Mathematical Induction

Mathematical Induction

- Mathematical Induction is a technique for proving theorems Theorems are typically of the form P(n) is true for all positive integers n
- - · where P(n) is a propositional function

RTP : $\forall nP(n)$ where universe of discourse is Z^+

Mathematical Induction

Proof by Mathematical Induction that P(n) is true for every positive integer n consists of two steps

- · 1. Basis Step. · Show that P(1) is true
- 2. Inductive Step. Prove P(n) → P(n+1) is true for all positive n

The statement P(n) is called the inductive hypothesis

Expressed as a rule of inference, Mathematical Induction can be stated as

 $[P(1) \land \forall n(P(n) \rightarrow P(n+1))] \rightarrow \forall nP(n)$

The Principle of Mathematical Induction

- show that P(n) is true when n = 1, i.e. P(1) is true
- show that $P(n) \rightarrow P(n+1)$ for all n > 0
 - show that P(n+1) cannot be false when P(n) is true
 - · do this as follows
 - · assume P(n) true
 - · under this hypothesis that P(n) is true show that P(n+1) is also true
- :. Since P(1) is true and the implication $P(n) \rightarrow P(n+1)$ is true for all positive integers, the principle of mathematical induction shows that P(n) is true for all positive integers

```
Prove, using Mathematical Induction, that the sum of the first n odd integers is n²
An Example
           1+3+5+...+2n-1=n^2
           Let P(n) denote the proposition that the sum of the first n odd integers is \ensuremath{n^2}
           · Basis Step P(1) , the sum of the first odd integer, is 1^2

 this is true, since 1<sup>2</sup> = 1

           \boldsymbol{\cdot} Inductive \textit{Step} show that P(n) \to P(n+1) for all n > 0

    assume P(n) is true for a positive integer n
    i.e. 1 + 3 + 5 + 7 + 9 + 11 + ... + (2n - 1) = n<sup>2</sup>
    note: 2n - 1 is the nth odd number!

                  • show P(n+1) is true assuming P(n) is true
• assuming P(n) true, P(n+1) is then

1 + 3 + 5 + ... + 2n-1 + (2(n+1) - 1)

where (2(n+1) - 1) is the n+1<sup>th</sup> odd number
                                   = n^2 + 2n + 1
= (n+1)^2
           · "Since P(1) is true and the implication P(n) \to P(n+1) is true for all +ve n, the principle of MathInd shows that P(n) is true for all +ve integers"
```

```
A Bad Example
                                                                                                             What's wrong with this?
                                  1+3+5+...+2n-1=n^2
            Let P(n) denote the proposition that the sum of the first n
            odd integers is n²
             · Basis Step P(1) = 1^2 = 1. Therefore P(1) is true.
           • Inductive Step show that P(n) \rightarrow P(n+1) for all n > 0

• assume P(n) is true for a positive integer n

• i.e. P(n) = 1 + 3 + 5 + 7 + 9 + 11 + ... + (2n - 1) = n^2

• show P(n+1) is true assuming P(n) is true

• assuming P(n) true, P(n+1) is then
P(n+1) = 1 + 3 + 5 + ... + 2n - 1 + (2(n+1) - 1)
= n^2 + 2n + 1
= (n+1)^2
• "Since P(1) is true and the implication P(n) \rightarrow P(n+1) is
            * "Since P(1) is true and the implication P(n) \to P(n+1) is true for all +ve n, the principle of MathInd shows that P(n) is true
                 for all +ve integers"
                                                                                                                               What is P(n)?
```

```
\forall n (n \ge 1 \rightarrow 3 \mid n^3 - n)
```

Note trick

We proved this

Let P(n) denote the proposition $\left. 3 \right| n^3$ - n

• P(1) is true, since $1^3 - 1 = 0$, and that is divisible by 3

· Inductive Step

nductive Step

· assume P(n) is true i.e. 3|(n³-n)
· show P(n+1) is true assuming P(n) is true, i.e. 3|((n+1)³-(n+1))

· (n+1)³-(n+1) = n³+3n²+3n+1-(n+1)
= n³+3n²+2n

= $(n^3 - n) + 3n^2 + 3n$ = $(n^3 - n) + 3(n^2 + n)$ due to our assumption P(n) and ...

3|(n³ - n) due to our assumption P(n) ar 3|3(n² + n) because it is of the form 3k we know if a|b and a|c then a|(b+c)

consequently $3|((n^3 - n) + 3(n^2 + n))$

By the principle of mathematical induction n^3 - n is divisible by 3when n is positive

$\forall n \exists p \exists q (n \ge 12 \land p \ge 0 \land q \ge 0 \rightarrow n = 4 p + 5 q)$

Let P(n) denote the proposition "If n is greater than 11 then n can be expressed as 4p+5q, where p and q are positive"

 \sim P(12) is true, since 12 = 4x3 + 5x0 NOTE: we started at 12, since P(n) is defined only for n > 11

 $\boldsymbol{\cdot}$ assume P(n) is true and prove P(n+1)

We use a "proof by cases"

if p > 0 and q > 0 then decrement p and increment q to get 1 more

if p > 0 and q = 0 then decrement p and increment q to get 1 more

• if p = 0 and q > 0then q must be at least 3, because n is at least 11

therefore 5q is at least 15 decrement q by 3 and increment p by 4 to get 1 more

this covers all the cases where we want to increment n by 1 • Therefore, by the principle of mathematical induction we have proved that any integer greater than 11 can be expressed as 4p+5q

$\forall n \exists p \exists q (n \ge 12 \land p \ge 0 \land q \ge 0 \rightarrow n = 4 p + 5 q)$

Therefore, by the principle of mathematical induction we have proved that any integer greater than 11 can be expressed as 4p + 5q

If a country's cheapest postage cost is 12 pence then 4 penny and 5 penny stamps will allow us to send any parcel/letter within the country

Could you imagine a similar type of problem with delivering change from a vending machine?

