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Abstract 

A fast branch and bound algorithm for the job-shop scheduling problem has been developed. 
Among other hard problems it solves the 10 x 10 benchmark problem which has been open for 
more than 20 years. We will give a complete description of this algorithm and will present 
computational results. 
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1. Introduction 

The job-shop scheduling problem may be formulated as follows. Consider n jobs 
J 1,. . . , J, and m different machines Ml, . . . , M,. Each job Ji consists of a number ni of 
operations Oil, . . . , Oini which have to be processed in this order. Furthermore, 
assume that operation Oik can be processed only by one machine ,&k (i = 1, . . . , n; 
k= l,..., ai). Denote by Pik the corresponding processing time. There is only one 
machine of each type which can only process one operation at a time. Such an 
operation must be processed without preemption. Moreover, a job cannot be pro- 
cessed by two machines at the same time. According to these restrictions we have to 
find an order of all operations Oik with pik = Mj for each machine Mj such that for the 
corresponding schedule the maximal completion time C,,, of all jobs is minimal. 

The job-shop problem is a NP-hard problem [13] for which it seems to be 
extremely hard to find optimal solutions. An indication of this is given by the fact that 
a lo-job, lo-machine problem formulated in 1963 [14] has been solved only recently 
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To find exact solutions of job-shop scheduling problems several branch and bound 
algorithms have been developed. For many years an algorithm by McMahon and 
Florian [17] has been the most efficient one. Others were less successful or led to 
improvements only in some special cases. The first algorithm which solved the 10 x 10 
benchmark problem of Muth and Thompson [14] and proved optimality of the 
solution was developed by Carlier and Pinson in 1987 [7]. 

Besides branch and bound methods for finding exact solutions of the job-shop 
scheduling problem heuristics have been developed. The most popular heuristics in 
practice are based on priority rules. Others are more sophisticated. Among those 
a method by Adams et al. [l] has been very successful. Also general purpose heuristics 
as there are simulated annealing and tabu-search have been applied to job-shop 
scheduling problems or to some of its generalizations [12,16]. Good heuristics are 
also of importance in connection with branch and bound methods. No heuristic with 
performance guarantee has been developed so far. For most heuristics there exist 
instances for which these heuristics perform badly. 

In this paper a new branch and bound algorithm for the job-shop schedu- 
ling problem is presented. It combines two concepts which have recently been 
developed. 

l a generalization of a branching scheme (by Grabowski [lo]) which has success- 
fully been applied to one-machine problems with release-dates and due-dates, 

l a method to fix disjunctions before each branching step (due to Carlier and 
Pinson [S]). 

Heuristics, methods for lower bound calculations, and data structures used in our 
implementation have been chosen according to their performance on the benchmark 
problems of Muth and Thompson [4]. Corresponding experiments have been per- 
formed by Jurisch and Sievers [l 11. 

Our algorithm was coded in C. It solves the 10 x 10 benchmark problem of Muth 
and Thompson on a workstation in 16 min. It also performs well on other 10 x 10 
problems. Furthermore, our algorithm if used as a heuristic provides better results 
than the heuristic of Adams et al. when applied to problems of size up to 10 x 10. We 
also applied our algorithm to the problems of higher dimension as documented in 
Adams et al. In most cases we were able to improve the best solution given in this 

paper. 
In this report we give a complete description of the technical details of our 

algorithm. Section 2 describes the basic ideas of the branch and bound method. 
Further details are discussed in the subsequent sections. Section 3 describes 
the branching scheme. Heads and tails which are crucial for the method of fixing 
disjunctions before branching are introduced in Section 4. Section 5 is devoted 
to the method of Carlier and Pinson for fixing disjunctions. Methods for calcu- 
lating lower bounds and heuristics are addressed in Sections 6 and 7. The last 
section describes details of the implementation and provides computational 
results. 

When writing the code one of the objectives was to be flexible with respect to 
changes. This was very convenient when testing different versions of the algorithm. It 
also will be useful in connection with further experiments with modified versions. The 
C-code is available under ORSEP [S]. 
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2. Solving job-shop problems by branch and bound methods 

The most effective branch and bound methods are based on the disjunctive graph 
model due to Roy and Sussmann [lS]. For an instance of the job-shop scheduling 
problem the disjunctive graph G = (V, C u D) is defined as follows. V is the set of 
nodes, representing the operations of the jobs. Additionally there are two special 
nodes, a source 0 and a sink *. Each node i has a weight which is equal to the 
processing time pi of the corresponding operation, whereby p. and p* are equal to 0. 

C is the set of conjunctive arcs which reflect the job-order of the operations. For 
every pair of operations that require the same machine there is an undirected, 
so-called disjunctive arc. The set of all these arcs is denoted by D. Fig. 1 shows an 
example of a problem with 4 jobs and 4 machines. 

The basic scheduling decision is to define an ordering between all those operations 
which have to be processed on the same machine, i.e. to fix precedence relations 
between these operations. 

In the disjunctive graph model this is done by turning undirected (disjunctive) arcs 
into directed ones. A set of these “fixed” disjunctions is called selection. Obviously 
a selection S defines a feasible schedule if and only if 

_ every disjunctive arc has been fixed and 
_ the resulting graph G(S) = (V, C u S) is acyclic. 

In this case we call the set S a complete selection. Fig. 2 shows a selection that defines 
a feasible schedule. 

For a given schedule (i.e. a complete selection S) the maximal completion time of all 

jobs C,,, is equal to the length of the longest weighted path from the source 0 to the 
sink * in the acyclic graph G(S) = (I’, C u S). This path is usually called critical path. 

