

Terminology

- \cdot Vertex x is *adjacent* to vertex y if (x,y) is in E
- c is adjacent to b, d, and e

 The degree of a vertex x is the number of edges incident on x
 deg(d) = 3

 note: degree aka valency
- The graph has a degree sequence in this case 3,3,2,2,2

Handshaking Theorem (simple graph)

$$6 = (V,E) 2e = \sum_{v \in V} \deg(v)$$

For an undirected graph G with e edges, the sum of the degrees is 2e

- wnyy

 An edge (u,v) adds 1 to the degree of vertex u and vertex v

 Therefore edge(u,v) adds 2 to the sum of the degrees of G

 Consequently the sum of the degrees of the vertices is 2e

- 2e = deg(a) + deg(b) + deg(c) + deg(d) + deg(e)
- · = 2 + 2 + 3 + 3 + 2 · = 12

Challenge: Draw a graph with degree sequence 2,2,2,1

Handshaking Theorem (a consequence, for simple graphs)

There is an even number of vertices of odd degree

$$\begin{aligned} 2e &= \sum_{v \in V} \deg(v) \\ 2e &= \sum_{u \in OddDegVerdecs} \deg(u) + \sum_{v \in EvenDegVerdices} \deg(w) \\ 2k &= \sum_{u \in OddDegVerdices} \deg(u) \end{aligned}$$

deg(d) = 3 and deg(c) = 3

Is there an algorithm for drawing a graph with a given degree sequence?

Yes, the Havel-Hakimi algorithm

Directed Graphs

- · (u,v) is a directed edge · u is the initial vertex
- $\boldsymbol{\cdot}$ v is the terminal or end vertex

- the in-degree of a vertex
 number of edges with v as terminal vertex

 $\deg^+(v)$

the out-degree of a vertexnumber of edges with v as initial vertex

 $\deg^-(v)$

- · (u,v) is a directed edge · u is the initial vertex · v is the terminal or end vertex

$$\sum_{v \in V} \deg^+(v) = \sum_{v \in V} \deg^-(v) = |E|$$

Each directed edge (v,w) adds 1 to the out-degree of one vertex and adds 1 to the in-degree of another

(Some) Special Graphs

 K_1 K_2

$$\leftarrow$$

 K_3

 K_4

$$|E| = \frac{n(n-1)}{2}$$

 K_5

Cliques

G = (V, E)

n = |V|

See Rosen 548 & 549

- CyclesWheels
- · n-Cubes

Bipartite Graphs

Vertex set can be divided into 2 disjoint sets

 $V = V_1 \cup V_2$

 $(v,w)\!\in E \to (v\!\in\!V_1 \land w\!\in\!V_2) \oplus (v\!\in\!V_2 \land w\!\in\!V_1)$

Other Kinds of Graphs (that we won't cover, but you should know about)

- multigraphs
 may have multiple edges between a pair of vertices
 in telecomms, these might be redundant links, or extra capacity
 Rosen 539

- pseudographs a multigraphs, but edges (v,v) are allowed Rosen 539
- hypergraph
 hyperedges, involving more than a pair of vertices

A Hypergraph (one I prepared earlier)

The hypergraph might represent the following

- x = a + b
 c = y z
 z ≥ b

New Graphs from Old?

G = (V, E)H=(W,F)We can have a subgraph

 $W\subseteq V$

 $F \subseteq E$

 $G_1 = (V_1, E_1)$ We can have a union of graphs

 $G_2=(V_2,E_2)$

 $G_3 = G_1 \cup G_2$ $G_3 = (V_1 \cup V_2, E_1 \cup E_2)$ Representing a Graph (Rosen 7.3, pages 456 to 463)

Adjacency Matrix: a 0/1 matrix A

$$(i, j) \in E \leftrightarrow a_{i, j} = 1$$

NOTE: A is symmetric for simple graphs!

$$(i,j)\!\in E \longleftrightarrow a_{i,j}=1\!=a_{j,i}$$

NOTE: simple graphs do not have loops (v,v)

$$\forall i(a_{i,i} = 0)$$

Representing a Graph (Rosen 8.3)

 A^2

What's that then?

Isomorphism (Rosen 560 to 563)

Are two graphs G1 and G2 of equal form?

• That is, could I rename the vertices of G1 such that the graph becomes G2• Is there a bijection if from vertices in V1 to vertices in V2 such that

• if (a,b) is in E1 then (f(a),f(b)) is in E2

So far, best algorithm is exponential in the worst case

There are necessary conditions
• V1 and V2 must be same cardinality
• E1 and E2 must be same cardinality
• degree sequences must be equal
• what's that then?

Are these graphs isomorphic?

How many possible bijections are there?

Is this the worst case performance?

Are these graphs isomorphic?

How many bijections? 1234,1243,1324,1342,1423,1432 2134,2143, ...

,4321

4123,4132,...

4! = 4.3,2.1 = 24

Euler Path (the Konigsberg Bridge problem)

An Euler circuit in a graph ${\it G}$ is a simple circuit containing every edge of ${\it G}$. An Euler path in a graph G is a simple path containing every edge of G.

Is there a simple circuit in the given multigraph that contains every edge?

Euler Circuit & Path

Necessary & Sufficient conditions

- every vertex must be of even degree
 if you enter a vertex across a new edge
 you must leave it across a new edge

A connected multigraph has an Euler circuit if and only if all vertices have even degree

The proof is in 2 parts (the biconditional) The proof is in the book, pages 579 - 580

Hamilton Paths & Circuits

Given a graph, is there a circuit that passes through each vertex once and once only?

Given a graph, is there a path that passes through each vertex once and once only?

Easy or hard?

Due to Sir William Rowan Hamilton (1805 to 1865)

Hamilton Paths & Circuits

Is there an HC?

HC is an instance of TSP!

Connected?

Is the following graph connected?

 $G = (\{a,b,c,d,e,f,g\},\{(a,b),(b,c),(b,d),(c,d),(g,e),(e,f),(f,g)\})$

Draw the graph

What kind of algorithm could we use to test if connected?

 $G = (\{a,b,c,d,e,f,g\},\{(a,b),(b,c),(b,d),(c,d),(g,e),(e,f),(f,g)\})$

- (0) assume all vertices have an attribute visited(v)
 (1) have a stack S, and put on it any vertex v
 (2) remove a vertex v from the stack S
 (3) mark v as visited
 (4) let X be the set of vertices adjacent to v
 (5) for w in X do
 (5.1) if w is unvisited, add w to the top of the stack S
 (6) if S is not empty go to (2)
 (7) the vertices that are marked as visited are connected

A demo?

fin