Your Example

$$\sum_{i=1}^{n} i = n(n+1) / 2$$

Let P(n) denote the proposition "The sum of the first n positive integers, Sum(n), is n(n+1)/2"

· Basis Step

Since P(1) is true and the implication $P(n) \rightarrow P(n+1)$ is true for all positive integers, the principle of mathematical induction shows that P(n) is true for all positive integers

Your Example

$$\sum_{i=1}^{n} i = n(n+1) / 2$$

Let P(n) denote the proposition

"The sum of the first n positive integers is n(n+1)/2"

P(1) is true, since 1(1+1)/2 = 1

· Inductive Step

sasume P(n) is true, i.e. 1+2+...+n=n(n+1)/2show P(n+1) is true assuming P(n) is true, i.e. 1+2+3+...+n+(n+1)=(n+1)(n+2)/2

• using the inductive hypothesis P(n) it follows that 1+2+3+...+n+(n+1)=n(n+1)/2+(n+1)

 $= (n^2 + n + 2n + 2)/2$ $= (n^2 + 3n + 2)/2$

= (n + 1)(n + 2)/2· Therefore P(n+1) follows from P(n)

· This completes the inductive proof

Our Example

$$|P(S)| = 2^{|S|}$$

Let P(n) denote the proposition "A set S has 2^n subsets, where n is the cardinality of S"

Basis Step

Inductive Step

Since P(0) is true and the implication $P(n) \rightarrow P(n+1)$ is true for all positive integers, the principle of mathematical induction shows that P(n) is true for all positive integers

$|P(S)| = 2^{|S|}$

Let P(n) denote the proposition "A set S has 2^n subsets, where n is the cardinality of S"

- Basis Step

 P(0) is true, since the only subset of the empty set is the empty set {}
- $\begin{array}{l} \cdot \mbox{ Inductive Step} \\ \cdot \mbox{ assume P(n) is true} \\ \cdot \mbox{ show P(n+1) is true assuming P(n) is true} \end{array}$

 - Create a new set T = S \cup (e), where e is not already in S \cdot of the 2" subsets of S we can have each of those subsets

 - · with element e or · without element e
 - therefore we have twice as many subsets of T as of S therefore the number of subsets of T is $2(2^n) = 2^{(n+1)}$
- \cdot This shows that P(n+1) is true when P(n) is true, and completes the inductive step. Hence, it follows that a set of size n has $2^{n}\,$

$$\sum_{j=0}^{n} ar^{j} = \frac{ar^{n+1} - a}{r - 1}$$

Example $\sum_{j=0}^{n} ar^{j} = \frac{ar^{n+1} - a}{ar^{n+1}}$ Basis Step $P(0) \text{ is true, since } ar^0 = (ar^{0+1} - a)/(r-1) = a(r-1)/(r-1) = a$

Inductive Step assume P(n) true and P(n + 1) follows, therefore

$$ar^{0} + ar^{1} + \dots + ar^{n} + ar^{n+1}$$

$$= \frac{a(r^{n+1} - 1)}{r - 1} + ar^{n+1}$$

$$= [ar^{n+1} - a + ar^{n+1}(r - 1)]/(r - 1)$$

$$= [ar^{n+1} - a + ar^{n+2} - ar^{n+1}]/(r - 1)$$

$$= \frac{a(r^{n+2} - 1)}{r - 1}$$

Since P(0) is true and the implication $P(n) \to P(n+1)$ is true for all positive integers, the principle of mathematical induction shows that P(n) is true for all positive integers

Mathematical Induction

Used frequently in C5 when analysing the complexity of an algorithm or section of code.

When we have a loop such as

for i from 1 to n do

Bubble Sort Bubble sort?

> for i := 1 to n do for j := 1 to n-i do if s[j] > s[j+1] // * then swap(s, j, j+1)

- Assume we have an array s to be sorted into non-decreasing order how many times is the section * executed for a given size of array


```
Bubble Sort

For i := 1 to n do

for j := 1 to n-i do

if s[j] > s[j+1] //*

then swap(s,j,j+1) //*

inner loop executes * n-i times, for each i outer loop executes inner loop n times

\sum_{i=1}^{n} n-i = n-1+n-2+n-3+...+n-n
= 1+2+...+(n-2)+(n-1)
= \sum_{i=1}^{n-1} i
= \frac{n(n-1)}{2}
= O(n^2)
```

Bubblesort demo in java? Find the jdk? <u>sortDemo</u>

Please read the following before the next tutorial

Recursive definitions and structural induction

recursively defined functions
recursively defines sets and structures