Now we will give a short description of the branch and bound algorithm for the 
job-shop scheduling problem. The algorithm will be represented by a search tree. 
Initially, the tree contains only one node, the root. No disjunctions are fixed in this 
node, i.e. it represents all feasible solutions of the problem. The successors of the root 
are calculated by fixing disjunctions. The corresponding disjunctive graph represents 
all solutions of the problem respecting these disjunctions. After this each successor is 
recursively handled in the same way. The examination of a search tree node stops if it 

Fig. 1. 
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Fig. 2. 

represents only one solution (i.e. the set S of fixed disjunctive arcs is a complete 
selection), or it can be shown that the node does not contain an optimal solution. 

More precisely: every search tree node r corresponds with a graph G(FD,) = 
G( V, C u FD,). FD, denotes the set of fixed disjunctive arcs in node r. The node 
Y represents all solutions Y(r) representing the partial order given by FD,. Branching 
is done by dividing Y(r) into disjoint subsets Y(si), . . . , Y(s,). Each Y(Si) is the solution 

set of a problem with a graph G(FD,) = G(V, C u FD,J where FD, c FDsi which 
means that G(FD,,) is derived from G(FD,) by fixing additional disjunctions. This way 
of branching creates immediate successors s 1, . . . , sq of node Y in the branching tree 
which are recursively treated. For each node r a value LB(r) bounding the objective 
values of all solutions in Y(r) from below is calculated. We set LB(r) = CO if the 
corresponding graph G(FD,) has a cycle. Furthermore, we have an upper bound UB 
for the solution value of the original problem. UB is updated each time when a new 
feasible solution is found which improves UB. 

To specify the branch and bound procedure in more detail we have 
(a) to introduce a branching scheme, 
(b) to discuss methods for calculating bounds. 
The following sections are devoted to these issues. 

3. A branching scheme 

The branching scheme we used in our implementation is based on an approach 
used by Grabowski et al. [lo] in connection with single-machine scheduling with 
release-dates and due-dates. It is based on a feasible schedule which corresponds to 
a disjunctive graph G(S) = (V, C u S) where S is a complete selection. Let P be 
a critical path in G(S) and let L(S) be the length of P. A sequence ul, . . . , uk of 
successive nodes in P is called a block in G(S) if the following two properties are 
satisfied: 

(a) The sequence contains at least two nodes. 
(b) The sequence represents a maximal number of operations which have to be 

processed on the same machine. 
We denote the jth block on the critical path by Bj, See Fig. 3 for blocks and 
conjunctive arcs on a critical path. 
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Fig. 3. 

The following theorem is the basis of the considerations in this section. 

Theorem 3.1. Let S be a complete selection corresponding to some solution of the 
job-shop scheduling problem. If there exists another complete selection S’ such that 
L(S) < L(S), at least one operation of one block in G(S) has to be processed before the 
first or after the last operation of the corresponding block. 

Proof. Let P = (0, u:, u:, . . . , z&, . . . , uf, us, _.. , u:~, *) be a critical path in 

G(S) = (V, C u S). uj, . . . , ui, (j = 1, . . . , k) denotes a maximal number of operations 
which have to be processed on the same machine (i.e. a block if mj > 1). Assume that 
there is a complete selection S’ with L(S’) < L(S), and no operation of any block of 
S is processed before the first or after the last operation of the corresponding block. 
Therefore G(S’) = (V, C u S’) contains the arcs 

u~+u{ (j=l,..., k;i=2 ,..., mJ, 

u{ -+ uLj (j = 1, . . . , k; i = 1, . . . , mj - 1). 

Thus, G(S) contains a path 

(O,u:,u:,...,u~,-,,u~,,...,u:,uk,,...,Ukmk-l,Uk,~,*), 

where the sequence v’, , . . . , vj,,_,isapermutationofui ,..., uij_i(j=l ,..., k).The 
length of the critical path in G(S’) is not less than the length of this path. Let vi = ui 
and~~,=uj,~forj=l,..., k.Thenwehave 

L(S’) 2 i 2 P”:’ 
j=l ( ) i=l 

= il ( i:l p.:> 

= US), 

which is a contradiction. 0 

The following fact is an immediate consequence of the previous theorem: 
If there are two complete selections S, S’ with L(S’) < L(S) then at least one of the 

two conditions (i) or (ii) holds: 
(i) At least one operation of one block B in G(S), different from the first operation 

in B has to be processed before all other operations of B in the schedule defined by 
G(S’). 
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(ii) At least one operation of one block B in G(S), different from the last operation 
in B has to be processed after all other operations of B in the schedule defined by 
G(S). 
Now consider a node r of the search tree and a solution YE Y(u). Usually, y is 
calculated using some heuristic. Let S be the complete selection corresponding with y. 
A critical path in G(S) defines blocks B1, . . . , Bk. For block Bj: u{ , . . . , c&, the opera- 
tions in 

I!?: := Bj\{~jl} and EjA := Bj\(UG) 

are called before-candidates and after-candidates, respectively. 
For each before-candidate (after-candidate) an immediate successor s of the search 

tree node Y is generated by moving the candidate before (after) the corresponding 
block. An operation 1~ Ey is moved before block Bj by fixing the arcs {I + i: 
iEBj\{l)}. Similarly, 1eEf is moved by fixing {i- 1: iEBj\{l)}. 

Additional arcs can be fixed due to the following ideas. Let s be an immediate 
successor of r generated by moving an operation 1 E EjB. After backtracking from s all 
solutions in Y(r) with additional precedence constraints {1+ i: i E Bj\ {I} } have been 
inspected. During the processing of s and all its successors a new upper bound UB 
may have been found. All solutions which are calculated later on in other successors of 
r and improve UB have the property that 1 is not processed before all other operations 
of Bj. Such a solution would already have been found in s (or in its successors). 

