
DISCRETE
APPLIED
MATHEMATICS

ELSEVIER Discrete Applied Mathematics 49 (1994) 107-127

A branch and bound algorithm for the job-shop scheduling
problem*

Peter Brucker**, Bernd Jurisch, Bernd Sievers

FB 6 Mathematik, Universitiit Osnabriick, D-49069 Osnabriick. Germany

Received 28 January 1991; revised 7 January 1992

Abstract

A fast branch and bound algorithm for the job-shop scheduling problem has been developed.
Among other hard problems it solves the 10 x 10 benchmark problem which has been open for
more than 20 years. We will give a complete description of this algorithm and will present
computational results.

Key words: Job-shop scheduling; branch and bound method

1. Introduction

The job-shop scheduling problem may be formulated as follows. Consider n jobs
J 1,. . . , J, and m different machines Ml, . . . , M,. Each job Ji consists of a number ni of
operations Oil, . . . , Oini which have to be processed in this order. Furthermore,
assume that operation Oik can be processed only by one machine ,&k (i = 1, . . . , n;
k= l,..., ai). Denote by Pik the corresponding processing time. There is only one
machine of each type which can only process one operation at a time. Such an
operation must be processed without preemption. Moreover, a job cannot be pro-
cessed by two machines at the same time. According to these restrictions we have to
find an order of all operations Oik with pik = Mj for each machine Mj such that for the
corresponding schedule the maximal completion time C,,, of all jobs is minimal.

The job-shop problem is a NP-hard problem [13] for which it seems to be
extremely hard to find optimal solutions. An indication of this is given by the fact that
a lo-job, lo-machine problem formulated in 1963 [14] has been solved only recently

c71.

* Supported by the Deutsche Forschungsgemeinschaft (Project JoPTAG).
** Corresponding author.

0166-218X/94/$07.00 0 1996Elsevier Science B.V. All rights reserved

SSDI 0166-218X(92)00132-A

108 P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127

To find exact solutions of job-shop scheduling problems several branch and bound
algorithms have been developed. For many years an algorithm by McMahon and
Florian [17] has been the most efficient one. Others were less successful or led to
improvements only in some special cases. The first algorithm which solved the 10 x 10
benchmark problem of Muth and Thompson [14] and proved optimality of the
solution was developed by Carlier and Pinson in 1987 [7].

Besides branch and bound methods for finding exact solutions of the job-shop
scheduling problem heuristics have been developed. The most popular heuristics in
practice are based on priority rules. Others are more sophisticated. Among those
a method by Adams et al. [l] has been very successful. Also general purpose heuristics
as there are simulated annealing and tabu-search have been applied to job-shop
scheduling problems or to some of its generalizations [12,16]. Good heuristics are
also of importance in connection with branch and bound methods. No heuristic with
performance guarantee has been developed so far. For most heuristics there exist
instances for which these heuristics perform badly.

In this paper a new branch and bound algorithm for the job-shop schedu-
ling problem is presented. It combines two concepts which have recently been
developed.

l a generalization of a branching scheme (by Grabowski [lo]) which has success-
fully been applied to one-machine problems with release-dates and due-dates,

l a method to fix disjunctions before each branching step (due to Carlier and
Pinson [S]).

Heuristics, methods for lower bound calculations, and data structures used in our
implementation have been chosen according to their performance on the benchmark
problems of Muth and Thompson [4]. Corresponding experiments have been per-
formed by Jurisch and Sievers [l 11.

Our algorithm was coded in C. It solves the 10 x 10 benchmark problem of Muth
and Thompson on a workstation in 16 min. It also performs well on other 10 x 10
problems. Furthermore, our algorithm if used as a heuristic provides better results
than the heuristic of Adams et al. when applied to problems of size up to 10 x 10. We
also applied our algorithm to the problems of higher dimension as documented in
Adams et al. In most cases we were able to improve the best solution given in this

paper.
In this report we give a complete description of the technical details of our

algorithm. Section 2 describes the basic ideas of the branch and bound method.
Further details are discussed in the subsequent sections. Section 3 describes
the branching scheme. Heads and tails which are crucial for the method of fixing
disjunctions before branching are introduced in Section 4. Section 5 is devoted
to the method of Carlier and Pinson for fixing disjunctions. Methods for calcu-
lating lower bounds and heuristics are addressed in Sections 6 and 7. The last
section describes details of the implementation and provides computational
results.

When writing the code one of the objectives was to be flexible with respect to
changes. This was very convenient when testing different versions of the algorithm. It
also will be useful in connection with further experiments with modified versions. The
C-code is available under ORSEP [S].

P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 109

2. Solving job-shop problems by branch and bound methods

The most effective branch and bound methods are based on the disjunctive graph
model due to Roy and Sussmann [lS]. For an instance of the job-shop scheduling
problem the disjunctive graph G = (V, C u D) is defined as follows. V is the set of
nodes, representing the operations of the jobs. Additionally there are two special
nodes, a source 0 and a sink *. Each node i has a weight which is equal to the
processing time pi of the corresponding operation, whereby p. and p* are equal to 0.

C is the set of conjunctive arcs which reflect the job-order of the operations. For
every pair of operations that require the same machine there is an undirected,
so-called disjunctive arc. The set of all these arcs is denoted by D. Fig. 1 shows an
example of a problem with 4 jobs and 4 machines.

The basic scheduling decision is to define an ordering between all those operations
which have to be processed on the same machine, i.e. to fix precedence relations
between these operations.

