The Growth of Functions

Rosen 3.2

What affects runtime of a program?

- the machine it runs on

« the programming language

- the efficiency of the compiler

« the size of the input

« the efficiency/complexity of the algorithm?

What has the greatest effect?

What affects runtime of an algorithm?

« the size of the input
+ the efficiency/complexity of the algorithm?

We measure the number of times the
“principal activity” of the algorithm is
executed for a given input size n

Ore easy to understand example is search, finding
a piece of data in a data set

N is the size of the data set
“principal activity" might be comparison of key with data

What are we interested in? Best case, average case, or worst case?

What affects runtime of an algorithm?

Therefore we express the complexity of an algorithm
as a function of the size of the input

This function tells how the number of times the “principal activity
performed grows as the input size grows.

This does not give us an exact figure, but a growth rate.
This allows us to compare algorithms theoretically
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The Big-O Notation

f(x) isO(g(x))

if thereareconstants C and k such that
f(x)| < Clg(x)|

whenever X >k

C and k are called “witnesses to the relationship”
There may be many witnesses

The Big-O Notation

The Big-O Notation
example

f(x) =x*+2x+1 is O(x%)

Note also:

x2+2x+1 is O(x%)

But we prefer the former.

example
f(x) =x*+2x+1 is O(x%)
‘xz +2x+1<Cx* when x> k‘
‘Os X2+ 2X+1< X2+ 2x2 + X2 = 4x2‘
Whenever x is greater than 1 the above holds,
consequently .. f(X)= X2 +2x+1 is O(XZ)
The Big-O Notation Another |

p

f(n) =n?isnot O(n)

i.e. not linear

0O n? < Cnforsomen>k
n n
Ons<C
Butnisavariableand C isaconstant
Thisisimpossible

0

The Big-O Notation Yet another example

Show that n! is O(n")

Onl<C.n" for somen>k
01.23..--.n<nnn.---.n
WithC =1 andk =1 wehavenl=0O(n")

Complexity of bubble sort

bubbleSort(A:array hiint)
forii=1ton-1
for ji=1ton-I
if ALj1> A[j+1]
then swap(A.j.j+1)

See 3.1, Sorting pp 172 onwards




Complexity of bubble sort

bubbleSort(A:array n:int)
i=1t

for ji=1ton-i
if A[j]> A[j+1]
then swap(A.j.j+1)

First time round the outer loop (i=1) the inner loop executes the *if" statement 1 to n-1 times

Second time round the outer loop (i=2) the inner loop executes the “if* statement 1 to n-2 times

Third time round the outer loop (i=2) the inner loop executes the "if" statement 1 to n-3 times
n-1t" time round the outer loop (i=n-1) the inner loop executes the *if* statement 1 to n-(n-1) times

How many times is the inner "if* conditional statement executed
(i.e. this is our principal activity)?

Complexity of bubble sort

bubbleSort(A:array,niint)
fori:=1ton-1
for ji:=1ton-i
if A[j]1> A[j+1]
then swap(A.j.j+1)

(n-)+(n-2)+(n-3)+---+(n—(n-2)) +(n-(n-1))
=1+2+3+--+n-1

= :'li

_(=)(n-D+1

R

_n(n-1

=

=0(n?)

Complexity of merge sort

O(n.log(n))
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Merge sort

From Wikipedia, the s encyclopedia
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2. Sort each cfthe two sublsts B]
3. Merge the two sorted subliste back into ne sorted it
“The algorthm was invented by Jofin von Neumann in 1945

R73843[e2]

8 Merge Sort gt used o cel oy o 7 eteger vobes.
These arsthe seps aman woud ke fo et merge sor.
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S
function merge lefc, righe)
var 5st result
While lengeh(lefe) > 0 and lengeh(right) > O
©ilese) < fivserighe)
bpend first (lefe) to resule
lete = rest(lect)
eee
append first (righe) co resule
Sione = rast (rign)
if tengehilest] > 0
append left to resulc
if 1engeh (eignt) 5 0
append right to resulc
return reault
o
Analysis
& © inte=t
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In soring n items, merge sort has an average and worst-case performance of O(n lag r). Ifthe unning time of merge sort for a lst of length
nis T(s), then the recurrence Tir) = 27(n2) + n follows from the definition of the algorithm (apply the algarith to two lists of halfthe size
of the original list, and add the n steps taken to merge the resulting two lists). The closed fomn follows fiom the master theorem,

I the worst case, merge sort does exactly (n Dlog 70 - 29°2 70 + 1) comparisons, which is between (nlog 11~ n +1) and

(alog n-0.9139:n + 1) [logs are base 2. Note, the worst case number given hare doss not agree with that given in Knuth's Art of Computar
Prograimiming, Vol 3. The discrepancy s due to Knuth analyzing a variant implementation of merge sort that s slighly sub-optimal

Forlarge nand a randomly ordered input lst, merge sarts expected (average) number of comparisans approaches o-n fewer than the warst

3
o uters @ = 14 3 5= < 0.2645

10 he worst case, meige sort does about 39% fewer comparisons than uicksort does n he average case; merge sot aways makes
fewer comparisons than duicksort, except in extremely rare cases, when they te, where merge sor's worst case is found simultaneously
with quicksorts bet case. In terms of moves, merge sarts warst case complexity is Of log rj—the same complexity as quicksarts best
ase, and merge sors best case fakes abaut hlf a5 many terations a5 the worst case.

