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A method of sum composition for construction of orthogona Latin squares 
was introduced by A. Hedayat and E. Seiden [l]. In this paper we exhibit proced- 
ures for constructing a pair of orthogonal Latin squares of size pa + 4 for 
primes of the form 4m + 1 or p = 1,2,4 mod 7. We also show that for any 
p > 2n and rz even one can construct an orthogonal pair of Latin squares of 
size pa + n using the method of sum composition. We observe that the restric- 
tion xy = 1 used by Hedayat and Seiden is sometimes necessary. 

1. INTRODUCTION 

DEFINITION. A transversal of a Latin square of order II is a collection 
of n cells whose entries exhaust the set of distinct elements of the Latin 
square and such that no two cells belong to the same row or the same 
column. 

Two transversals are called parallel if they have no elements in common. 
Hedayat and Seiden [l] introduced the method of sum composition of 

Latin squares which can be described as follows: Let L, , L, be two 
Latin squares of order n, and n2 on disjoint sets of elements (a, , a2 ,..., a,J 
and lb1 , b2 ,..., b,J, nl 2 n2, and let L1 have at least n, parallel trans- 
versals. Select arbitrarily n2 parallel transversals from L, and name them 
1, L., n2 7 * in a n, + n2 size square fill the n, x n, upper left corner with L, 
and the n2 x rz2 lower right corner with L, . Fill the cells (i, n, + k), 
k = 1, 2 ,..., n2 , with that element of transversal k which appears in 

230 
Copyright 0 1974 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



ORTHOGONAL LATIN SQUARES 231 

row i, i = 1, 2 ,..., n, ; similarly fill the cells (n, + k,j), k = 1, 2 ,..., n2 , 
with that element of transversal k which appears in column j, j = 1,2,. . ., n,. 
Finally substitute bl, for the n, elements of transversal k, k = 1,2,..., n2 . 

The resulting n, + n2 square matrix L is easily seen to be a Latin square. 
The procedure just described of filling the first nr entries of column 

(row) n, + k is called horizontal (vertical) projection of transversal k on 
column (row) n, + k. 

Henceforth we shall use the symbol O(n, 2) for a set of two orthogonal 
Latin squares of order n. 

Under certain conditions it is possible to use the method of sum 
composition to obtain O(n, 2) sets from known O(n, , 2) and O(n, , 2) sets, 
n = n, + n2 . 

Let {A,, A,} be a O(n, ,2) set on the set of elements of A = {a,, a2 ,..., anl} 
with at least 2n, common parallel transversals, and {B, , B,) a O(n, ,2) 
set on the set of elements of B = {b, , b, ,..., bnz}, A n B = iz. 

Select 211, common parallel transversals from the first set and use half 
of them to compose Al and Bl to obtain a Latin square L, of order 
n, + n2 = n; use the remainder n2 transversals to compose A, and B, to 
obtain a Latin square L, of order n. 

It is obvious from the construction that upon superimposition of L, on 
Lz the elements of A x B and B x A will appear along the 2n, transversals 
in the n, x n, upper left corner; the elements of B x B will appear in the 
n2 x n2 lower right corner, since B, and B, are orthogonal. However 
some of the elements of A x A will be missing, but by properly choosing 
the 2n, transversals and the order of projection we may achieve that the 
pairs (ai , aJ lost by substituting elements of B in transversals of A, and 
A, be recovered on projection. 

In conclusion we wish to remark that introducing the symbol p for 
(x - l)/(y - 1) reduced the expression for Kh and K, to a form analogous 
to that obtained by Hedayat and Seiden due to the assumption xy = 1. 
This helped to realize that this assumption is in fact necessary in case 
C si # C ti . It also helped to find procedures for construction of a pair 
of orthogonal Latin squares of size p” + 4 for primes of the form 4m + 1 
or congruent to 1,2,4 mod 7 and of size pa + n for any p > 2n, n even in 
case the assumption xy = 1 does not hold. 