In the disjunctive graph model this is done by turning undirected (disjunctive) arcs
into directed ones. A set of these “fixed” disjunctions is called selection. Obviously
a selection S defines a feasible schedule if and only if

_ every disjunctive arc has been fixed and
_ the resulting graph G(S) = (V, C u S) is acyclic.

In this case we call the set S a complete selection. Fig. 2 shows a selection that defines
a feasible schedule.

For a given schedule (i.e. a complete selection S) the maximal completion time of all

jobs C,,, is equal to the length of the longest weighted path from the source 0 to the
sink * in the acyclic graph G(S) = (I’, C u S). This path is usually called critical path.

Now we will give a short description of the branch and bound algorithm for the
job-shop scheduling problem. The algorithm will be represented by a search tree.
Initially, the tree contains only one node, the root. No disjunctions are fixed in this
node, i.e. it represents all feasible solutions of the problem. The successors of the root
are calculated by fixing disjunctions. The corresponding disjunctive graph represents
all solutions of the problem respecting these disjunctions. After this each successor is
recursively handled in the same way. The examination of a search tree node stops if it

Fig. 1.

110 P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127

Fig. 2.

represents only one solution (i.e. the set S of fixed disjunctive arcs is a complete
selection), or it can be shown that the node does not contain an optimal solution.

More precisely: every search tree node r corresponds with a graph G(FD,) =
G(V, C u FD,). FD, denotes the set of fixed disjunctive arcs in node r. The node
Y represents all solutions Y(r) representing the partial order given by FD,. Branching
is done by dividing Y(r) into disjoint subsets Y(si), . . . , Y(s,). Each Y(Si) is the solution

set of a problem with a graph G(FD,) = G(V, C u FD,J where FD, c FDsi which
means that G(FD,,) is derived from G(FD,) by fixing additional disjunctions. This way
of branching creates immediate successors s 1, . . . , sq of node Y in the branching tree
which are recursively treated. For each node r a value LB(r) bounding the objective
values of all solutions in Y(r) from below is calculated. We set LB(r) = CO if the
corresponding graph G(FD,) has a cycle. Furthermore, we have an upper bound UB
for the solution value of the original problem. UB is updated each time when a new
feasible solution is found which improves UB.

To specify the branch and bound procedure in more detail we have
(a) to introduce a branching scheme,
(b) to discuss methods for calculating bounds.
The following sections are devoted to these issues.

3. A branching scheme

The branching scheme we used in our implementation is based on an approach
used by Grabowski et al. [lo] in connection with single-machine scheduling with
release-dates and due-dates. It is based on a feasible schedule which corresponds to
a disjunctive graph G(S) = (V, C u S) where S is a complete selection. Let P be
a critical path in G(S) and let L(S) be the length of P. A sequence ul, . . . , uk of
successive nodes in P is called a block in G(S) if the following two properties are
satisfied:

(a) The sequence contains at least two nodes.
(b) The sequence represents a maximal number of operations which have to be

processed on the same machine.
We denote the jth block on the critical path by Bj, See Fig. 3 for blocks and
conjunctive arcs on a critical path.

P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 111

Fig. 3.

The following theorem is the basis of the considerations in this section.

Theorem 3.1. Let S be a complete selection corresponding to some solution of the
job-shop scheduling problem. If there exists another complete selection S’ such that
L(S) < L(S), at least one operation of one block in G(S) has to be processed before the
first or after the last operation of the corresponding block.

Proof. Let P = (0, u:, u:, . . . , z&, . . . , uf, us, _.. , u:~, *) be a critical path in

G(S) = (V, C u S). uj, . . . , ui, (j = 1, . . . , k) denotes a maximal number of operations
which have to be processed on the same machine (i.e. a block if mj > 1). Assume that
there is a complete selection S’ with L(S’) < L(S), and no operation of any block of
S is processed before the first or after the last operation of the corresponding block.
Therefore G(S’) = (V, C u S’) contains the arcs

u~+u{ (j=l,..., k;i=2 ,..., mJ,

u{ -+ uLj (j = 1, . . . , k; i = 1, . . . , mj - 1).

Thus, G(S) contains a path

(O,u:,u:,...,u~,-,,u~,,...,u:,uk,,...,Ukmk-l,Uk,~,*),

where the sequence v’, , . . . , vj,,_,isapermutationofui ,..., uij_i(j=l ,..., k).The
length of the critical path in G(S’) is not less than the length of this path. Let vi = ui
and~~,=uj,~forj=l,..., k.Thenwehave

L(S’) 2 i 2 P”:’
j=l () i=l

= il (i:l p.:>

= US),

which is a contradiction. 0

The following fact is an immediate consequence of the previous theorem:
If there are two complete selections S, S’ with L(S’) < L(S) then at least one of the

two conditions (i) or (ii) holds:
(i) At least one operation of one block B in G(S), different from the first operation

in B has to be processed before all other operations of B in the schedule defined by
G(S’).

112 P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127

(ii) At least one operation of one block B in G(S), different from the last operation
in B has to be processed after all other operations of B in the schedule defined by
G(S).
Now consider a node r of the search tree and a solution YE Y(u). Usually, y is
calculated using some heuristic. Let S be the complete selection corresponding with y.
A critical path in G(S) defines blocks B1, . . . , Bk. For block Bj: u{ , . . . , c&, the opera-
tions in

I!?: := Bj\{~jl} and EjA := Bj\(UG)

are called before-candidates and after-candidates, respectively.
For each before-candidate (after-candidate) an immediate successor s of the search

tree node Y is generated by moving the candidate before (after) the corresponding
block. An operation 1~ Ey is moved before block Bj by fixing the arcs {I + i:
iEBj\{l)}. Similarly, 1eEf is moved by fixing {i- 1: iEBj\{l)}.

