�,
���
���
��
��
�������	�
"���
����
���"�
�����%

���"
����
�
�����
;�����>

����������
78��
�9

� ?��
����0 ���7�����
'8��
�9

! 4������4���
"�������
���
��4������2
��������%
���:�
���
��4����
��
���
�����
,��������
;���(>
���

�����������
�,
���
;������

"�,�����
���
,��������
��
����
4�%
����0
�������
���
����
���"�
��
���

����
��������%>
.	������
��%��
�����
������
��
���������
���
,��������
�0�
8
;���"����

�������

6�������

���'�����
�8��
�9

� .	��%���
��
;�
�;��
��
�������������
�������2
��
%��
���
���������
��
�����6�������
��
���

���������0

���'�����
�8��
�9

' ���
@��	�
���
;���"����
;������
�����"
;�
������
��
����� ���'�����
�8��
�9

���������	�
���������

�������
����

�
�
��

�	����������������+���� ���������
����#��������,���2���2������

'������� ��#�����+���� ���,��������
��&����(

����� ��!��� "#�����!��

� � � 7 �� �!

����(
���������
��
���:������000

����(
����
��"�"

6��������
000

����(
����������
��

�""000

����(
	��(���
��
��	�
���

�",000

����(
������4��
��

;�
���

.��;��
#�)���"$

�%�����000

����(
	��(���
��
�����

6��������
000

����(�
�A��
��
;�
;������

����
���
�000

?���
��:���
	��
:�%;���"

 ������
;����
���"�

��������
;000

!0��

!0��

!0�7

'0��

�0'�

�0��

�0��

�0��

�

!

�����
� ������
��
���#6�����#
���
����� �
�� ���
'�������&
� ������ �
��
���� �
����
����� �
� �
��
���
�� ���
�����(�

��
�

�	��
�
�

������
�

�	��
�
�

��
�

��
�

������
�

��
�

��
�

�	��
�
�

'

!0��

�����
����
�����
7��������
���,�
����
���
'��� �
��� �
���
����
��1�
,����
 ������(�

��
�

��
�

��
�

����	�
�

�	��
�
�

�	��
�
�

��
�

��
�

�	��
�
�

��
�

'

!0��

� � � % 	 � - � �
 �� ����� �	�����

*��:���

���������	�
���������

�������
����

'
�
��

����������� �+���� ����&&��������

����� ��!�-� "#�����!��

3 4�������� 5���

�)���"
��
;�
�����;��
,��
���
	��(���
��
����
���������
������
�,
���%
(���
��:���
�
6�������0 ��7�����
'8��
�9

� �4�
4���
���4�����
�,,����
(���
�
����
"�	���
��������
��
�����
���
�������������0 ����������
��8!�
�9

� B�	�
��4�
����%����
,�������
��
�"4���
���
���
(��
���
	��(�"
��"
��	�"
���
���"��

����"
;�

���"
��
�������
�����"����

����������
78��
�9

� ?��
����0 ���7�����
'8��
�9

! 9���
�����������
;��(���
���
����
��"
���������0
�;����%
,��
��	����
����������
��
��4;���

4�������>
��
��
��
�
������������
�,
��4����
���"
C�
��	�
�
"���4���
����
���:�
��
����C
��
C(���

�;���
��������
;%
����
��"
����C2
4�:���
��
4���
�����"
����
���������
	�
����0

���'�����
�8��
�9

� ����������������
��4�
"�����%�"
��
�A��
����(
	��(���
��
��������
���"�
(���
��44���"

�������
��"��
,��
�	����
(���
"�,,�����
����:���

���'�����
�8��
�9

���������	�
���������

�������
����

�
�
��

�-�A���+������������������������ ��
������ ��������

����� ��!��� "#�����!��

� � � � � !