Now consider an arbitrary permutation El, . . . , EZk of all sets Ey and Ef. We call E, 
a predecessor set of E,, (E, < E,.) if t < t’. The permutation defines a hypothetical 
branching order: if we generate a successor s of r by moving a candidate ZE E,, we 
assume that all search tree nodes corresponding to candidates 1’ E El u ... u E,_ 1 
have already been processed. Due to the arguments given above the following 
disjunctive arcs can be fixed in search tree node s: 

Fj=( ; ~~+i:i=uj2,...,uj,~} 

for each predecessor set Ey of E, and 

for each predecessor set Ef of E,. 
To summarize a branching of the search tree node r which is based on the 

permutation El, . . . , Ezk may be defined as follows. 
For each operation 1~ ET generate a search tree node by fixing FD, = FD, u Sf’ 

with 

SB = EBl;jEyFi u EAvEdL U {l+ i: iEBj\{l)}. 
I I 

For each operation 1 EEL generate a search tree node by fixing FD, = FD, u St 
with 

Sf = U Fi u U Li u {i-+ 1: iEBj\(l}). 
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Due to Theorem 3.1 and the arguments given above all solutions in Y(r) which may 
improve the actual upper bound are considered in the immediate successors of r. 
Moreover, it is easy to see that we have Y(s) n Y(s’) = 8 for each pair s, s’ of 
immediate successors of r. 

Note that we can inspect the immediate successors of search tree node r in an 
arbitrary order. The hypothetical branching order given by the permutation 
E 1, ... > EZk does only influence the sets of fixed disjunctive arcs in the successor nodes. 

The construction is illustrated in the following example. 

Example 3.2. Consider a critical path with two blocks of the form 

If we take the permutation 

El = Et, E, = Ef, E3 = Ef, E, = ET, 

we get the arc-sets shown in Fig. 4. 
Note that in St and Sf we have the cycles 5 --f 6 -+ 5 and 4 -+ 3 -+ 4. Cycles may also 

be created in connection with the arcs in FD, which have been fixed before. If cycles 
are created the corresponding sets Y(s) of feasible solutions are empty. 

It is advantageous to check the cycles of length two during the calculation of the 
before- and after-candidates in a search tree node r. For the block B,: u:, . . . , ui, this 
means if a disjunctive arc i + j (i, j E B,) is already fixed in the actual search tree node 
then operation j (operation i) is not inserted into the set Ef (Et). The cycles in 
Example 3.2 will be eliminated by this method. A complete cycle-check is done during 
the computation of heads and tails (see Section 4). 

So far we have not specified how to choose the permutation El, . . . , E,, of the sets 
Eyand EjA(j= l,..., k). Our objective is to fix a large number of disjunctive arcs as 
early as possible. So, we arrange the sets Ey and Ef (j = 1, . . . , k) according to 
non-increasing cardinality of the corresponding blocks. In addition we always take 
the set EjA as a direct successor of the set Ey. More precisely, we choose 

Ezi_ I:= E~~i,, E,i:= E:(i) (i = 1, . . . , k) 

with a permutation rr of 1, . . . , k such that [B,(i)1 > )Bn(j)I if i < j. 
Moreover, this order can be modified to eliminate successor nodes in the search tree 

introduced by before-candidates in the first block B1 and after-candidates in the last 
block Bk of the critical path. The elimination of such candidates is based on ideas in 
[lo] (for details we refer to this paper). 

Now we are able to formulate a recursive branch and bound procedure based on 
the branching rule introduced in this section. 
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Fig. 4. 

PROCEDURE Branch and Bound (r) 
BEGIN 

Calculate a solution SE Y(r) using heuristics; 
If C,,,(S) < UB THEN UB:= C,,,(S); 
Calculate a critical path P; 
Calculate the blocks of P; 
Calculate the sets Ey and EjA; 
WHILE there exists an operation i~Er with j = 1, . . . , k and v = A, B DO 

Delete i from EJ; 
Fix disjunctions for the corresponding successor s; 
Calculate a lower bound LB(s) for node s; 
IF LB(s) < UB THEN Branch and Bound (s) 

END 
END 

Note that the handling of a search tree node stops if 
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l the lower bound LB(s) is greater or equal than UB (this is the case if the 
corresponding disjunctive graph has cycles, i.e. LB(s) = co) or 

l the critical path of the heuristic solution calculated for S does not contain any 
block or 

l the sets Ef’ and Ef are empty for all blocks Bj. 
We did not specify in which order the operations ie EJ are chosen, i.e. the order of 

the successors of a search tree node r. We tested different methods, especially 
arrangements based on lower-bound calculations. Based on our experiences the 
following method should be recommended: sort the candidates according to non- 
decreasing heads of before-candidates and tails of after-candidates (for the definition 
of heads and tails see Section 4) and handle the successors of a search tree node 
according to this order. 

4. Heads and tails 

With each operation i we may associate a head and a tail. Heads and tails are 
important data, e.g. for lower bound calculations. They are also used in heuristics. 

Calculations of heads and tails are based on all conjunctive arcs and the fixed 
disjunctive arcs. Thus, they depend on the specific search tree node r-. 

A head ri of operation i is an earliest possible starting time of i. 
A tail qi of operation i is a lower bound for the time period between the finish-time 

of operation i and the optimal makespan. 
A simple way to get a head ri for operation i would be to calculate the length of the 

longest weighted path from 0 to i in the disjunctive graph G = (V, C u FD,). Similarly 
for each operation i the tail qi could be defined by the length of the longest weighted 
path from i to * in G = (V, C u FD,). 