Additional arcs can be fixed due to the following ideas. Let s be an immediate
successor of r generated by moving an operation 1 E EjB. After backtracking from s all
solutions in Y(r) with additional precedence constraints {1+ i: i E Bj\ {I} } have been
inspected. During the processing of s and all its successors a new upper bound UB
may have been found. All solutions which are calculated later on in other successors of
r and improve UB have the property that 1 is not processed before all other operations
of Bj. Such a solution would already have been found in s (or in its successors).

Now consider an arbitrary permutation El, . . . , EZk of all sets Ey and Ef. We call E,
a predecessor set of E,, (E, < E,.) if t < t’. The permutation defines a hypothetical
branching order: if we generate a successor s of r by moving a candidate ZE E,, we
assume that all search tree nodes corresponding to candidates 1’ E El u ... u E,_ 1
have already been processed. Due to the arguments given above the following
disjunctive arcs can be fixed in search tree node s:

Fj=(; ~~+i:i=uj2,...,uj,~}

for each predecessor set Ey of E, and

for each predecessor set Ef of E,.
To summarize a branching of the search tree node r which is based on the

permutation El, . . . , Ezk may be defined as follows.
For each operation 1~ ET generate a search tree node by fixing FD, = FD, u Sf’

with

SB = EBl;jEyFi u EAvEdL U {l+ i: iEBj\{l)}.
I I

For each operation 1 EEL generate a search tree node by fixing FD, = FD, u St
with

Sf = U Fi u U Li u {i-+ 1: iEBj\(l}).

P. Bucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 113

Due to Theorem 3.1 and the arguments given above all solutions in Y(r) which may
improve the actual upper bound are considered in the immediate successors of r.
Moreover, it is easy to see that we have Y(s) n Y(s’) = 8 for each pair s, s’ of
immediate successors of r.

Note that we can inspect the immediate successors of search tree node r in an
arbitrary order. The hypothetical branching order given by the permutation
E 1, ... > EZk does only influence the sets of fixed disjunctive arcs in the successor nodes.

The construction is illustrated in the following example.

Example 3.2. Consider a critical path with two blocks of the form

If we take the permutation

El = Et, E, = Ef, E3 = Ef, E, = ET,

we get the arc-sets shown in Fig. 4.
Note that in St and Sf we have the cycles 5 --f 6 -+ 5 and 4 -+ 3 -+ 4. Cycles may also

be created in connection with the arcs in FD, which have been fixed before. If cycles
are created the corresponding sets Y(s) of feasible solutions are empty.

It is advantageous to check the cycles of length two during the calculation of the
before- and after-candidates in a search tree node r. For the block B,: u:, . . . , ui, this
means if a disjunctive arc i + j (i, j E B,) is already fixed in the actual search tree node
then operation j (operation i) is not inserted into the set Ef (Et). The cycles in
Example 3.2 will be eliminated by this method. A complete cycle-check is done during
the computation of heads and tails (see Section 4).

So far we have not specified how to choose the permutation El, . . . , E,, of the sets
Eyand EjA(j= l,..., k). Our objective is to fix a large number of disjunctive arcs as
early as possible. So, we arrange the sets Ey and Ef (j = 1, . . . , k) according to
non-increasing cardinality of the corresponding blocks. In addition we always take
the set EjA as a direct successor of the set Ey. More precisely, we choose

Ezi_ I:= E~~i,, E,i:= E:(i) (i = 1, . . . , k)

with a permutation rr of 1, . . . , k such that [B,(i)1 >)Bn(j)I if i < j.
Moreover, this order can be modified to eliminate successor nodes in the search tree

introduced by before-candidates in the first block B1 and after-candidates in the last
block Bk of the critical path. The elimination of such candidates is based on ideas in
[lo] (for details we refer to this paper).

Now we are able to formulate a recursive branch and bound procedure based on
the branching rule introduced in this section.

114 P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127

Fig. 4.

PROCEDURE Branch and Bound (r)
BEGIN

Calculate a solution SE Y(r) using heuristics;
If C,,,(S) < UB THEN UB:= C,,,(S);
Calculate a critical path P;
Calculate the blocks of P;
Calculate the sets Ey and EjA;
WHILE there exists an operation i~Er with j = 1, . . . , k and v = A, B DO

Delete i from EJ;
Fix disjunctions for the corresponding successor s;
Calculate a lower bound LB(s) for node s;
IF LB(s) < UB THEN Branch and Bound (s)

END
END

Note that the handling of a search tree node stops if

P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 115

l the lower bound LB(s) is greater or equal than UB (this is the case if the
corresponding disjunctive graph has cycles, i.e. LB(s) = co) or

l the critical path of the heuristic solution calculated for S does not contain any
block or

l the sets Ef’ and Ef are empty for all blocks Bj.
We did not specify in which order the operations ie EJ are chosen, i.e. the order of

the successors of a search tree node r. We tested different methods, especially
arrangements based on lower-bound calculations. Based on our experiences the
following method should be recommended: sort the candidates according to non-
decreasing heads of before-candidates and tails of after-candidates (for the definition
of heads and tails see Section 4) and handle the successors of a search tree node
according to this order.

4. Heads and tails

With each operation i we may associate a head and a tail. Heads and tails are
important data, e.g. for lower bound calculations. They are also used in heuristics.