#��
��;��$

'�����,��(�	��
�
�

������
�

��
�

��
�

��
�

'

�0��

� �� ��+��� +��� ��� �&� ���� �� ������ ����� �	�����

*�����

���������	�
���������

�������
����

7
�
��

�����������������#��,�����,�������
������������

����� ��!��� "#�����!��

3 4�������� 5���

� B�����������
����0
�����;����%
��
��:
6��������0 ��7�����
'8��
�9

� D�����
��%���
��"
,���

,���
��:�
�
�����%
����
�%;��"
,���������
������������
����
��"
4���E���
���0

�&
<�;

����������
��8!�
�9

� ,���2
��������	�
��"
���,��0
F���"
;�
�,
;���,��
��"
(���"
4���
������
����"��
���"
����"
��
���

���"��0
���
6��������
,������
(��
4%
,�	������

��
��
4���
;�����
����
�����
�������
���"����
,��

6��EE��

����������
78��
�9

� �������
��
���
;���"�������
"�	���
���
���������"
��
���
�����
"�	����0
���
�������
��
���������%

���,��
��
����
�������0

���7�����
'8��
�9

! 1�������
,������2
��4�	��
���
����4�
,��4
�������������0
���
E��4
,������
��"
�����
�������

�����0

���'�����
�8��
�9

� B�	���
��
;�
��
���
��4�
���"�
��
���
���������2
�
,��"
����
	��%
���,��0 ���'�����
�8��
�9

' �4���
�����,��� ���'�����
�8��
�9

���������	�
���������

�������
����

��
�
��

������������������#�������,�
�2� ����������������������������'��&
��������+�����������&����+����&�(

����� ��!�-� "#�����!��

3 4�������� 5���

� @��:���
�,
���"��0
9�:���
%���
�(�
�����������
����
����"
;�
��	�"0 ��7�����
'8��
�9

� ���
���������	�
���������
;�����
���
��,�
��
���
������������
4���
����;��0 ����������
��8!�
�9

�)������
���
���
��
4�������:
(��
��
�����

����
�����"
;�
,�/�"0 ����������
78��
�9

� ����(
���
����
��
��	�
���
�",
��"
�����
6��������0 ���7�����
'8��
�9

! ?�0 ���'�����
�8��
�9

� �������
"�����
,��
(���
���:
�,
��� ���'�����
�8��
�9

Appendix G

Code listings

1 − (void)showLaserPointerAtAbsolutePoint :(CGPoint)point{
2 point .y−=50; // so above finger
3 if (! self . laserPointerImageView) { // lazy loading − showing for first time
4 UIImage ∗image = [UIImage imageNamed:@”laserPointer.png”];
5 self . laserPointerImageView = [[UIImageView alloc] initWithImage :image] ;
6 int imageWidthHeight = deviceIsIpad () ? image. size .width : image. size .width /2; // use smaller laser for iPhone
7 self . laserPointerImageView .frame = CGRectMake(point.x− image.size.width/2, point .y, imageWidthHeight, imageWidthHeight);
8 self . laserPointerImageView . alpha=0.8;
9 [self .view addSubview:self . laserPointerImageView];

10 } else if (self . laserPointerImageView . alpha==0.0){ // laser reappearing
11 self . laserPointerImageView . alpha=0.8; // allow the document content to partly show behind the laser
12 [self . laserPointerImageView setFrame:newFrame];
13 } ...

Figure G.1: Method invoked by the long tap gesture recogniser to display the laser point

1 + (PDF ∗) PDFWithStringPath:(NSString ∗)path inManagedObjectContext:(NSManagedObjectContext ∗) context{
2 PDF ∗pdf = nil ;
3 NSFetchRequest ∗request = [NSFetchRequest fetchRequestWithEntityName:@”PDF”]; // first check if PDF already exists
4 request . predicate = [NSPredicate predicateWithFormat :@”filePath = %@”, path];
5 request . sortDescriptors = [NSArray arrayWithObject:[NSSortDescriptor sortDescriptorWithKey :@”title” ascending:YES]];
6 NSArray ∗matches = [context executeFetchRequest : request error :NULL];
7 if (!matches || [matches count]>1){ // some error .. db can not be accessed or there is more than 1 match }
8 else if ([matches count] ==0){ // add PDF to database
9 pdf = [NSEntityDescription insertNewObjectForEntityForName:@”PDF” inManagedObjectContext:context]; // add to database

