The Halting Problem of Turing Machines

The Halting Problem

Is there a procedure that takes as input a program and
the input to that program, and the procedure determines
if that program terminates on that input?

Posed by Alan Turing in 1936, to prove that there
are unsolvable problems

The Halting Problem

« assume we have procedure H(P.I), where P is a program and I its input
« H(P.I): if halts(P,I)
then “halts”
else “loops”
* Note: a program is a bit string, and may be considered as input
- hence H can take itself as input P or as input I
« a call H(H H) should be allowed
« Construct a new procedure K(P), where input P is a program
= K(P): if H(PP) = "loops”
then “halt"
else while true do skip; // loops forever
- K(P) does the opposite of H(PP)
« if P halts when given itself as input K loops
« if P loops when given itself as input K halts
- Just as above, a call to K(K) should be allowed
- this makes the call H(K,K)
« if H(KK) = “loops” then K(K) produces "halt"
- if H(K,K) = “halt" then K(K) loops forever
- and this violates what H(K K) tells us
- Thus H cannot exist, as it would be absurd.

A replay of the proof Part 1

Assume existence of function halt(p:string,i:string)
where p is a program file, given as a string
i is the input to p, given as a string

O function halt(p:string,i:string) : boolean
-> if program p halts with input i then return true else return false

Now define a new function trouble(p:string)

function trouble(p:string) : boolean

->if halt(p,p)
then while true do(): // p applied to p halts, so loop forever
else return true; // p applied to p loops, so halt and return true

If halt(p,p) returns true then trouble loops forever
If halt(pp) returns false then trouble halts and returns true

A replay of the proof Part 2
function trouble(p:string) : boolean
-> if halt(p,p)

then while true do();

else return true;

If halt(p,p) returns true then trouble loops forever
If halt(p,p) returns false then trouble halts and returns true

‘ Assume t is the string that represents the function trouble ‘

Does trouble(t) halt?

1. Assume trouble(t) halts
From definition of function trouble above trouble(t) does not halt
A contradiction

2. Assume trouble(t) loops forever
From definition of function trouble above trouble(t) does halt
A contradiction

A replay of the proof Part 3
function trouble(p:string) : boolean
-> if halt(p,p)

then while true do ();

else return true;

‘ Reality check: what is trouble(t)? ‘

trouble(t)
We take function trouble and give it trouble (i.e. t) as a parameter
We call halt(t,1)

- test if function trouble terminates when given as input trouble




Note: arguably this has not been a proof as we
have not defined our model of computation.

We have assumed that we all know what a function is, a computer,
a program,

In 1936 Alan Turing had to invent a “computer” just
to give the above proof.

That computer, model of computation, is
now called a "Turing Machine”

His reviewers insisted that he show that a TM
Was equivalent to Alonzo Church's Lambda Calculus

The importance of the halting problem

The first problem proved to be undecidable.

Consequences of the halting problem

The Entscheidungsproblem is unsolvable

Is it weird that a program should take a program as input?

Is it weird that a program can take itself as input?
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Undecidable
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Kurt Godel (1906-1978)

Tn 1931 the mathematician and logician Kurt Godel proved that within a formal system
questions exist that are neither provable nor di le on the basis of the axioms that define
the system. This is known as Godel's Undecid heorem. He also showed that in a
sufficiently rich formal system in which decid: of all questions is required, there will be
contradictory statements. This is known as his Incompleteness Theorem.

In establishing these th as Godel showed that there are problems
that cannot be solved ¢ set of rules or procedures; instead for thes
problems one must always extend the set of axioms. This disproved a
common belief at the time that the different branches of mathematics
could be integrated and placed on a single logical foundation.

Alan Turing later provided a constructive interpretation of Godel's
results by placing them on an algorithmic foundation: There are
numbers and functions that cannot be computed by any logical
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Kurt Godel (1906-1978)

Considered the greatest
mathematical logician of the
twentieth century, he was
one of the founders of
recursion theory.

A Princeton colleague of
Alonzo Church and
John von Neumann, his
impact on computer science
was seminal, but largely
indirect.

Philosophical significance of the
incompl eteness theorems

Much later, in his Gibbs L ecture to the American

Mathematical Society (1951),G6del would suggest

that the incompleteness theorems are relevant to

the questions

(1) whether the powers of the human mind exceed those
of any machine, and

(2) whether there are mathematical problems that are
undecidable for the human mind.

The Gibbs Lecture (1951)

In his Gibbs Lecture, Godel attempted
to draw implications from the incom-
pleteness theorems concerning three
problems in the philosophy of mind:

1. Whether there are mathematical ques-tions
that are “absolutely unsolvable” by any proof
the human mind can conceive

2. Whether the powers of the human mind
exceed those of any machine

3. Whether mathematics is our own creation or
exists independently of the human mind




Godel’s conclusions

With regard to the first two questions, Godel
argued that “Either ... the human mind (even
within the realm of pure mathematics)
infinitely surpasses the powers of any finite
machine, or else there exist absolutely
unsolvable diophantine problems”. He
believed the first alternative was more likely.

As to the ontological status of mathematics,
Godel claimed that the existence of abso-
lutely unsolvable problems would seem

“to disprove the view that mathematics is ...
our own creation; for [a] creator necessarily
knows all properties of his creatures”. He
admitted that “we build machines and still
cannot predict their behavior in every detail”.
But that objection, he said, is “very poor”:
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Can Humans solve the halting problem?

Look at a piece of code and tell me if it halts for a given input

[twinPrimes(n:integer) : boolean
->letp:=n,

found := false

in (while not(found)
(if prime(p) & prime(p+2)
found := true
elsep:=p+1),
found)]

The above function searches for twin primes greater than n,
such that p > nand p is prime as is p+2 (examples, 17 and 19,
41 and 43, 57 and 59)

Will the function halt for all values of n?
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