Calculations of heads and tails are based on all conjunctive arcs and the fixed
disjunctive arcs. Thus, they depend on the specific search tree node r-.

A head ri of operation i is an earliest possible starting time of i.
A tail qi of operation i is a lower bound for the time period between the finish-time

of operation i and the optimal makespan.
A simple way to get a head ri for operation i would be to calculate the length of the

longest weighted path from 0 to i in the disjunctive graph G = (V, C u FD,). Similarly
for each operation i the tail qi could be defined by the length of the longest weighted
path from i to * in G = (V, C u FD,).

To obtain great lower bounds it is desirable to have great heads and tails. For this
purpose the following more sophisticated procedures for calculating heads have been
developed.

If P(i) is the set of disjunctive predecessors of operation i in a search tree node,
obviously the value

max
J 5 P(i)

min Yj + 2 pj

jEJ joJ

defines a lower bound for the earliest possible starting time of operation i. Using the
head of the conjunctive predecessor h(i) of i we get the lower bound Y,(~) + Ph(i). Using
these formulas, we may recursively define the head ri of an operation i:

min rj + 1 pj

jeJ

.

jEJ

116 P. Bucker et al. 1 Discrete Applied Mathematics 49 (1994) 107-127

The same ideas lead to a formula for the tails qi of all operations:

q*:= 0;

C Pj + 7:: 4j
jsJ

Here k(i) is the conjunctive successor of i, and S(i) denotes the set of disjunctive
successors of i.

The calculation of heads can be combined with a cycle-checks as follows. We call an
operation a labelled operations if its head is calculated. Furthermore, we keep a set
D of all operations which can be labelled next, i.e. all unlabeled operations with the
property that all their predecessors are labelled. Initially D = (0). If we label an
operation i E D then i is eliminated from D and all successors of i are checked for
possible insertion into D. The procedure continues until D is empty.

The disjunctive graph G = (V, C u FD,) contains no cycle if and only if a new head
has been assigned to the fictive operation * by this procedure. It is not difficult to
prove this property which is due to the special structure of G.

In the following sections we will show how to use heads and tails in different parts of
the branch and bound algorithm.

5. Fixing additional disjunctive arcs

One of the objectives of the branching scheme introduced in Section 3 was to add
large numbers of fixed disjunctions to the set FD, when going from search tree node
r to its successors. A fast increase of the sets of fixed disjunctions is essential for the
quality of a branch and bound algorithm because

l More successors s of r contain cycles in the disjunctive graph and need not be
inspected furthermore (see Section 3).

l Generally, the value of the lower bound for the optimal makespan increases
because more fixed disjunctive arcs have to be respected.

l If we have the additional information that j has to succeed i in any solution which
improves a current upper bound then a heuristic will not look for schedules where j is
processed before i. Therefore, such a heuristic generally calculates better solutions.

In this section we will present a method due to Carlier and Pinson [g] which fixes
additional disjunctive arcs between jobs belonging to a set of operations which have
to be processed on the same machine. The method which is independent of the
branching process uses an upper bound UB for the optimal makespan and simple
lower bounds. It is based on the following inequalities (5.1) and (5.2).

Let I be the set of all operations which have to be processed on a given machine.
Furthermore, let c E I and J E Z\ {c}.

min 'j + C pj + min qj 3 UB, (5.1)
jsJ u (c) je J u (c) jeJ

min Yj +

jEJ
(5.2)

P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 117

The left-hand side of inequality (5.1) ((5.2)) defines a lower bound for all schedules in
which c is not processed after (before) all operations of J.

From now on we will be only interested in solutions S with C,,,(S) < UB. Only
these schedules will be called solutions.

The previous arguments immediately lead to the following lemma.

Lemma 5.1. Let cEI, J z Z\(c).
(a) If inequality (5.1) holds then in all solutions operation c has to be processed after

all operations of J.
(b) If inequality (5.2) holds then in all solutions operation c has to be processed before

all operations of J.

If condition (5.1) holds for an operation c and a set J, then the pair (J, c) is called
primal pair. In this case all disjunctive arcs {j -+ c: j E J} can be fixed. We call these
arcs primal arcs.

Similarly, a pair (c, J) is called dual pair if condition (5.2) holds for the set J and the
operation c. The disjunctive arcs {c --t j: j E J} which can be fixed are called dual arcs.

For 1 JI = 1, we can also use the following lemma.

Lemma 5.2. Let c, jeZ, c # j. If

r, + pc + Pj + qj 2 UB, (5.3)

j has to be processed before c in every solution.

If inequality (5.3) holds, we can fix the disjunctive arc j -+ c. This arc is called a direct
arc.

The following procedure fixes all direct arcs for the set I. Its complexity is 0((I 12).

PROCEDURE Select
BEGIN

FORALLc,jgZ,c#jDO
IF rC + pC + pj + qj 3 UB THEN

fix direct arc (j --f c);
END

Next we will derive an efficient method for calculating all useful information
associated with all primal pairs (J, c) for a given operation c. The corresponding
information for all dual pairs may be calculated similarly.

If (J, c) is a primal pair then operation c cannot start before

pj .

If rC is less than rJ, we can set r, equal to rJ.
In this case all primal arcs {j + c: je J} can be calculated by the procedure Select.

118 P. Brucker et al. 1 Discrete Applied Mathematics 49 (1994) 107-127

Lemma 5.3. Let (J, c) be a primal pair, rC 2 rJ. Then all primal arcs associated with
(J, c) are jixed by the procedure Select.

