The Growth of Functions

Rosen 3.2

What affects runtime of an algorithm?

• the size of the input
• the efficiency/complexity of the algorithm?

We measure the number of times the
"principal activity" of the algorithm is
executed for a given input size n

One easy to understand example is search, finding
a piece of data in a data set

N is the size of the data set
"principal activity" might be comparison of key with data

What are we interested in? Best case, average case, or worst case?

 The Big-O Notation $f(x)=x^2+2x+1 \ \text{is} \ O(x^2)$ $x^2+2x+1 \le C.x^2 \quad \text{when} \ x>k$ $0 \le x^2+2x+1 \le x^2+2x^2+x^2=4x^2$ Whenever x is greater than 1 the above holds, consequently ... $f(x)=x^2+2x+1 \ \text{is} \ O(x^2)$

The Big-O Notation example $f(x)=x^2+2x+1 \ \ {\rm is} \ \ O(x^2)$ Note also: $x^2+2x+1 \ \ {\rm is} \ \ O(x^3)$ But we prefer the former

The Big-O Notation $f(n) = n^2 \text{ is not } O(n)$ i.e. not linear $\therefore n^2 \le Cn \text{ for some } n > k$ $\therefore \frac{n^2}{n} \le \frac{Cn}{n}$ $\therefore n \le C$ But n is a variable and C is a constant This is impossible

The Big-O Notation Yet another example Show that n! is $O(n^n)$ $\therefore n! \le C.n^n \text{ for some } n > k$ $\therefore 1.2.3.\cdots.n \le n.n.n.\cdots.n$ With C=1 and k=1 we have $n!=O(n^n)$

Complexity of bubble sort

bubbleSort(A:array,n:int)
for i := 1 to n-1
for j := 1 to n-I
if A[j] > A[j+1]
then swap(A,j,j+1)

See 3.1. Sorting pp 172 onwards

```
Complexity of bubble sort \begin{bmatrix} \text{bubbleSort}(A: \text{array}, n: \text{int}) \\ \text{for } i := 1 \text{ to } n - 1 \\ \text{for } j := 1 \text{ to } n - 1 \\ \text{for } j := 1 \text{ to } n - 1 \\ \text{if } A[j] > A[j+1] \\ \text{then swap}(A,j,j+1) \end{bmatrix}
\begin{bmatrix} (n-1) + (n-2) + (n-3) + \dots + (n-(n-2)) + (n-(n-1)) \\ = 1 + 2 + 3 + \dots + n - 1 \\ = \sum_{i}^{n-1} i \\ = \frac{(n-1)((n-1)+1)}{2} \\ = \frac{n(n-1)}{2} \\ = O(n^2) \end{bmatrix}
```

Complexity of merge sort $O(n.\log(n))$

Or go see Rosen 4.4 Recursive Algorithms (page 317 onwards)