To obtain great lower bounds it is desirable to have great heads and tails. For this 
purpose the following more sophisticated procedures for calculating heads have been 
developed. 

If P(i) is the set of disjunctive predecessors of operation i in a search tree node, 
obviously the value 

max 
J 5 P(i) 

min Yj + 2 pj 

jEJ joJ 

defines a lower bound for the earliest possible starting time of operation i. Using the 
head of the conjunctive predecessor h(i) of i we get the lower bound Y,(~) + Ph(i). Using 
these formulas, we may recursively define the head ri of an operation i: 

min rj + 1 pj 

jeJ 

. 

jEJ 
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The same ideas lead to a formula for the tails qi of all operations: 

q*:= 0; 

C Pj + 7:: 4j 
jsJ 

Here k(i) is the conjunctive successor of i, and S(i) denotes the set of disjunctive 
successors of i. 

The calculation of heads can be combined with a cycle-checks as follows. We call an 
operation a labelled operations if its head is calculated. Furthermore, we keep a set 
D of all operations which can be labelled next, i.e. all unlabeled operations with the 
property that all their predecessors are labelled. Initially D = (0). If we label an 
operation i E D then i is eliminated from D and all successors of i are checked for 
possible insertion into D. The procedure continues until D is empty. 

The disjunctive graph G = (V, C u FD,) contains no cycle if and only if a new head 
has been assigned to the fictive operation * by this procedure. It is not difficult to 
prove this property which is due to the special structure of G. 

In the following sections we will show how to use heads and tails in different parts of 
the branch and bound algorithm. 

5. Fixing additional disjunctive arcs 

One of the objectives of the branching scheme introduced in Section 3 was to add 
large numbers of fixed disjunctions to the set FD, when going from search tree node 
r to its successors. A fast increase of the sets of fixed disjunctions is essential for the 
quality of a branch and bound algorithm because 

l More successors s of r contain cycles in the disjunctive graph and need not be 
inspected furthermore (see Section 3). 

l Generally, the value of the lower bound for the optimal makespan increases 
because more fixed disjunctive arcs have to be respected. 

l If we have the additional information that j has to succeed i in any solution which 
improves a current upper bound then a heuristic will not look for schedules where j is 
processed before i. Therefore, such a heuristic generally calculates better solutions. 

In this section we will present a method due to Carlier and Pinson [g] which fixes 
additional disjunctive arcs between jobs belonging to a set of operations which have 
to be processed on the same machine. The method which is independent of the 
branching process uses an upper bound UB for the optimal makespan and simple 
lower bounds. It is based on the following inequalities (5.1) and (5.2). 

Let I be the set of all operations which have to be processed on a given machine. 
Furthermore, let c E I and J E Z\ {c}. 

min 'j + C pj + min qj 3 UB, (5.1) 
jsJ u (c) je J u (c) jeJ 

min Yj + 

jEJ 
(5.2) 
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The left-hand side of inequality (5.1) ((5.2)) defines a lower bound for all schedules in 
which c is not processed after (before) all operations of J. 

From now on we will be only interested in solutions S with C,,,(S) < UB. Only 
these schedules will be called solutions. 

The previous arguments immediately lead to the following lemma. 

Lemma 5.1. Let cEI, J z Z\(c). 
(a) If inequality (5.1) holds then in all solutions operation c has to be processed after 

all operations of J. 
(b) If inequality (5.2) holds then in all solutions operation c has to be processed before 

all operations of J. 

If condition (5.1) holds for an operation c and a set J, then the pair (J, c) is called 
primal pair. In this case all disjunctive arcs {j -+ c: j E J} can be fixed. We call these 
arcs primal arcs. 

Similarly, a pair (c, J) is called dual pair if condition (5.2) holds for the set J and the 
operation c. The disjunctive arcs {c --t j: j E J} which can be fixed are called dual arcs. 

For 1 JI = 1, we can also use the following lemma. 

Lemma 5.2. Let c, jeZ, c # j. If 

r, + pc + Pj + qj 2 UB, (5.3) 

j has to be processed before c in every solution. 

If inequality (5.3) holds, we can fix the disjunctive arc j -+ c. This arc is called a direct 
arc. 

The following procedure fixes all direct arcs for the set I. Its complexity is 0( (I 12). 

PROCEDURE Select 
BEGIN 

FORALLc,jgZ,c#jDO 
IF rC + pC + pj + qj 3 UB THEN 

fix direct arc (j --f c); 
END 

Next we will derive an efficient method for calculating all useful information 
associated with all primal pairs (J, c) for a given operation c. The corresponding 
information for all dual pairs may be calculated similarly. 

If (J, c) is a primal pair then operation c cannot start before 

pj . 

If rC is less than rJ, we can set r, equal to rJ. 
In this case all primal arcs {j + c: je J} can be calculated by the procedure Select. 
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Lemma 5.3. Let (J, c) be a primal pair, rC 2 rJ. Then all primal arcs associated with 
(J, c) are jixed by the procedure Select. 

Proof. For the primal pair (J, c) we have 

min rj + C pj + pc + min 4j 3 UB. 

je.l jeJ jsJ 

Therefore, 

rc + PC + Pi + 4i 3 rJ + PC + Pi + 4i 

3 min Yj + 2 pj + PC + qi 
.ieJ jeJ 

for all operations ie J. 
The arcs i --) c are fixed by the procedure Select. 0 

Now consider a primal pair (J*, c) with r J* 3 rJ for all primal pairs (J, c). If we set rC 
equal to rJ*, all arcs associated with all primal pairs (J, c) are fixed by the procedure 
Select. 