Proof. For the primal pair (J, c) we have

min rj + C pj + pc + min 4j 3 UB.

je.l jeJ jsJ

Therefore,

rc + PC + Pi + 4i 3 rJ + PC + Pi + 4i

3 min Yj + 2 pj + PC + qi
.ieJ jeJ

for all operations ie J.
The arcs i --) c are fixed by the procedure Select. 0

Now consider a primal pair (J*, c) with r J* 3 rJ for all primal pairs (J, c). If we set rC
equal to rJ*, all arcs associated with all primal pairs (J, c) are fixed by the procedure
Select.

These ideas lead to the following problem.

Primal problem 5.4. Let c E I. Does there exist a primal pair (J, c) such that r, < r,? If
it exists, find

rJ* = max (rJ: (J, c) is a primal pair}.

For the solution of the Primal Problem 5.4, we look at the so-called Jackson
Preemptive Schedule (JPS) for all operations of the set I. This schedule is the solution
of the following problem.

Let I be a set of operations which have to be processed on one machine. Associated
with each operation i there is a release-date ri, a processing time pi and a tail qi. Find
a preemptive schedule such that the value

C max = max (Ci + qi}
ifI

is minimized. Ci denotes the completion time of operation i.
This problem can be solved by the following rule: at each time t where t is

a release-date or a finish-time of an operation schedule an unfinished operation i with
vi < t and qi = max (4j: rj < t}. Carlier [6] showed that an algorithm based on this
rule has time complexity O(n log n) with n = 111.

Fig. 5 shows an example for a JPS with 6 operations.
Note that the C,,, -value of a JPS for the set I gives a lower bound for all solutions

in the corresponding search tree node. Furthermore, we assume that C,,, < UB.
Otherwise, the corresponding search tree node can be dropped.

P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 119

2 1 3 1 4 5 6 5 4

0 89 13 15 18 2021 29 36 39
II

1’4

Fig. 5.

Given a JPS for a set of operations I we assume that c E I is fixed. Then denote by
Cj, the completion time of operation j, by K+, the set of operations j with higher
q-priority than c, which are completed after time Y,:

K+ = (jE1: qj > qc, Cj > rc}

and by of, the remaining processing time of operation j after time rc (pf > 0 for all

~EK+).
In Fig. 5, we have K+ = {1,5,6} for c = 4. For a subset K E K’ we define

tK = r, + pE + C pj’ + min qj.
jsK jsK

Now a second primal problem can be formulated.

Primal problem 5.5. Let there be a given JPS for the operations of the set I. Let c E I.
Does there exist a non-empty subset K E K + such that tK 2 UB? If it exists, find such
a subset K* with maximal cardinality.

If the Primal problem 5.5 is solvable, then there exists only one set K* with maximal
cardinality. This can easily be shown as follows. Let there be two subsets K1, K2 of
K+ with tK1 2 UB and t Kz 3 UB and assume w.1.o.g. that minjsKl qj < minjeKz qj.
Then for the set K = K1 u K2 we have

tK = r, + pc + 1 pj’ + min qj

jeK jeK

3 r, + pc + 2 pj’ + min qj
jeKl jsKl

Due to Carlier and Pinson [S] we have the following theorem.

120 P. Brucker et al. 1 Discrete Applied Maihematics 49 (1994) 107-127

Theorem 5.6. Let c E I. The Primal problem 5.4 is solvable $ and only if the Primal
problem 5.5 is solvable. If it is, we have for the corresponding sets J* and K*:

rJ* = max Cj.
jsK*

For the solution of the Primal problem 5.5 we have to calculate the set K* E: K+
for a given operation c. This problem becomes easy because if K* is not empty it has
the following form:

K* = {j E K ’ : qj 3 qjo} for some operation j, E K *.
Otherwise, there would exist an operation in K + \K* with qi 2 minjEK* qj which
implies

tK* v (i) = rc + PC + 1 pj’ + min qj
jeK* v(i) jeK* u (i)

3 r, + pc + C pj’ + mm 4j

jeK*
jeK*

= t,. > UB.

But this is a contradiction to the assumption that K* is the maximal cardinality subset
of K + with tK’ 2 UB.

Due to Carlier and Pinson [IS] the value maxjcK* Cj is given by

‘. (5.4)

This value is equal to the completion time of the schedule we get if we schedule the
operations j E K* with processing times p,? after time r, in the order of non-decreasing
heads.

Now we are able to solve the Primal problem 5.4 for a given operation CE I as
follows:

(1)
(2)
(3)

(4)

Calculate the JPS up to time r,.
Calculate the set K+.
Calculate the operation j, E K + with smallest tail such that the inequality

r, + pc +
(jsK+: qj > 4,) pj’ + qj” a lYB

c

0

holds. If there does not exist such an operation, the Primal problem 5.5 is
unsolvable. Otherwise, set

K* = {jEK+:qj 2 qj,).

If K* # 8, calculate rJ* = maxjEK* Cj using (5.4). Set rc = I.,*.
The overall complexity for the calculation of the JPS is O(n log n) where n = (I I. If

the JPS has been computed up to time rc, the set K+ can be calculated in O(n) time.
The set KY can be computed by scanning the operations of K + in the order of
non-decreasing tails. If we use a sorted list, this can also be done in O(n) time. Finally,
we can calculate the value rJ* with complexity O(n). This is done by scanning the
operations of K* in the order of non-decreasing heads using (5.4). We also have to use

P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 121

a sorted list here. Because we have to solve IZ primal problems, we can fix all primal
arcs in time O(n’).