2. CONSTRUCTION OF SOME O(n,2) SETS BY THE METHOD 
OF SUM COMPOSITION 

Let n, = pa be a power of a prime p and denote by A(x) a Latin square 
of order n, whose entry in the (i,j) cell is ix + j E GF(n,), x # 0. Consider 
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two orthogonal Latin squares A, = A(x), A, = A(y), x, y E GF(n,), 
x # y, {x, v} n (0, I} = 0. We can exhibit n, common transversals of A, 
and A, using the square A(1) whose entries in the cell (i, j) are i + j. Let 
us name the transversal for which i + j = k for any k E GF(n,) the 
transversal k. Since n, > 24 we can choose 2~2, parallel transversals and 
partition them into two sets each of size Mu . Let S = (sl , sZ ,..., s;,} and 
T = {tl , t, ,..., tn2} be two sets of transversals used in the projection 
process to obtain L, and L, , respectively, as described previously. The 
problem is to choose these transversals in such a way that the 2nln, pairs 
lost by replacing the entries of the corresponding cells by the elements of 
the Latin squares of order n2 are recovered by the projection process. The 
missing pairs are of the form (ix + .j, iv + j), i + j E S u T, which 
correspond to the entries in the 2~2, transversals used in the compositions. 

If transversal s of A(x) is projected horizontally on the same column as 
transversal t of A(y), on superimposition we will obtain along that column 
the n, pairs 

(ax + b, w  + 4, a+b=s, a+c=t. 

If those pairs are to be some of the lost ones we must have: 

ix+j=ax+b, a+b=scS, aSc= tET, 

iv+j=ay+c, i+j=kESuT, 

or 
i(x - 1) + k = a(x - 1) + s, 

i(y - 1) + k = a(y - 1) i t. 

Eliminating i we obtain 

k( y - x) = s(y - 1) - t(x - 1) 

or 
k(y - x) = s(y - x) + (s - t>(x - 1). 

Making (x - l)/(y - x) = p we finally get 

k = (1 + &s - pt; 

that is, by projecting horizontally transversal s of A(x) on the same 
column as transversal t of A(y) we obtain on superimposition the n, pairs 

(ix + j, iy 4 3, i +,j = (1 + p)u)s - pt. 
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Similarly, if transversals s and t of A(x), A(y) are projected vertically 
on the same row, we will obtain along that row the n, pairs 

(ax + b, cy + b), a+b=s, ctb=t. 

If those pairs are to be some of the lost ones we must have 

ix+j=ax+b, a+b=sES, c+b=tET, 

iy+j=cx+b, i+,j = kESu T, 

or 

i(x - 1) + k = a(x - 1) + S, 

i(y - 1) + k = c(y - 1) + t. 

Eliminating i we obtain 

k(y - x) = (x - l)(y - l)(a - c) + s(y - 1) - t(x - 1). 

Since a - c = s - t, we get 

and finally 

k(y - x) = s(y - x) + (s - t)(x - 1)y 

k = (1 + ypb - ypt; 

that is, by projecting vertically transversal s of A(x) on the same row as 
transversal t of A(y) we obtain on superimposition the n, pairs 

(ix + j, iy +A, i+j= (1 +y&-wt. 

From now on we will use the following functions on S x T: 

us, 0 = (1 + As - l-4 

w, 0 = (1 + Y/-4S - Y@. 

THEOREM 1. If p is a prime of the form p = 4m + 1, m > 1, then it is 
possible to compose O(pa, 2) based on GF(pa) with 0(4,2) to obtain a 
O(P” + 4,2). 

Proof. Consider the pattern 

si+1 = KIdSi , tJ, i=== 1,2,3, 31 = MS4 > t*), 

4-1 = Wi , ti>, i = 2, 3,4, t, = K&, , t3; 
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s2 = (1 + &l - pt, , t4 = (1 + Y& - Y@l, 

s3 = (1 + As2 - tLf2 > t1 = (1 +Jw, -ypt2, 

s4 = (1 + pb3 - pt, , t2 = (1 + Y&3 - ypt,, 

$1 = (1 + pb4 - pt4, t3 = (1 + v/+4 - ypt4. 