10 pdf . filePath = path ; // set path on entity in database
11 pdf . title = [[path lastPathComponent] stringByDeletingPathExtension]; // set title on entity in database
12 ...
13 }

Figure G.2: Method to insert a PDF into the data model. This method is implemented in the PDF+Path category

97

1 − (void)drawRect:(CGRect)rect{ // BCBarChart Drawing code
2 [self calculate];
3 float rectWidth = (float) (rect . size .width−(self .numberOfBars)) / (float) self .numberOfBars;
4 int barCount = 0;
5 CGContextRef context = UIGraphicsGetCurrentContext() ;
6 for (int i = 0; i < [bars count]; i++) { // for each bar
7 UIColor ∗colour = [barColours objectAtIndex :(i % barColours.count)];
8 CGContextSetFillColorWithColor(context , colour .CGColor);
9 float iLen = [[bars objectAtIndex : i] floatValue];

10 float x = barCount ∗ (rectWidth) ;
11 float height = iLen ∗ (rect . size . height) / largestBar ;
12 float y;
13 if (height==0) height = 1;
14 y = rect . size . height − height −20;
15 CGRect barRect = CGRectMake(barCount + x, y, rectWidth , height) ;
16 CGContextFillRect(context , barRect) ; // draw in the rect
17 barCount+=1;
18 if (iLen>0){ // add value label
19 ...
20 CGRect valueLabel = CGRectMake(barCount+x,y,rectWidth,20);
21 CGContextSetFillColorWithColor(context , [UIColor whiteColor]. CGColor);
22 [[NSString stringWithFormat :@”%.f”,iLen] drawInRect:valueLabel withFont: ... lineBreakMode :... alignment :...];
23 }
24 // plot x axis bar label
25 CGRect barLabel = CGRectMake(barCount+x,rect.size.height−20,rectWidth,20);
26 CGContextSetFillColorWithColor(context , [UIColor grayColor]. CGColor);
27 [[NSString stringWithFormat :@”%c”,i + 65] drawInRect:barLabel withFont: ... lineBreakMode :... alignment :...];
28 }
29 // .. ANIMATE
30 }

Figure G.3: Custom BarChart drawing code

1 <string>PDF</string>
2 <key>LSHandlerRank</key>
3 <string>Alternate</string>
4 <key>LSItemContentTypes</key>
5 <array>
6 <string>com.adobe.pdf</string>
7 </array>

Figure G.4: Snippet from plist file to allow PDF files to be brought into the application using ‘Open In’

1 −(void) initialize { // called when view first loads
2 ...
3 [self .pageControl addTarget : self action :@selector(pageAction:) forControlEvents : UIControlEventValueChanged]; // register for events from the page

control .
4 }
5 −(void)pageAction:(UIPageControl∗)control{
6 int page = pageControl . currentPage ; // page will be +1 if user tapped on right side of page control or −1 for the left
7 self .pageControl . currentPage = page; // set the page indicator to the new page
8 CGRect frame = self . imageScrollView.frame; // get the current frame visible
9 frame. origin .x = (self . imageScrollView.frame. size .width ∗ page); // set frame to next page

10 [self . imageScrollView scrollRectToVisible :frame animated:YES];
11 }

Figure G.5: Additonal code added to AFImageViewer to allow users to change page by interacting with the
UIPageControl

98

Appendix H

Usability Evaluation

H.1 Scoring SUS

SUS yields a single number representing a composite measure of the overall usability of the system being studied.
Note that scores for individual items are not meaningful on their own.

To calculate the SUS score, first sum the score contributions from each item. Each item’s score contribution
will range from 0 to 4. For items 1,3,5,7,and 9 the score contribution is the scale position minus 1. For items
2,4,6,8 and 10, the contribution is 5 minus the scale position. Multiply the sum of the scores by 2.5 to obtain the
overall value of SU. SUS scores have a range of 0 to 100.

H.2 Task Sheet

Task sheet used for the ‘think aloud’ evaluation discussed in chapter 5.