These ideas lead to the following problem. 

Primal problem 5.4. Let c E I. Does there exist a primal pair (J, c) such that r, < r,? If 
it exists, find 

rJ* = max (rJ: (J, c) is a primal pair}. 

For the solution of the Primal Problem 5.4, we look at the so-called Jackson 
Preemptive Schedule (JPS) for all operations of the set I. This schedule is the solution 
of the following problem. 

Let I be a set of operations which have to be processed on one machine. Associated 
with each operation i there is a release-date ri, a processing time pi and a tail qi. Find 
a preemptive schedule such that the value 

C max = max (Ci + qi} 
ifI 

is minimized. Ci denotes the completion time of operation i. 
This problem can be solved by the following rule: at each time t where t is 

a release-date or a finish-time of an operation schedule an unfinished operation i with 
vi < t and qi = max (4j: rj < t}. Carlier [6] showed that an algorithm based on this 
rule has time complexity O(n log n) with n = 111. 

Fig. 5 shows an example for a JPS with 6 operations. 
Note that the C,,, -value of a JPS for the set I gives a lower bound for all solutions 

in the corresponding search tree node. Furthermore, we assume that C,,, < UB. 
Otherwise, the corresponding search tree node can be dropped. 
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2 1 3 1 4 5 6 5 4 

0 89 13 15 18 2021 29 36 39 
II 

1’4 

Fig. 5. 

Given a JPS for a set of operations I we assume that c E I is fixed. Then denote by 
Cj, the completion time of operation j, by K+, the set of operations j with higher 
q-priority than c, which are completed after time Y,: 

K+ = (jE1: qj > qc, Cj > rc} 

and by of, the remaining processing time of operation j after time rc (pf > 0 for all 

~EK+). 
In Fig. 5, we have K+ = {1,5,6} for c = 4. For a subset K E K’ we define 

tK = r, + pE + C pj’ + min qj. 
jsK jsK 

Now a second primal problem can be formulated. 

Primal problem 5.5. Let there be a given JPS for the operations of the set I. Let c E I. 
Does there exist a non-empty subset K E K + such that tK 2 UB? If it exists, find such 
a subset K* with maximal cardinality. 

If the Primal problem 5.5 is solvable, then there exists only one set K* with maximal 
cardinality. This can easily be shown as follows. Let there be two subsets K1, K2 of 
K+ with tK1 2 UB and t Kz 3 UB and assume w.1.o.g. that minjsKl qj < minjeKz qj. 
Then for the set K = K1 u K2 we have 

tK = r, + pc + 1 pj’ + min qj 

jeK jeK 

3 r, + pc + 2 pj’ + min qj 
jeKl jsKl 

Due to Carlier and Pinson [S] we have the following theorem. 
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Theorem 5.6. Let c E I. The Primal problem 5.4 is solvable $ and only if the Primal 
problem 5.5 is solvable. If it is, we have for the corresponding sets J* and K*: 

rJ* = max Cj. 
jsK* 

For the solution of the Primal problem 5.5 we have to calculate the set K* E: K+ 
for a given operation c. This problem becomes easy because if K* is not empty it has 
the following form: 

K* = {j E K ’ : qj 3 qjo} for some operation j, E K *. 
Otherwise, there would exist an operation in K + \K* with qi 2 minjEK* qj which 
implies 

tK* v (i) = rc + PC + 1 pj’ + min qj 
jeK* v(i) jeK* u (i) 

3 r, + pc + C pj’ + mm 4j 

jeK* 
jeK* 

= t,. > UB. 

But this is a contradiction to the assumption that K* is the maximal cardinality subset 
of K + with tK’ 2 UB. 

Due to Carlier and Pinson [IS] the value maxjcK* Cj is given by 

‘. (5.4) 

This value is equal to the completion time of the schedule we get if we schedule the 
operations j E K* with processing times p,? after time r, in the order of non-decreasing 
heads. 

Now we are able to solve the Primal problem 5.4 for a given operation CE I as 
follows: 

(1) 
(2) 
(3) 

(4) 

Calculate the JPS up to time r,. 
Calculate the set K+. 
Calculate the operation j, E K + with smallest tail such that the inequality 

r, + pc + 
(jsK+: qj > 4,) pj’ + qj” a lYB 

c 

0 

holds. If there does not exist such an operation, the Primal problem 5.5 is 
unsolvable. Otherwise, set 

K* = {jEK+:qj 2 qj,). 

If K* # 8, calculate rJ* = maxjEK* Cj using (5.4). Set rc = I.,*. 
The overall complexity for the calculation of the JPS is O(n log n) where n = (I I. If 

the JPS has been computed up to time rc, the set K+ can be calculated in O(n) time. 
The set KY can be computed by scanning the operations of K + in the order of 
non-decreasing tails. If we use a sorted list, this can also be done in O(n) time. Finally, 
we can calculate the value rJ* with complexity O(n). This is done by scanning the 
operations of K* in the order of non-decreasing heads using (5.4). We also have to use 
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a sorted list here. Because we have to solve IZ primal problems, we can fix all primal 
arcs in time O(n’). 

The calculation of all additional disjunctive arcs is done between the calculation of 
a lower bound and the computation of a heuristic solution. In detail we proceed as 
follows: 

(1) calculation of all primal arcs for all machines, 
(2) calculation of new heads and tails, 
(3) calculation of all dual arcs of all machines, 
(4) calculation of new heads and tails. 