Solving this linear system in terms of s1 and t, 

s2 = (1 + k4 $1 - pt, > 

33 = (1 + PL) [l +cL - ;(I + I+1 

- [PO - P) - $ Ii-41 + Yd + II] h 3 

we obtain as a solution 

s4 = Ml +yp)+ 11-L,---- VP2 
1+l-L 1+/l 

9 

t2 = [(l + yp)(l + p)$-] Sl - MI + WI + II* fl' 

f3 = 
IY 

(1 + Y/4 &- [p(l + YPI + 11 - YPU + Y/4] 31 

- [ (1 + Y/4 YP2 * - Y2P2] h 3 

t4 = (1 + YcL)Sl -Y/G* 

It is easy to check that the requirement that the solutions exhaust the set 
S u T, equivalently that all the lost 2n,n, be recovered by the rows and 
columns of the projections, reduces the rank of the system to at most four. 
It is seen that if s1 # t, then the following equation must hold: 

Dividing by y3p3 and making (1 + p)/yp = X we obtain 

X3-A2+A=1=0 or (A - l)(P + 1) = 0. 

A = 1 would give s, = s1 , therefore we must have A2 + 1 = 0, that is, 
- 1 has to be a quadratic residue in GF(p”), which is possible only if p is of 
the formp = 4m + 1. 
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Calling i2 = - 1, the condition becomes 

y(1 -f i(1 - x)) = 1, 

which is satisfied by the pair x = 2, y = (1 & i)/2. Using s1 = 0, t1 = 1 
we obtain as solution of the system 

3&i 
s2=7-, 1, 

3 =F 4i 
= -, 5 

4 F 2i 
s,=--j-- t, = 

-1 F 2i 
5 ' 

1 q 3i t =lf2i 
s4=-T-’ 4 -* 5 

To conclude the proof of the theorem we have to show that the solutions 
exhibited here are distinct for all values of p = 4m + 1, rn > 1. By 
considering the 28 differences it is easy to see that both values for Si and ti , 
i = 2, 3, 4, are admissible. 

To illustrate the theorem we shall compose 0(17,2) with 0(4,2) to 
obtain 0(21,2). We shall use y = (1 + i)/2 with i = -4 and S, = 0, 
t, = 1. Then s2 = 10, S, = 16, s4 = 6, t2 = 14, t, = 15, t4 = 2. We 
shall obtain two orthogonal Latin squares of order 21 substituting in 
A(2) for the entries having cells of A(1) 0, 10, 16, and 6 A, B, C, and D, 
respectively. In A(7) we shall substitute A, B, C, and D in the places 
corresponding to 1, 14, 15, and 2 in A(1). The resulting orthogonal 
squares of size 21 will have the form: 

THEOREM 2. If p = 1,2,4 (mod 7), p > 11 it is possible to compose 
O(p”, 2) based on GF(pa) with 0(4,2) to obtain a O(p” + 4,2). 

Proof. Consider the pattern 

Sl = MS2 7 a, t1 = Kh2 5 t2), 

s2 = MS3 > t3L tz = w3 > f3), 

s3 = KL(s* 3 a, t, = KiSl 9 t‘t), 

s4 = &b(Sl 9 td, t‘l = &(s4 , t1). 

Using the same method as in Theorem 1 we may solve this system of 
equations in terms of s2 and t2 . Imposing the condition that s, # t2 we 
shall conclude that the following equation must hold. 