99

Interactive Presenter Evaluation
This sheet lists the tasks involved in this evaluation. Please note that you may not ask for help completing the tasks, but you
may ask for clarification on what each task is asking you to do. You are encouraged to talk through your thought process as
you are carrying out these tasks, the evaluator will take notes based on this.
Remember it is the application, not you, that is being tested.

Please read through the in app User Guide. This should take 3-5 mins.

Presenter
For these tasks you will take on the role of a presenter. The demonstrator will have two iOS devices which will be used to
view your presentation.

1. Import a PDF into the application from an online cloud service.

2. View the PDF you just imported. If you were unable to import a PDF into the application view one of the built in ones.

3. Add a multiple choice question to the PDF with 4 possible answers.
E.g. “Who makes iOS?” . Apple, Blackberry, Microsoft or HP.

4. Broadcast the the PDF with the passcode: 1234 so others can start watching.
Please inform the demonstrator when you think you have done this so they can join as a viewer.

5. Navigate through different parts of the PDF taking the role as a presenter. Use the zoom and laser pointer functionality.
Observe the effect this has on the viewers devices.

6. Send out the multiple choice question you made in task 3.
Please inform the demonstrator when you think you have done this so they can answer the question.

7. Reveal just the answer to the viewers.
Observe the effect this has on the viewers devices.

8. Then reveal the answer & results.
Observe the effect this has on the viewers devices.

9. Finish the presentation and return to the list of PDFs in the application.
Please inform the demonstrator when you think you have done this.

Viewer
For these tasks you will take on the role of a viewer. The demonstrator will have an iOS device which act as the presenter.

10. Join the ‘iOS lecture’ with the passcode: qwerty.
Please inform the demonstrator when you think you have done this.

11. Answer the multiple choice question sent to you by the presenter.
Please inform the demonstrator when you think you have done this.

12. Ask the presenter a question via the application.
Please inform the demonstrator when you think you have done this.

The presenter will now end the presentation.

13. Carry on browsing the PDF. You will then be able to navigate freely around the presentation.

14. Leave the presentation and save the PDF.

Misc
14. Invite a friend to the application via email. Use the email 0908695c@student.gla.ac.uk

H.3 Survey results

101

Interactive	Presenter	-	Evaluation

1	/	8

83.33% 10

16.67% 2

Q1	Do	you	currently	have	an	iOS
device?

Answered:	12	 Skipped:	0

0% 20% 40% 60% 80% 100%

Yes

No

Yes

No

TotalTotal 1212

Answer	Choices Responses

Interactive	Presenter	-	Evaluation

2	/	8

75% 9

25% 3

Q2	Which	category	do	you	fall
under?

Answered:	12	 Skipped:	0

0% 20% 40% 60% 80% 100%

Student

In	Employment

Student

In	Employment

TotalTotal 1212

Other	(please	specify)	Other	(please	specify)	((0	0))

# Other	(please	specify) Date

	 There	are	no	responses. 	

Answer	Choices Responses

Interactive	Presenter	-	Evaluation

3	/	8

Q3	For	each	of	the	following
statements,	mark	one	box	that	best
describes	your	reactions	to	the

application	today.
Answered:	12	 Skipped:	0

0 1 2 3 4 5

I	think	that
I	would	like
to	use	thi...

I	found	this
application

unnecessar...

I	thought
this

applicatio...

I	think	that
I	would	need
assistance...

I	found	the
various

functions	...

I	thought
there	was	too

much...

I	would
imagine	that
most	peopl...

I	found	this
application

very...

I	felt	very
confident

using	this...

I	needed	to
learn	a	lot
of	things...

I	think	that
I	would	like
to	use	this
application
frequently.

0%
0

0%
0

0%
0

66.67%
8

33.33%
4

	
12

	
4.33

I	found	this
application
unnecessarily
complex.

83.33%
10

8.33%
1

0%
0

8.33%
1

0%
0

	
12

	
1.33

I	thought
this
application
was	easy
to	use.