New heads and tails are computed in steps 2 and 4 because the additional arcs 
influence the heads and tails of all operations. Steps 14 should be repeated as long as 
new disjunctive arcs are fixed. 

6. Calculation of lower bounds 

Let r be a search tree node with a set FD, of fixed disjunctive arcs. Based on the arcs 
FD, for each operation i a head ri and a tail qi is given. A lower bound LB(s) is 
calculated for each successor s of r. If this value exceeds the actual upper bound UB 

then an inspection of s is not necessary. 
We tested different methods for calculating lower bounds, especially l-machine and 

2-job-relaxations [4]. It turned out to be optimal to compute different lower bounds 
at different places of the algorithm: 

(1) Lower bound calculation during the computation of the sets Ef and Et: if 
operation i should be moved before block B, all disjunctive arcs {i + j: Jo B\ {i}} are 
fixed. Thus the value 

ri + pi + max 
i 

max (pj + qj); C Pj + min 
jsB\(i) 

qj 

jeB\lil 
jeB\(il 

1 

is a simple lower bound for the search tree node s. Similarly, the value 

max max (rj + pj); min rj + C pj + pi + qi 

joB\,(i) jeB\(i) 9 \ P) 

is a lower bound for the node s if i should be moved after block B. 
(2) Lower bound calculation during the computation of heads and tails: if the value 

ri + pi + qi of an operation i exceeds the actual upper bound, the node does not need 
to be inspected. Also the head r* of the sink and the tail q. of the source of the 
disjunctive graph are used as lower bounds for all solutions in the search tree node s. 

(3) Lower bound calculation after the computation of heads and tails: the Jackson 
Preemptive Schedule (see Section 5) is calculated for each machine. The maximal 
makespan of these schedules gives a lower bound for the search tree node s. 

Note that the value of the lower bound LB(s) may increase when fixing additional 
disjunctions by the procedure described in Section 5. Thus it is advantageous to check 
LB(s) each time when additional disjunctive arcs are fixed. 
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The calculation of all these lower bounds is advantageous because every time 
a lower bound exceeds the upper bound a time consuming part of the algorithm (e.g. 
the computation of heads and tails or the fixation of disjunctions) becomes useless. 

7. Calculation of heuristic solutions 

The branching scheme we use is based on a heuristic solution of the problem. We 
implemented several heuristics and compared the results [ll]. 

When experimenting with the 10 x lo-problem a heuristic based on a priority 
dispatching rule [3] gave the best results. The heuristic calculates the solutions step by 
step in the following way: 

l Calculate the set C of all operations which can be scheduled next, i.e. C is the set 
of operations c with the property that all predecessors of c are already scheduled. 
Initially C contains the source 0 of the disjunctive graph. 

l Let u E C be the operation with minimal value r, + p,,, i.e. Y, + p,, = 
mincec {r, + pc). Let Mk be th e machine which has to process operation u. We define 
the set C by 

C:= {c E C; rc < r, + pu; c has to be processed on Mk} 

l For each operation c E C we calculate a lower bound for the makespan of the 
schedule if we schedule c next. We choose the operation CE C with minimal lower 
bound. 

l The set C is updated by inspecting all successors c of C. If all predecessors of 
c have already been scheduled, we set C = C u {c}. 

After this C is deleted from C, and we start again. 
We tested different methods to calculate lower bounds for the operations c E C. The 

bound which gave the best results was calculated as follows. 
Let T be the set of operations on machine Mk which are not scheduled yet (note that 

C is a subset of T). Take as lower bound the solution value of the Jacksons Preemptive 
Schedule (JSP) for the set T assuming that c has to be scheduled first. 

8. Implementation and computational results 

We implemented the branch and bound method in C on a Sun 4120 Workstation. 
In this section we discuss the data structures used in this implementation which had 
some important influence on the speed. We will also present computational results. 

Our branch and bound method is based on depth-first search. Although this 
method can recursively be implemented, we prefer to use an iterative algorithm which 
uses a stack of search tree nodes. As a result we got a much faster code. 

We have to distinguish two different types of data: 
l local data in a search tree node, e.g. the lower bound, 
l global data for all search tree nodes, e.g. the conjunctive arcs. 
First we will describe the local data. 
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blocks: 

oprrations 

list of candidates: b a 

lower bound: 

Fig. 6. 

For each node r of the search tree we used the following information: 
l blocks on a critical path corresponding with a heuristic solution calculated in r, 
l before- and after-candidates; 
l a lower bound. 
In Fig. 6 we explain the corresponding data structures. The blocks are linked 

according to non-increasing cardinality, and for each block we store its position on 
the critical path. The candidates are stored according to non-increasing head-values 
of before-candidates (b) and tail-values of after-candidates (a). 

In addition we have to store all disjunctive arcs fixed in a search tree node. Due to 
the fact that we used depth first search in our algorithm only the search tree nodes on 
the path from the root to the actual node have to be stored simultaneously. Further- 
more, the set FD, of fixed disjunctive arcs in node r is a subset of FD, ifs is a successor 
of r. Thus, we can store the fixed disjunctive arcs in the following way. 

We use two global arrays of linked lists, in which the sets of disjunctive predecessors 
and successors are stored for each operation. New elements are always appended to 
the end of these lists. This implies that we only have to store the number of disjunctive 
predecessors and successors of all operations in each search tree node. Using these 
numbers it is easy to delete the disjunctive arcs during the backtracking step correctly. 
Fig. 7 shows an example for the storage of disjunctive predecessors for the search tree 
node r and its successor s. 

The global data for all search tree nodes are the conjunctive arcs and the actual 
upper bound. The conjunctive arcs are stored in the same way as the disjunctive arcs. 