Recursive implementations of merge sort make 2n - 1 method callsinthe worst case, compared to quicksorts n, thus has roughly twice as.
much recursive ovetheatl as guicksart. However, terative, nom-recursive, implementations of merge sort, avoiding method cal overhead, are
ot iffcul 0 code. Merge Sort's most cormmon implementation does not sot i place, therefoe, the mertory size of te input rmust be
alacated for the sarted output to be stored in. Soring in-place is possible (see, for examle, [1]) but is very complicated, and wil ofer
lite performance gains in practice, even if the algorihm runs in O(nlog r) fime. In these cases, algorithm ke heapsort usually ofer
cortparable speed, and are fr less complex.

Merge sartis much more eficient than uicksart i the data to be sorted can only be sficienty accessed sequentialy, and is thus popular
in anguages such as Lisp, where sequenfialy accessed data siructures are very common. Uniike some (neficient) implementations of
auicksort, merge sort s a stable sort as lang 25 the merge operaon is implemente properly. (°#2%22 Pe¢dect
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Or go see Rosen 4.4 Recursive Algorithms (page 317 onwards)
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Worst Case i

i the masimum run e, over allnpuss of size n, ignoring effects (a) through (&) above. Thatis, we only consider the "rumber of tmes the principle activity of
that algonthm i performed”

Best Case

In this case we look at speciic nstances of input of size . For example, we might a sorting already sorted.

Average Case g

Asguably, average case is the most useful measure. Tt might be the case that worst case behaviour is pathological and extremely rare, and that we are more
dabout horw the general case. ‘measure. Firstly, we mustin some way be able
to define by what we mean as the * 0 know a great deal about the ata s of size
all data sets of size 1 are equally likely. Generally, in order to gt a Feel for the average case
input (end itis h

e mustresort to an empiricel sudy ofthe algorithm, and in some
omputation, that we can seriously consider this optior).
The Growth rate of t(n)
Suppose the worst case time for agorthm A is
a) = 60+ Stn 4 1
forinput ofsize 1.
Assume we have differing machine and compiler combinations, then t i safe to say that

©(m) = nn 4 STa/60 + 1/60
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In summacy, we are interested only n the dorinant term, and we ignore coefficients

An Example (the tyranny of growth)

Tabulated below, are a aumber of finctions against a (vora 1t 10)

(logz n) (log to base 2 of n)
)
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Think of this as algorithms A through H with complesiies as defined above, showing growth rae versus input size n. Tabulated below are functions ¥, G and H
from above Ge 2 to power n. 3 to power n, and n factoria) Problem size  varies from 10 to 100 in teps of 10. Thave assuned that we have a machine that
an perform “the principle actviy of the algorihm’ in 2 micro second (ie. i we are considering a graph colouring dgorithm, it can compare the colour of two
nodes in a millonth of a second). The columns give the mumber of years this machine would take to execute those algorithms on problems of size n (aote
YEARS). Thisis expressed as 10, 10 raised to the power x',
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52.219 Complexity
Complexity of an algorithm is a measure of the amount of time andfor space required by an algorithm for an input of a given size (n).
What effects run time of an algorithm?

(a) computer used, the hacvere placfors

(n) representasion of shetiecs dace Types (ADT's)

(0] exticiency of compiler

(3) compatence of mplemencer (programning skills

(e) complexisy of undeslyin algorsthn

(£) a3z¢ of the tnpur
“We will show that of those above () and (f) are generally the most significant
Time for an algorithm to run t(n)

A finction of input However, we wil attempt to characteise this by the size of the input. We wil try and estimate the WORST CASE, and sometimes the
BEST CASE, and very rarely the AVERAGE CASE.

What do we measure?