0%
0

0%
0

0%
0

25%
3

75%
9

	
12

	
4.75

I	think	that
I	would
need
assistance
to	be	able
to	use	this
application.

58.33%
7

33.33%
4

8.33%
1

0%
0

0%
0

	
12

	
1.50

I	found	the
various
functions
in	this
application
were	well
integrated.

0%
0

0%
0

0%
0

25%
3

75%
9

	
12

	
4.75

	 Strongly
Disagree

(no	label) (no	label) (no	label) Strongly
Agree

Total Average
Rating

Interactive	Presenter	-	Evaluation

4	/	8

I	thought
there	was
too	much
inconsistency
in	this
application.

58.33%
7

25%
3

8.33%
1

8.33%
1

0%
0

	
12

	
1.67

I	would
imagine
that	most
people
would
learn	to
use	this
application
very
quickly.

0%
0

0%
0

0%
0

25%
3

75%
9

	
12

	
4.75

I	found	this
application
very
cumbersome/awkward
to	use.

100%
12

0%
0

0%
0

0%
0

0%
0

	
12

	
1.00

I	felt	very
confident
using	this
application.

0%
0

8.33%
1

0%
0

50%
6

41.67%
5

	
12

	
4.25

I	needed	to
learn	a	lot
of	things
before	I
could	get
going	with
this
application.

58.33%
7

41.67%
5

0%
0

0%
0

0%
0

	
12

	
1.42

Interactive	Presenter	-	Evaluation

5	/	8

Q4	What	would	you	add	to
Interactive	Presenter?	(list	multiple)

Answered:	12	 Skipped:	0

Responses Date

1 Audio	recording	of	presentations. 3/12/2013	3:45	PM

2 Inviting	friends	from	device	contacts? 3/12/2013	3:33	PM

3 Loading	icon	when	buffering	pdf.	Notification	for	when	pdf	downloaded	from	dropbox. 3/12/2013	3:15	PM

4 Help	guide,	so	you	could	go	back	the	the	user	guide	if	stuck 3/12/2013	2:54	PM

5 Ability	to	annotate	slides 3/12/2013	7:54	AM

6 The	ability	to	add	text	based	notes	to	slides	for	viewer 3/11/2013	9:31	PM

7 Ability	for	presenter	to	edit	PDF	and	for	viewers	to	see	these	changes.	Offline	mode,	so	that	if	you
miss	a	lecture	the	lecturer	can	upload	an	offline	edition	online	that	you	can	view	on	your	device
later.

3/6/2013	6:10	AM

8 synchronisation	of	files	with	multiple	devices. 3/6/2013	5:45	AM

9 organise	saved	pdfs	into	folders 3/5/2013	5:23	AM

10 linked	with	something	like	google	hangouts	or	similar	application	where	you	wouldnt	necessarily
need	an	iOS	application	to	join.

3/5/2013	4:55	AM

11 -questions	without	correct	answers 3/4/2013	8:35	AM

12 The	ability	to	point	to	graphs	and	highlight	answers.	The	ability	to	choose	what	type	of	graph	is
presented	The	ability	to	log	out	of	my	synced	accounts	so	as	not	to	have	security	risks.

3/4/2013	8:05	AM

Interactive	Presenter	-	Evaluation

6	/	8

Q5	What	did	you	find	difficult	when
using	Interactive	Presenter?	(list

multiple)
Answered:	12	 Skipped:	0

Responses Date

1 I	was	unable	to	find	any	difficulties.	The	help	guide	informed	me	of	any	questions	I	had	when	using
the	application.

3/12/2013	3:45	PM

2 Multiple	pass	code	was	annoying 3/12/2013	3:33	PM

3 Keeping	my	finger	still	when	pressing	down	for	pointer.	This	would	become	easier	though	through
multiple	use	so	not	really	an	issue