All other data used in the algorithm (e.g. heads, tails) can be computed using these 
local and global data. 

The computational results are given in Tables 1 and 2. In Table 1 problems 1,2 and 
3 are the well-known 6 x 6, 10 x 10 and 5 x 20 benchmark problems of Muth and 
Thompson [14]. Problems 4 and 5 are the 10 x 10 problems given by Adams et al. [l] 
(see problem 5 and 6 of Table 1). 

The problems in Table 2 are also given by Adams et al. Their results of these 
problems can be found in Table 2 of the corresponding paper. 

Our tables contain the following information: 
UB opt: Makespan of the optimal schedule. If this value is marked with *, we could 

not prove its optimality within a time of 3-5 days and give the makespan of the best 
solution found so far. 
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Fig. 1. 

Table 1 

Problem UB opt UB init LB nodes CPU set UB hew UB ABZ 

1 55 55 52 1 0 55 55 
2 930 1090 808 4242 1138 938 930 
3 *1179 1454 1164 73 39 1179 1178 
4 1234 1379 1028 2146 508 1234 1239 
5 943 1052 835 135 31 943 943 

UB init: The makespan of the heuristic solution calculated in the root of the search 
tree. 

LB: A lower bound for the optimal makespan. 
nodes: The number of search tree nodes the branch and bound method calculated 

to find the optimal solution and to prove its optimality. If we could not prove the 
optimality of UB opt we give the number of search tree nodes to reach the best found 
solution. 

CPU set: The time in CPU seconds used by our branch and bound method. If we 
could not prove the optimality of UB opt we give the time used to reach the best found 
solution. 

UB heur: The value of the best solution found by our algorithm within the time 
Adams et al. used to find their best solution applying the SBII-algorithm. 

UB ABZ: The makespan of the best solution by Adams et al. using the SBII- 
algorithm. 

The branch and bound algorithm gave very good results for problems with 
5 machines and lo,15 or 20 jobs and for problems with 10 machines and 10 jobs. Not 
only we were able to improve the solution of Adams et al. within the time they needed, 
we were also able to prove optimality of the best found solution very fast. For 
problems with 5 machines, the algorithm terminates within a maximal time of 4 sec. 
The hardest problem among these ones was the 5 x 20 problem given by Muth and 
Thompson. We were not able to get a solution with a makespan less than 1179 within 
3 days. 

For the 10 x 10 benchmark problem by Muth and Thompson we were able to get 
the optimal solution and to prove its optimality within 19 min using 4242 search tree 
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Table 2 

Problem UB opt UB init LB nodes CPU set UB heur UB ABZ 

5 machines, 10 jobs 
1 666 
2 65.5 
3 597 
4 590 
5 593 

5 machines, 15 jobs 
6 926 
7 890 
8 863 
9 951 

10 958 

5 machines, 20 jobs 
11 1222 
12 1039 
13 1150 
14 1292 
15 1207 

10 machines, 10 jobs 
16 945 
17 784 
18 848 
19 842 
20 902 

10 machines, 15 jobs 
21 * 1059 
22 927 
23 1032 
24 935 
25 977 

10 machines, 20 jobs 
26 1218 
27 *1270 
28 * 1276 
29 *1202 
30 1355 

10 machines, 30 jobs 
31 1784 
32 1850 
33 1719 
34 1721 
35 1888 

15 machines, 15 jobs 
36 1268 
37 *1425 
38 *I232 
39 1233 
40 *1238 

671 666 4 0 666 666 
835 655 34 3 655 669 
696 588 12 1 597 605 
696 567 40 4 590 593 
593 593 1 0 593 593 

926 926 1 0 926 926 
960 890 1 0 890 890 
893 863 2 0 863 863 
951 951 1 0 951 951 
958 958 1 0 958 959 

1222 1222 1 0 1222 1222 
1050 1039 2 1 1039 1039 
1189 1150 1 0 1150 1150 
1292 1292 1 0 1292 1292 
1363 1207 21 4 1207 1207 

1074 875 252 58 945 978 
849 739 63 15 784 787 
926 770 271 64 848 859 
977 709 1456 340 842 860 
987 807 1381 343 902 914 

1175 995 626 723 414 353 1124 1084 
1060 913 10 524 6 700 949 944 
1155 1032 6616 3451 1071 1032 
1085 881 136512 89 062 1011 976 
1086 894 428 833 273 162 996 1017 

1342 1218 56 564 43 800 1231 1224 
1413 1235 185039 211266 1350 1291 
1468 1216 20 030 14272 1279 1250 
1352 1114 325 665 392 989 1242 1239 
1577 1355 368 239 1355 1355 

1903 1784 8 7 1784 1784 
1850 1850 1 1 1850 1850 
1766 1719 77 75 1737 1719 
1825 1721 15 12 1721 1721 
2028 1888 24 23 1888 1888 

1406 1224 129 706 113419 1364 1305 
1588 1355 550 980 396 484 1477 1423 
1371 1077 99 546 89 229 1295 1255 
1442 1221 104 739 94 739 1385 1273 
1417 1170 69551 64 336 1283 1269 
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nodes. This result is improved if we start the branch and bound algorithm with better 
upper bounds: for UB = 951, it needs only 14 min of CPU time and 3598 search tree 
nodes for reaching the optimal solution and proving its optimality. If we start with 
UB = 930, the algorithm does need only 5 min and 1288 search tree nodes for the 
proof that no better solution exists. 

We also got very good results for the problems with 10 machines and 30 jobs given 
in Table 2. We calculated the optimal solution and proved its optimality with 1 up to 
77 set with a maximal number of 75 search tree nodes. 