In analysing an algorithm, rather than a pisce of code, we vl ry and predict the mumber of imes “the princple activy” of that algorthum s performed. For
e some

example, if we are analysing a sorting algorthm w » , and it an tinal soluion, the
number asoltion. it i a graph col tber oftimes we check that a coloured node i compatble with
£ neighbours
Worst Case
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The Growth rate of tu)
Suppose the worst case time for algorthm A is
£ = 60mmrm 4 S+ 1
for input ofsize 1.
Assume we have difering machine and compiler combinations, then it i safe to say that

Tinl = nn ¢ ST/E0 + 1/60

Thats, we ignore the i) only affects the *unis" in which we measuse. It
doss not affect how the worst case fime grows with  (nput size) but orly the unit i which we measure worst case fime Under these assumptions we can say

“t(n) grovs like nin as n increases*
cim = ofnrn)
wehich reads 'iu) s of the order n squared” or as i) s big-oh n squared”

Tn sumary, we are interested only i the dominant term, and we ignore coeffcients

An Example (the tyranny of growth)

Tabulated below, are a number of finctions against  (fom 110 10)

A= tloa2 m (loa o base 2 of
& 3 o corputer
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Think of ths as algorithms A through H with compleies as defined above, showing growth rate versus input sze n Tabulated below are functions F, G and H
from above (i 2 to power n, 3 to power n, and n factorial). Problem size n varies fom 10 to 100 n steps of 10. T have assumed that we have a machine that
can perform 'the principle actviy of the algorithm" 1 a micro second (e. & we are considering a graph colouring algorithm, i can compare the colous of two
nodes in a milionth of a second). The columns give the rumber of years this machine would take to execute those algorithms on problems of size n (aote
YEARS). This is expressed as 10", "10 raised to the power x
n u
10 10010 1008 10%s
0 100 w0Ae3 100
0 1004 10%0 1018
w0 101 1008 10%34
0 100 10010 1050
60 10t w0r1s 10tes
w0 10 w0r19 10%86
s 1010 10%22 10t0s
S0 1003 10029 10%124
100 10%6 1044 10144
Therefore, if we have a problem of size (lets say 40) and the machine specifid above, i the o 1 year, fthe
O(3*#) it vl take 100,000 years, and ifthe best algorthm is O(ol) it will take .
vears
approzimately. Out offerest,the age of the universe i estimated to be between 15 and 20 bilion years old, ie 20,000,000,000 years. That i, even af modest
walues of n we are pr solved. Tis say, that rom the universe & a small
Problem Complesity
&l 2 1y Computer
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Therefore, if we have a problem of iz (lts say 40) and the machine specified above, i the best algorithm is O(2*n) it will take 1 year, i the best algorthm is
O(3™*n) it vl tace 100,000 years, and ifthe best algorithn s O(n) it wil ke

years

approgimately. Out of interest,the age of the urivese is estimated to be between 15 and 20 billon years old, ie 20,000,000,000 years. Thatis, even at modest
walues ofn we are preseated with p e sobved s say, that the universe is a small
Problem Complesity
Assume we have a problem where we must consider all possible combinations. That is elerment ¢ can be i of out of the cet, and and we kave n clements n the
set. IFwe had to find the "oest” combination we might have to esplore all ateratves n the worst case. There are 2%*n such alternatives. Such a problem s kely
to have an elgorkhn that is no beter than O(2**r) Assume we have a problem where we must find the best permutation of n objects, i given n objects
secpience them in such a vray thatthe sequence s "o ct. There are nl possible diffeent orderings, and i we had to examine allof these to
find the best i the worst case) the algorithm would be O(nl). roblems of those kind are said to be INTRACTABLE. Generally a problem s ifeactable f the

dlgoritm is NOT . ot cubic, notn raised to k), T saidto be good,
200 There are a large there are no . and we to find good agoritms or those
problems ... bt this has not yt been proven.
Practicalities
Assume we have fwo algonthms & 20d B such that
At(n) = 100%ntn milliseconds
E.t(n) = S'mratn nilliseconds

Should we aivays choose &, because A is O(n*n) and B is O(n*n*m)

& v coete
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Practicalities
Assume we have two algonthms 4 and B such that

B.t(n) = 1007n%n nilliseconds
B.t(n) = S5tntn milliseconds

Should ve alvays choose X, because A is O(ntn) and B is O(n*atn)

5 2
1 0.1 0.8
2 0.4 “04
3 09 o.s
2 16 o032
s 25 o
6 36 10e
7 a9 1lms
s 64 s
s a1 a.eas
w1 s

1 iz ssss
1 1aa e
1 168 10.s85
1@ s wm
15 22 16875
16 zs.6 20048
17 zas 24565
18 32,4 2916
19 361 3205

The table above gives the run times for A and B vith varying size ofinput. As can be seen, although B i cubic (ie Oa™i*n) i a befter algorithm to use so long as
<20, Consequently, things arer't as clear cut as we might think. When choosing an algorithm i helps to know something about the eavronment in which it will be
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Other considerations when coosing an algorithr

1. Hou often will the progran be ueed? If only once, or & fev tines
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bl

Vi1 o vl oetpa s st T, TS

I etticient aigoriitm might require caretuls coding, he difficulc

o implement, difficulc to understand, and difficult to mRincain

Can ve afford those expenses?

Consequences of more cpu
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The Sorting Algorithm Demo (1.1)

Bi-Directional

Bubble Sort Quick Sort.
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A demo?

Sorting using the java demo's?

A rough cut calculation of runtimes on different data set sizes?