3/12/2013	3:15	PM

4 fat	fingers	and	small	buttons 3/12/2013	2:54	PM

5 Nothing	really.	Once	i	had	learnt	how	to	do	things	once	it	wasnt	hard 3/12/2013	7:54	AM

6 I	wasn't	aware	I	needed	to	tap	the	screen	to	get	the	PDF	controls	back 3/11/2013	9:31	PM

7 I	have	to	be	honest	and	say	that	everything	was	so	simple. 3/6/2013	6:10	AM

8 I	had	to	read	a	lot. 3/6/2013	5:45	AM

9 n/a 3/5/2013	5:23	AM

10 getting	used	to	the	different	sections	is	difficult	at	first	but	once	completed	once	it	is	easy	to
remember

3/5/2013	4:55	AM

11 - 3/4/2013	8:35	AM

12 There	was	a	lack	of	consistence	in	the	names	of	buttons	and	i	was	a	bit	confused	as	to	the	flow	as
a	result	of	this.

3/4/2013	8:05	AM

Interactive	Presenter	-	Evaluation

7	/	8

Q6	When	would	you	imagine	using
Interactive	Presenter?

Answered:	12	 Skipped:	0

Responses Date

1 I	particularly	liked	being	able	to	ask	questions	without	interrupting	the	presenter.	I	can	really	see
this	being	used	in	teaching,	as	often	I	hold	back	from	asking	a	question	because	I	would	have	to
put	my	hand	up	and	stop	the	teacher.

3/12/2013	3:45	PM

2 Presenting	to	small	group	of	my	peers	casually.	I	could	imagine	this	being	popular	in	schools. 3/12/2013	3:33	PM

3 When	teaching	colleagues	about	new	software	or	updated	software	with	new	changes. 3/12/2013	3:15	PM

4 Group	meetings	or	revising	lecture	notes	as	a	group 3/12/2013	2:54	PM

5 lectures,	workshops,	in	business	meetings,	training	days	and	in	sales? 3/12/2013	7:54	AM

6 University	lectures	or	meetings	in	work 3/11/2013	9:31	PM

7 Would	be	great	to	use	it	in	a	lecture. 3/6/2013	6:10	AM

8 In	class	of	course!!	At	a	team	meeting! 3/6/2013	5:45	AM

9 More	interactive	lectures	where	the	lecturer	asked	lots	of	questions.	Or	in	a	large	lecture	hall	where
you	may	not	be	able	to	see	the	board	well.	May	be	a	distraction	to	some	people	though

3/5/2013	5:23	AM

10 during	lectures	where	interactive	teaching	would	be	appropriate	---	where	feedback	may	be
necessary

3/5/2013	4:55	AM

11 during	lectures	and	could	be	useful	for	schools.	it	could	also	be	used	for	corporate	events. 3/4/2013	8:35	AM

12 In	lectures	or	presentations	at	work	when	I	graduate. 3/4/2013	8:05	AM

Interactive	Presenter	-	Evaluation

8	/	8

100% 12

0% 0

Q7	Would	you	recommend
interactive	presenter	to	somebody

who	was	wanting	to	present?
Answered:	12	 Skipped:	0

0% 20% 40% 60% 80% 100%

Yes

No

Yes

No

TotalTotal 1212

Maybe	Maybe	((0	0))

Maybe Date

	 There	are	no	responses. 	

Answer	Choices Responses

Appendix I

Full-size images

Figure 2.1a: Handset and receiver

110

Figure 2.1b: Handset pairing

111

Figure 2.1c: Results screen

Figure 2.2a: Handset and receiver

112

Figure 2.2b: Handset buttons

113

Figure 2.2c: Results screen

114

Figure 2.3a: Conference Pad

115

Figure 2.3b: Idea Flight

116

Figure 2.3c: ResponseWare

117

Figure 3.1: Preparing to present

118

Figure 3.2: Presenting a document

119

Figure 3.3: Viewing a presentation

120

Figure 3.4: Document syncing

121

Figure 3.5a: Personal use

122

Figure 3.5b: Academic use

123

Figure 3.5c: Business use

Figure 3.6a: iOS screen comparison

124

Figure 3.6b: Safari running on iPhone 5 and iPhone 4

125

Figure 3.7a: Design 1

Figure 3.7b: Design 2

126

Figure 3.8a: Two hands along bezel

127

Figure 3.8b: Left hand along bezel

128

Figure 3.8c: Left thumb reach

Figure 3.9: Three different cell styles used to represent a document.

