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The AVL Tree Data Structure

Structural properties
1. Binary tree property

2. Balance property:
balance of every node is
between -1 and 1

Result:

Worst-case depth is
O(log n)

Ordering property
— Same as for BST
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AVL Tree Deletion

Similar to insertion: do the delete and then rebalance
— Rotations and double rotations

— Imbalance may propagate upward so rotations at multiple nodes
along path to root may be needed (unlike with insert)

Simple example: a deletion on the right causes the left-left grandchild
to be too tall

— Call this the left-left case, despite deletion on the right
— insert(6) insert(3) insert(7) insert(l) delete(7)

1o
Spring 2010 CSE332: Data Abstractions 3

Properties of BST delete

We first do the normal BST deletion: (12)
— 0 children: just delete it
— 1 child: delete it, connect child to parent (5) B
— 2 children: put successor in your place,
delete successor leaf 2 (9)

Which nodes’ heights may have changed: QW
— 0 children: path from deleted node to root
— 1 child: path from deleted node to root
— 2 children: path from deleted successor leaf to root

Will rebalance as we return along the “path in question” to the root
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Case #1 Left-left due to right deletion

e Start with some subtree where if right child becomes shorter we are
unbalanced due to height of left-left grandchild

h+3

« A delete in the right child could cause this right-side shortening
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Case #1: Left-left due to right deletion

Same single rotation as when an insert in the left-left grandchild
caused imbalance due to X becoming taller

But here the “height” at the top decreases, so more rebalancing farther
up the tree might still be necessary
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Case #2: Left-right due to right deletion

« Same double rotation when an insert in the left-right grandchild
caused imbalance due to ¢ becoming taller

« But here the “height” at the top decreases, so more rebalancing farther
up the tree might still be necessary

Spring 2010

No third right-deletion case needed

So far we have handled these two cases:
left-left h+3 left-right h+3

h+2 h+2

But what if the two left grandchildren are now both too tall (h+1)?
* Then it turns out left-left solution still works

¢ The children of the “new top node” will have heights differing by
1 instead of 0, but that’s fine
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And the other half

» Naturally there are two mirror-image cases not shown here
— Deletion in left causes right-right grandchild to be too tall
— Deletion in left causes right-left grandchild to be too tall

— (Deletion in left causes both right grandchildren to be too tall,
in which case the right-right solution still works)

< And, remember, “lazy deletion” is a lot simpler and often
sufficient in practice

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always
balanced.

2. The height balancing adds no more than a constant factor to the
speed of insert and delete.

Arguments against AVL trees:

Difficult to program & debug

More space for height field

Asymptotically faster but rebalancing takes a little time

Most large searches are done in database-like systems on disk and
use other structures (e.g., B-trees, our next data structure)

5. If amortized (later, | promise) logarithmic time is enough, use splay
trees (skipping, see text)

PwdE
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. . “Every desktop/laptop/server is
Now What’) A typ|Ca| h|erarchy different” but here is a plausible

* We have a data structure for the dictionary ADT that has worst-
case O(log n) behavior

— One of several interesting/fantastic balanced-tree
approaches

* We are about to learn another balanced-tree approach: B Trees

« First, to motivate why B trees are better for really large
dictionaries (say, over 1GB = 20 bytes), need to understand
some memory-hierarchy basics

— Don't always assume “every memory access has an
unimportant O(1) cost”

— Learn more in CSE351/333/471 (and CSE378), focus here
on relevance to data structures and efficiency
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configuration these days

CPU instructions (e.g., addition): 23%/sec

L1 Cache: 128KB = 2 get data in L1: 22%/sec = 2 insns

| L2 Cache: 2MB = 221 | get data in L2: 225/sec = 30 insns

get data in main memory:

Main memory: 2GB = 231 2*sec = 250 insns

get data from “new
place” on disk:

27/sec =8,000,000 insns

Disk: 1TB = 240
“streamed”: 218/sec
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Morals

It is much faster to do: Than:
5 million arithmetic ops 1 disk access
2500 L2 cache accesses 1 disk access

400 main memory accesses 1 disk access

Why are computers built this way?

— Physical realities (speed of light, closeness to CPU)
Cost (price per byte of different technologies)
Disks get much bigger not much faster

» Spinning at 7200 RPM accounts for much of the
slowness and unlikely to spin faster in the future

Speedup at higher levels makes lower levels relatively
slower

Later in the course: more than 1 CPU!
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“Fuggedaboultit”, usually

The hardware automatically moves data into the caches from main
memory for you

— Replacing items already there
— So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to
open a file or database to access some data)

So most code “just runs” but sometimes it's worth designing
algorithms / data structures with knowledge of memory hierarchy

— And when you do, you often need to know one more thing...

Spring 2010 CSE332: Data Abstractions 14

Block/line size

* Moving data up the memory hierarchy is slow because of latency
(think distance-to-travel)

— May as well send more than just the one int/reference asked
for (think “giving friends a car ride doesn’t slow you down”)

— Sends nearby memory because:
e |It's easy
» And likely to be asked for soon (think fields/arrays)

e The amount of data moved from disk into memory is called the
“block” size or the “(disk) page” size

— Not under program control
e The amount of data moved from memory into cache is called the
“line” size
— Not under program control
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Connection to data structures

* An array benefits more than a linked list from block moves

— Language (e.g., Java) implementation can put the list nodes
anywhere, whereas array is typically contiguous memory

» Suppose you have a queue to process with 222 items of 27 bytes
each on disk and the block size is 21° bytes

— An array implementation needs 22° disk accesses
— If “perfectly streamed”, > 16 seconds
— If “random places on disk”, 8000 seconds (> 2 hours)

— A list implementation in the worst case needs 223 “random”
disk accesses (> 16 hours) — probably not that bad

¢ Note: “array” doesn’t mean “good”
— Binary heaps “make big jumps” to percolate (different block)
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BSTs? Note about numbers; moral

¢ Since looking things up in balanced binary search trees is
O(log n), even for n = 23°(512GB) we don’t have to worry about « All the numbers in this lecture are “ballpark” “back of the

minutes or hours envelope” figures

 Still, number of disk accesses matters . .
« Even if they are off by, say, a factor of 5, the moral is the same:

~ AVL tree C?UId have height of 55 (see lecture7.xisx) If your data structure is mostly on disk, you want to minimize
— So each Find could take about 0.5 seconds or about 100 disk accesses
finds a minute
— Most of the nodes will be on disk: the tree is shallow, but it is « A better data structure in this setting would exploit the block size

still many gigabytes big so the tree cannot fit in memory

» Even if memory holds the first 25 nodes on our path, we
still need 30 disk accesses

and relatively fast memory access to avoid disk accesses...
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