The calculation of all additional disjunctive arcs is done between the calculation of
a lower bound and the computation of a heuristic solution. In detail we proceed as
follows:

(1) calculation of all primal arcs for all machines,
(2) calculation of new heads and tails,
(3) calculation of all dual arcs of all machines,
(4) calculation of new heads and tails.

New heads and tails are computed in steps 2 and 4 because the additional arcs
influence the heads and tails of all operations. Steps 14 should be repeated as long as
new disjunctive arcs are fixed.

6. Calculation of lower bounds

Let r be a search tree node with a set FD, of fixed disjunctive arcs. Based on the arcs
FD, for each operation i a head ri and a tail qi is given. A lower bound LB(s) is
calculated for each successor s of r. If this value exceeds the actual upper bound UB

then an inspection of s is not necessary.
We tested different methods for calculating lower bounds, especially l-machine and

2-job-relaxations [4]. It turned out to be optimal to compute different lower bounds
at different places of the algorithm:

(1) Lower bound calculation during the computation of the sets Ef and Et: if
operation i should be moved before block B, all disjunctive arcs {i + j: Jo B\ {i}} are
fixed. Thus the value

ri + pi + max
i

max (pj + qj); C Pj + min
jsB\(i)

qj

jeB\lil
jeB\(il

1

is a simple lower bound for the search tree node s. Similarly, the value

max max (rj + pj); min rj + C pj + pi + qi

joB\,(i) jeB\(i) 9 \ P)

is a lower bound for the node s if i should be moved after block B.
(2) Lower bound calculation during the computation of heads and tails: if the value

ri + pi + qi of an operation i exceeds the actual upper bound, the node does not need
to be inspected. Also the head r* of the sink and the tail q. of the source of the
disjunctive graph are used as lower bounds for all solutions in the search tree node s.

(3) Lower bound calculation after the computation of heads and tails: the Jackson
Preemptive Schedule (see Section 5) is calculated for each machine. The maximal
makespan of these schedules gives a lower bound for the search tree node s.

Note that the value of the lower bound LB(s) may increase when fixing additional
disjunctions by the procedure described in Section 5. Thus it is advantageous to check
LB(s) each time when additional disjunctive arcs are fixed.

122 P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127

The calculation of all these lower bounds is advantageous because every time
a lower bound exceeds the upper bound a time consuming part of the algorithm (e.g.
the computation of heads and tails or the fixation of disjunctions) becomes useless.

7. Calculation of heuristic solutions

The branching scheme we use is based on a heuristic solution of the problem. We
implemented several heuristics and compared the results [ll].

When experimenting with the 10 x lo-problem a heuristic based on a priority
dispatching rule [3] gave the best results. The heuristic calculates the solutions step by
step in the following way:

l Calculate the set C of all operations which can be scheduled next, i.e. C is the set
of operations c with the property that all predecessors of c are already scheduled.
Initially C contains the source 0 of the disjunctive graph.

l Let u E C be the operation with minimal value r, + p,,, i.e. Y, + p,, =
mincec {r, + pc). Let Mk be th e machine which has to process operation u. We define
the set C by

C:= {c E C; rc < r, + pu; c has to be processed on Mk}

l For each operation c E C we calculate a lower bound for the makespan of the
schedule if we schedule c next. We choose the operation CE C with minimal lower
bound.

l The set C is updated by inspecting all successors c of C. If all predecessors of
c have already been scheduled, we set C = C u {c}.

After this C is deleted from C, and we start again.
We tested different methods to calculate lower bounds for the operations c E C. The

bound which gave the best results was calculated as follows.
Let T be the set of operations on machine Mk which are not scheduled yet (note that

C is a subset of T). Take as lower bound the solution value of the Jacksons Preemptive
Schedule (JSP) for the set T assuming that c has to be scheduled first.

8. Implementation and computational results

We implemented the branch and bound method in C on a Sun 4120 Workstation.
In this section we discuss the data structures used in this implementation which had
some important influence on the speed. We will also present computational results.

Our branch and bound method is based on depth-first search. Although this
method can recursively be implemented, we prefer to use an iterative algorithm which
uses a stack of search tree nodes. As a result we got a much faster code.

We have to distinguish two different types of data:
l local data in a search tree node, e.g. the lower bound,
l global data for all search tree nodes, e.g. the conjunctive arcs.
First we will describe the local data.

P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 123

blocks:

oprrations

list of candidates: b a

lower bound:

Fig. 6.

For each node r of the search tree we used the following information:
l blocks on a critical path corresponding with a heuristic solution calculated in r,
l before- and after-candidates;
l a lower bound.
In Fig. 6 we explain the corresponding data structures. The blocks are linked

according to non-increasing cardinality, and for each block we store its position on
the critical path. The candidates are stored according to non-increasing head-values
of before-candidates (b) and tail-values of after-candidates (a).

In addition we have to store all disjunctive arcs fixed in a search tree node. Due to
the fact that we used depth first search in our algorithm only the search tree nodes on
the path from the root to the actual node have to be stored simultaneously. Further-
more, the set FD, of fixed disjunctive arcs in node r is a subset of FD, ifs is a successor
of r. Thus, we can store the fixed disjunctive arcs in the following way.

We use two global arrays of linked lists, in which the sets of disjunctive predecessors
and successors are stored for each operation. New elements are always appended to
the end of these lists. This implies that we only have to store the number of disjunctive
predecessors and successors of all operations in each search tree node. Using these
numbers it is easy to delete the disjunctive arcs during the backtracking step correctly.
Fig. 7 shows an example for the storage of disjunctive predecessors for the search tree
node r and its successor s.