129

Figure 3.10a: Presenter View

130

Figure 3.10b: Viewer view

131

Figure 3.10c: Full screen

132

Figure 3.10d: Page changing

133

Figure 3.10e: List of viewers visible to presenter

Figure 3.11: Question screens for presenter and viewers.

134

Figure 3.13a: Landscape

135

Figure 3.13b: Portrait

136

Figure 3.12c: Close prompt.

137

Figure 3.13a: Final design including graphics

138

Figure 3.13b: Vectorised design created in Fireworks

Figure 3.14a: Designs using a table view

139

Figure 3.14b: Design with iPad style menu

Figure 3.14c: Final design standard tabbar

140

Figure 3.15a: iPad styled tabbar

141

Figure 3.15b: Plain tabbar

142

Figure 3.15c: Final design

143

Figure 4.1a: Custom navigation VC

144

Figure 4.1b: Landscape orientation

145

Figure 4.1c: Portrait orientation

146

Figure 4.2a: Menu Button View

Figure 4.2b: Grid Cell View

147

Figure 4.3a: iPhone Landscape

148

Figure 4.3b: iPhone Portrait

149

Figure 4.4a: Scaleable button image

150

Figure 4.4b: Stretched button

Figure 4.4c: Scaled button

151

Figure 4.5: UIWebView navigation

Figure 4.6: Customised VFR Reader

152

Figure 4.7: Laser pointer

153

Figure 4.8: iOS app sandbox

Figure 4.9: Database model.

154

Figure 4.10a: FilePicker presented in a popover on iPad

155

Figure 4.10b: FilePicker presented modally on iPhone

Figure 4.11: iTunes file sharing

156

Figure 4.12: Standard Game Kit picker

Figure 4.13: Live PDFs VC - Custom picker iPad

Figure 4.14: Networking States

UniqueID PDF MD5 PDF Name Payload ... PDF Size Payload Start Payload Length

Figure 4.15: PDF packet

157

Figure 4.16a: Presenter View

Figure 4.16b: Viewer View

Figure 4.17: 10 byte Packet Header

IPPacketClientReadyIPPacketPageChange IPPacketLaserPointerIPPacketScrollZoom

clientName : NSStringlaserPoint : CGPoint

IPPacket

packetType: PacketType
+ (id)packetWithData:(NSData *) data;
 - (id)initWithType:(PacketType)packetType;
 - (NSData *)data;
 - (void)addPayloadToData:(NSData *)data

pageNumber : int rect : CGRect

+(id)packetWithData:
-(void)addPayloadToData:

+(id)packetWithData:
-(void)addPayloadToData:

+(id)packetWithData:
-(void)addPayloadToData:

+(id)packetWithData:
-(void)addPayloadToData:

PacketType

PacketTypePageChange
PacketTypeLaserPostion
PacketTypeScrollZoom,
PacketTypeClientReady

<<enumeration>>

Figure 4.18: Packet classes (initial 4). Using the Factory design pattern.

Presenter (Server)

IPBroadcastIPPDFViewController IPPacketLaserPointer

handleLongTap:gesture
serverPointedTo:point

packetWithLaserPoint:point

unreliableSendPacketToAllClients:

GestureRecogniser

Viewers (clients)

IPBroadcast IPPDFViewControllerIPPacketLaserPointer

packetWithData:data

showLaserPointerAtAbsolutePoint:

Figure 4.19: Laser pointer packet creation and distribution

158

Figure 4.20a: Presenter View

Figure 4.20b: Viewer View

159

Figure 4.21: View co-ordinate systems

Figure 4.22a: iPad

160

Figure 4.22b: iPhone

Figure 4.23: Add question

161

Figure 4.24: Multiple choice custom answer cell

IPPacketRevealResultsIPPacketQuestion IPPacketRevealAnswer IPPacketViewerAnswer

IPPacket

Figure 4.25: Four additional packet types defined for transmitting questions and answers