For problems of size 10 x 15,lO x 20 and 15 x 15 we improved the solution given by 
Adams et al. in 11 of 15 cases. We proved optimality for 8 test problems. 

Nevertheless, there are 2 of these problems for which we did not reach the upper 
bound given by Adams et al., and for others we could not prove optimality of the best 
found solution. Also the improvement of the upper bound given by Adams et al. were 
often done at the cost of high computational time. 

Currently there exist two other fast branch and bound implementations [2, 81. 
In comparison with the algorithm of Carlier and Pinson our algorithm gives very 

good results for small instances of the problem (up to 10 x 10). For problems with 
large ratio between the number of jobs and the number of machines (5 x 10, 
5 x 20,lO x 30) our algorithm is very much faster than the one of Carlier and Pinson 
(e.g. Table 2, Problems 6, 31, 32). For large instances of the problem (10 x 20, 15 x 15) 
our algorithm gives poorer results. 

In comparison with the results for the 10 x 10 problems reported by Applegate and 
Cook our algorithm also gives very good results. In most cases their algo- 
rithm needs much more time than ours does (e.g. Table 2, Problems 19,20). 
The algorithm of Applegate and Cook, improves the best found solution of our 
algorithm for some hard problems (e.g. Table 2, Problems 27, 38, 40). Unfortunately 
they do not report the computation times which were necessary for reaching these 

bounds. 

9. Concluding remarks 

We have presented a branch and bound algorithm for solving the job-shop 
scheduling problem which solves the famous 10 x 10 benchmark problem in less than 
19 min (including optimality proof) on a workstation. For other benchmark problems 
new optimal solutions are given or the best known solutions are improved consider- 
ably. The algorithm may also be used as a heuristic by stopping it after a fixed amount 
of time. For problems up to size 10 x 10 this heuristic outperforms the heuristic of 
Adams et al. 

There is still room for improvement. To solve problems of size larger than 10 x 10 
one could apply the heuristic of Adams et al. for providing a good initial solution 
in the root of the enumeration tree. Also in the vertices of the enumeration tree 
which are close to the root we may increase the effort of getting better lower 
bounds. For vertices deeper in the enumeration tree it seems to be too time 
consuming to apply the heuristic of Adams et al. Heuristics which are faster 
but provide better results than our priority driven heuristics should be applied in 
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these nodes. Finally more sophisticated methods for fixing additional disjunctions 
should be developed. 

Acknowledgement 

The authors would like to thank Prof. J. Grabowski, Prof. J. Carlier, and Dr. E. 
Pinson for fruitful discussions concerning the branch and bound algorithm. They are 
also very grateful for the constructive comments of the referees. 

References 

[l] J. Adams, E. Balas and D. Zawack, The shifting bottleneck procedure for job-shop scheduling, 

Management Sci. 34 (1988) 391401. 

[2] D. Applegate and W. Cook, A computational study of job shop scheduling, CMU-CS-90-145, ORSA 

J. Comput. 3 (1991) 149-156. 

[3] R.W. Bouma, Job-shop scheduling: A comparison of three enumeration schemes in a branch and 

bound approach, Master’s thesis, Erasmus University Roterdam, Faculty of Econometrics and 

Operations Research (1982). 

[4] P. Brucker and B. Jurisch, A new lower bound for the job-shop scheduling problem, European J. 

Oper. Res. 64 (1993) 156-167. 

[5] P. Brucker, B. Jurisch and B. Sievers, Job-shop (C-codes), European J. Oper. Res. 57 (1992) 132-133. 

[6] J. Carlier, One machine problem, European J. Oper. Res. 11 (1982) 4247. 

[7] J. Carlier and E. Pinson, An algorithm for solving the job-shop problem, Management Sci. 35 (1989) 

164-l 76. 

[S] J. Carlier and E. Pinson, A practical use of Jackson’s preemptive schedule for solving the job shop 

problem, Ann. Oper. Res. 26 (1990) 269-287. 

[9] J. Grabowski, E. Nowicki and C. Smutnicki, Algorytm blokowy szeregowania operacji w systemie 

gniazdowyn, Przeglad Statystyczny R. XXXXV, zeszyt 1 (1988) 67-80. 

[lo] J. Grabowski, E. Nowicki and S. Zdrzalka, A block approach for single machine scheduling with 

relase dates and due dates, European J. Oper. Res. 26 (1986) 278-285. 

[ll] B. Jurisch and B. Sievers, Ein Branch and Bound Verfahren fur des Job-Shop Scheduling Problem, 

Osnabriick. Schrift. Math. Reihe P, Heft 122. 

[12] P.J.M. van Laarhoven, E.H.L. Aarts and J.K. Lenstra, Job shop scheduling by simulated annealing, 
Oper. Res. 40 (1992) 113-125. 

[13] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling problems, in: 

Annals of Discrete Mathematics 1 (North-Holland, Amsterdam, 1977) 343-362. 

[14] J.F. Muth and G.L. Thompson, Industrial Scheduling (Prentice-Hall, Englewood Cliffs, NJ, 1963). 

[15] B. Roy and B. Sussmann, Les problemes d’ordonnancement avec contraintes disjonctives, Note DS 
no. 9 bis, SEMA, Paris. 

[16] M. Widmer, Job-shop scheduling with tooling constraints: a tabu search approach, OR working 

paper 89/22, Departement of Mathematiques, Ecole Polytechnique Fed&ale de Lausanne. 
[17] G. McMahon and M. Florian, On scheduling with ready times and due dates to minimize maximum 

lateness, Oper. Res. 23 (1975) 4755482. 