The global data for all search tree nodes are the conjunctive arcs and the actual
upper bound. The conjunctive arcs are stored in the same way as the disjunctive arcs.

All other data used in the algorithm (e.g. heads, tails) can be computed using these
local and global data.

The computational results are given in Tables 1 and 2. In Table 1 problems 1,2 and
3 are the well-known 6 x 6, 10 x 10 and 5 x 20 benchmark problems of Muth and
Thompson [14]. Problems 4 and 5 are the 10 x 10 problems given by Adams et al. [l]
(see problem 5 and 6 of Table 1).

The problems in Table 2 are also given by Adams et al. Their results of these
problems can be found in Table 2 of the corresponding paper.

Our tables contain the following information:
UB opt: Makespan of the optimal schedule. If this value is marked with *, we could

not prove its optimality within a time of 3-5 days and give the makespan of the best
solution found so far.

124 P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127

1121

,;, node P 3 operation
number of predecessors

71 1 ,.....
nodes 4

operation

,;, .,.... number of predecessors

Fig. 1.

Table 1

Problem UB opt UB init LB nodes CPU set UB hew UB ABZ

1 55 55 52 1 0 55 55
2 930 1090 808 4242 1138 938 930
3 *1179 1454 1164 73 39 1179 1178
4 1234 1379 1028 2146 508 1234 1239
5 943 1052 835 135 31 943 943

UB init: The makespan of the heuristic solution calculated in the root of the search
tree.

LB: A lower bound for the optimal makespan.
nodes: The number of search tree nodes the branch and bound method calculated

to find the optimal solution and to prove its optimality. If we could not prove the
optimality of UB opt we give the number of search tree nodes to reach the best found
solution.

CPU set: The time in CPU seconds used by our branch and bound method. If we
could not prove the optimality of UB opt we give the time used to reach the best found
solution.

UB heur: The value of the best solution found by our algorithm within the time
Adams et al. used to find their best solution applying the SBII-algorithm.

UB ABZ: The makespan of the best solution by Adams et al. using the SBII-
algorithm.

The branch and bound algorithm gave very good results for problems with
5 machines and lo,15 or 20 jobs and for problems with 10 machines and 10 jobs. Not
only we were able to improve the solution of Adams et al. within the time they needed,
we were also able to prove optimality of the best found solution very fast. For
problems with 5 machines, the algorithm terminates within a maximal time of 4 sec.
The hardest problem among these ones was the 5 x 20 problem given by Muth and
Thompson. We were not able to get a solution with a makespan less than 1179 within
3 days.

For the 10 x 10 benchmark problem by Muth and Thompson we were able to get
the optimal solution and to prove its optimality within 19 min using 4242 search tree

P.

Table 2

Problem UB opt UB init LB nodes CPU set UB heur UB ABZ

5 machines, 10 jobs
1 666
2 65.5
3 597
4 590
5 593

5 machines, 15 jobs
6 926
7 890
8 863
9 951

10 958

5 machines, 20 jobs
11 1222
12 1039
13 1150
14 1292
15 1207

10 machines, 10 jobs
16 945
17 784
18 848
19 842
20 902

10 machines, 15 jobs
21 * 1059
22 927
23 1032
24 935
25 977

10 machines, 20 jobs
26 1218
27 *1270
28 * 1276
29 *1202
30 1355

10 machines, 30 jobs
31 1784
32 1850
33 1719
34 1721
35 1888

15 machines, 15 jobs
36 1268
37 *1425
38 *I232
39 1233
40 *1238

671 666 4 0 666 666
835 655 34 3 655 669
696 588 12 1 597 605
696 567 40 4 590 593
593 593 1 0 593 593

926 926 1 0 926 926
960 890 1 0 890 890
893 863 2 0 863 863
951 951 1 0 951 951
958 958 1 0 958 959

1222 1222 1 0 1222 1222
1050 1039 2 1 1039 1039
1189 1150 1 0 1150 1150
1292 1292 1 0 1292 1292
1363 1207 21 4 1207 1207

1074 875 252 58 945 978
849 739 63 15 784 787
926 770 271 64 848 859
977 709 1456 340 842 860
987 807 1381 343 902 914

1175 995 626 723 414 353 1124 1084
1060 913 10 524 6 700 949 944
1155 1032 6616 3451 1071 1032
1085 881 136512 89 062 1011 976
1086 894 428 833 273 162 996 1017

1342 1218 56 564 43 800 1231 1224
1413 1235 185039 211266 1350 1291
1468 1216 20 030 14272 1279 1250
1352 1114 325 665 392 989 1242 1239
1577 1355 368 239 1355 1355

1903 1784 8 7 1784 1784
1850 1850 1 1 1850 1850
1766 1719 77 75 1737 1719
1825 1721 15 12 1721 1721
2028 1888 24 23 1888 1888

1406 1224 129 706 113419 1364 1305
1588 1355 550 980 396 484 1477 1423
1371 1077 99 546 89 229 1295 1255
1442 1221 104 739 94 739 1385 1273
1417 1170 69551 64 336 1283 1269

126 P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127

nodes. This result is improved if we start the branch and bound algorithm with better
upper bounds: for UB = 951, it needs only 14 min of CPU time and 3598 search tree
nodes for reaching the optimal solution and proving its optimality. If we start with
UB = 930, the algorithm does need only 5 min and 1288 search tree nodes for the
proof that no better solution exists.

We also got very good results for the problems with 10 machines and 30 jobs given
in Table 2. We calculated the optimal solution and proved its optimality with 1 up to
77 set with a maximal number of 75 search tree nodes.