Figure 4.26: Questions and Answer device interaction

162

Figure B.2c: iOS 6

163

Figure B.2b: iOS 5

164

Figure B.2c: Interface file (XIB)

Figure 4.28: User additional feature rank

165

Figure 4.29a: Passcode disabled by default

166

Figure 4.29b: Passcode enabled

167

Figure 4.29c: Passcode validation

Presenter (Server)

IPBroadcastIPPDFViewController IPPacket
PasscodeRequest

startBroadcastWithPasscode
initServerWithPDF: passcode:

packetWithPasscode:hashedPass:

reliableSendPacketToClient: passcodeRequest

IPBroadcastSetupVC

Viewer (client)

IPSearching
PresentationClient

packetWithData:data

verifyPasscode:hashedPass

reliableSendPacketTServer: paascodeSuccess

IPPacket
PasscodeRequest

IPPacket
PasscodeVerified

packet

sendPDFtoPeer:

Figure 4.30: Passcode verification between devices

168

Figure 4.31a: Viewer passcode prompt

169

Figure 4.31b: Invalid passcode alert

170

Figure 4.31c: Passcode verified successully

171

Figure 4.32a: iPhone

172

Figure 4.32b: Ability to include slide number

173

Figure 4.32c: iPad

174

Figure 4.33: Viewer List

Figure 4.34: Views to allow presenter to access viewer’s questions

175

Figure 4.35: Lock packet class

176

Figure 4.36: Locked alert

177

Figure 4.37: Unlocked alert

178

Figure 4.38: ’Open in’ support

179

Figure 4.39: PDF successfully added

180

Figure 4.40a: Permission set in broadcast options

181

Figure 4.40b: Save PDF when presenter leaves

182

Figure 4.40c: Save PDF when viewer leaves

Figure 4.41: Live PDF animation

Figure 4.42: Part of the user guide included within the application

183

Figure 4.43: 12 packets used in the application

Figure 5.1: Alterations to the question button labels based on feedback.

Figure 5.2: The application received an SUS score of 89.78 denoting ’Excellent usability’.

Figure 5.3a: Outgoing network and CPU usage

Figure 5.3b: Memory usage

184

Figure B.1: Devices capable of running iOS 5

185

Figure B.2c: Xcode IDE

186

Figure B.2b: iOS Simulator

187

Figure B.2c: Instruments analysing tool

Figure B.3a: Modal-View-Controller design pattern [8]

188

Figure B.3b: TableView delegation example

189

	Introduction
	Motivation
	Background
	Aim
	Outline

	Requirements
	Questionnaire
	Existing Products
	Voting Handsets
	Existing mobile applications

	Functional Requirements
	Non-functional Requirements

	Design
	User Experience
	Preparing for a Presentation
	Presenting a document
	Viewing a presentation
	Document syncing
	Scenarios
	User Feedback

	User Interface
	Interface Background
	iPad Wireframes
	User Feedback
	iPad Final Design
	iPhone Wireframes and Detailed Design

	System Structure
	Document Viewer
	Network
	Question Manager
	Data Store

	Implementation
	Initial Implementation
	Home Screen
	Document Viewer
	Data Model
	Document Importing
	Networking
	Questions and Voting

	User Feedback and Refinement
	Evaluation Design
	Results
	Additional features to implement

	Second Implementation cycle
	Addressing identified defects
	Passcode
	Viewer List
	Viewer Questions
	Navigation Lock/Unlock
	`Open In' support
	Store PDF from presentation
	Live PDF View Modifications
	User Guide

	Summary

	Testing
	Usability Test
	Short-term Evaluation
	University Trial

	Performance Testing

	Conclusion
	Summary
	Future Development
	Lessons Learnt

	Appendices
	User Guide
	iOS
	Application files
	Libraries Used
	Main View Controllers
	Networking Classes
	Miscellaneous
	Visual representation of key View Controllers

	Full Size Storyboards
	Requirements Survey
	User Feedback and Refinement Survey
	Code listings
	Usability Evaluation
	Scoring SUS
	Task Sheet
	Survey results

	Full-size images