For problems of size 10 x 15,lO x 20 and 15 x 15 we improved the solution given by
Adams et al. in 11 of 15 cases. We proved optimality for 8 test problems.

Nevertheless, there are 2 of these problems for which we did not reach the upper
bound given by Adams et al., and for others we could not prove optimality of the best
found solution. Also the improvement of the upper bound given by Adams et al. were
often done at the cost of high computational time.

Currently there exist two other fast branch and bound implementations [2, 81.
In comparison with the algorithm of Carlier and Pinson our algorithm gives very

good results for small instances of the problem (up to 10 x 10). For problems with
large ratio between the number of jobs and the number of machines (5 x 10,
5 x 20,lO x 30) our algorithm is very much faster than the one of Carlier and Pinson
(e.g. Table 2, Problems 6, 31, 32). For large instances of the problem (10 x 20, 15 x 15)
our algorithm gives poorer results.

In comparison with the results for the 10 x 10 problems reported by Applegate and
Cook our algorithm also gives very good results. In most cases their algo-
rithm needs much more time than ours does (e.g. Table 2, Problems 19,20).
The algorithm of Applegate and Cook, improves the best found solution of our
algorithm for some hard problems (e.g. Table 2, Problems 27, 38, 40). Unfortunately
they do not report the computation times which were necessary for reaching these

bounds.

9. Concluding remarks

We have presented a branch and bound algorithm for solving the job-shop
scheduling problem which solves the famous 10 x 10 benchmark problem in less than
19 min (including optimality proof) on a workstation. For other benchmark problems
new optimal solutions are given or the best known solutions are improved consider-
ably. The algorithm may also be used as a heuristic by stopping it after a fixed amount
of time. For problems up to size 10 x 10 this heuristic outperforms the heuristic of
Adams et al.

There is still room for improvement. To solve problems of size larger than 10 x 10
one could apply the heuristic of Adams et al. for providing a good initial solution
in the root of the enumeration tree. Also in the vertices of the enumeration tree
which are close to the root we may increase the effort of getting better lower
bounds. For vertices deeper in the enumeration tree it seems to be too time
consuming to apply the heuristic of Adams et al. Heuristics which are faster
but provide better results than our priority driven heuristics should be applied in

P. Brucker et al. / Discrete Applied Mathematics 49 (1994) 107-127 121

these nodes. Finally more sophisticated methods for fixing additional disjunctions
should be developed.

Acknowledgement

The authors would like to thank Prof. J. Grabowski, Prof. J. Carlier, and Dr. E.
Pinson for fruitful discussions concerning the branch and bound algorithm. They are
also very grateful for the constructive comments of the referees.

References

[l] J. Adams, E. Balas and D. Zawack, The shifting bottleneck procedure for job-shop scheduling,

Management Sci. 34 (1988) 391401.

[2] D. Applegate and W. Cook, A computational study of job shop scheduling, CMU-CS-90-145, ORSA

J. Comput. 3 (1991) 149-156.

[3] R.W. Bouma, Job-shop scheduling: A comparison of three enumeration schemes in a branch and

bound approach, Master’s thesis, Erasmus University Roterdam, Faculty of Econometrics and

Operations Research (1982).

[4] P. Brucker and B. Jurisch, A new lower bound for the job-shop scheduling problem, European J.

Oper. Res. 64 (1993) 156-167.

[5] P. Brucker, B. Jurisch and B. Sievers, Job-shop (C-codes), European J. Oper. Res. 57 (1992) 132-133.

[6] J. Carlier, One machine problem, European J. Oper. Res. 11 (1982) 4247.

[7] J. Carlier and E. Pinson, An algorithm for solving the job-shop problem, Management Sci. 35 (1989)

164-l 76.

[S] J. Carlier and E. Pinson, A practical use of Jackson’s preemptive schedule for solving the job shop

problem, Ann. Oper. Res. 26 (1990) 269-287.

[9] J. Grabowski, E. Nowicki and C. Smutnicki, Algorytm blokowy szeregowania operacji w systemie

gniazdowyn, Przeglad Statystyczny R. XXXXV, zeszyt 1 (1988) 67-80.

[lo] J. Grabowski, E. Nowicki and S. Zdrzalka, A block approach for single machine scheduling with

relase dates and due dates, European J. Oper. Res. 26 (1986) 278-285.

[ll] B. Jurisch and B. Sievers, Ein Branch and Bound Verfahren fur des Job-Shop Scheduling Problem,

Osnabriick. Schrift. Math. Reihe P, Heft 122.

[12] P.J.M. van Laarhoven, E.H.L. Aarts and J.K. Lenstra, Job shop scheduling by simulated annealing,
Oper. Res. 40 (1992) 113-125.

[13] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling problems, in:

Annals of Discrete Mathematics 1 (North-Holland, Amsterdam, 1977) 343-362.

[14] J.F. Muth and G.L. Thompson, Industrial Scheduling (Prentice-Hall, Englewood Cliffs, NJ, 1963).

[15] B. Roy and B. Sussmann, Les problemes d’ordonnancement avec contraintes disjonctives, Note DS
no. 9 bis, SEMA, Paris.

[16] M. Widmer, Job-shop scheduling with tooling constraints: a tabu search approach, OR working

paper 89/22, Departement of Mathematiques, Ecole Polytechnique Fed&ale de Lausanne.
[17] G. McMahon and M. Florian, On scheduling with ready times and due dates to minimize maximum

lateness, Oper. Res. 23 (1975) 4755482.