1 - P(Y - 1) - P2(Y - l>2(p2Y + PY - 1) = 0. 
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A12345D709 B 11 12 i3 14 15 C 0 10 16 6 

2 3456D8 9 10 B 12 13 14 15 16 C Alll 0 7 

4 5 6 7 D 9 10 11 B 13 14 15 16 0 C A 3 212 1 8 

6 7 0 D 10 11 12 B 14 15 16 0 1 C A 4 5313 2 9 

a 9 D 11 12 13 B 15 I.6 0 1 2 C A 5 6 7 4 14 3 10 

10 D 12 13 14 Bl60123CA678 9 5 15 4 11 

D1314 15 B 0 1 2 3 4 C A 7 8 9 10 11 6 16 5 12 

14 1516 B 1 2 3 4 5 C A 8 9 10 11 12 D 7 0 6 13 

16 0 B 2 3 4 5 6 C A 9 10 11 12 13 D15 8 1 7 14 

1B 3 4 5 6 7 C A 10 11 12 13 14 D16 0 9 2 8 15 

B45678C A 11 12 13 14 15 D 0 1 210 3 9 16 

5 6 7 8 9 C A 12 13 14 15 16 D 1 2 3 B 11 4 10 0 

7 8 9 10 c A 13 14 15 16 0 D 2 3 4 B 6 12 5 11 1 

9 10 11 c Al4 1516 0 1 D 3 4 5 B 7 0 13 6 12 2 

11 12 c A1516 0 1 2 D 4 5 6 B 8 9 10 14 7 13 3 

13 c A160123D567B 9 10 11 12 15 a 14 4 

CAO1234D678 B 10 11 12 13 14 16 9 15 5 

0 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1ABC D 

3 2 I 0 16 15 14 13 12 11 10 9 6 7 6 5 4 B A D C 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 016C D A B 

12 1110 9 8 7 6 5 4 3 2 1 0 16 15 14 13 D C B A 

OAD345670 9 10 11 12 13 B C 16 1 14 15 2 

A D 9 10 11 12 13 14 15 16 0 1 2 B C 5 6 7 3 4 8 

D1516 0 1 2 3 4 5 6 7 8 B c 11 12 A 13 9 10 14 

4 5 6 7 0 9 10 11 12 13 14 B C 0 1 A D 2 15 16 3 

11 12 13 14 15 16 0 1 2 3 B C 6 7 A DlO 8 4 5 9 

123456789B C 12 13 A D 16 0 14 10 11 15 

8 9 10 11 12 13 14 15 B C 1 2 A D 5 6 7 316 0 4 

l51601234BC78A D 11 12 13 14 9 5 6 10 

5 6 7 8 9 10 B Cl314 A D 0 1 2 3 4 15 11 12 16 

12 13 14 15 16 B C 2 3 A D 6 7 8 910 114 0 1 5 

2 3 4 5 B C 8 9 A D 12 13 14 15 16 ,O 110 6 7 11 

9 10 11 B C 14 15 A D 1 2 3 4 5 6 7 8 16 12 13 0 

16 0 B C 3 4 A D 7 8 9 10 11 12 13 14 15 5 1 2 6 

6 B C 9 10 A D 13 14 15 16 0 1 2 3 4 511 7 8 12 

B Cl516 A D:2 3 4 5 6 7 8 9 10 11 12 0 13 14 1 

C45AD8 9 10 11 12 13 14 15 16 0 1 B 6 2 3 7 

10 11 A Dl41516 0 1 2 3 4 5 6 7 B Cl2 8 9 13 

7 1 12 6 0 11 5 16 10 4 15 9 3 14 a 213 A B C D 

13 7 1 12 6 0 11 5 16 10 4 15 9 314 8 2C D A B 

3 14 a 2 13 7 1 12 6 0 11 5 16 10 415 9 D C B A 

14 0 2 13 7 1 12 6 0 11 5 16 10 415 9 3B A DC 
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It can be checked, moreover, that satisfying this condition ensures also 
that all the remaining values for the unknowns will be distinct. Making 
x - 1 = U, y - 1 = u we get 

uyu - l)($ + 1) + v3u(3u2 - 3u + 4) 

- &,+2 - 3~ + 6) - vu3(u - 4) - u4 = 0. 

For u = 1 the equation becomes 

4v3 - 49 + 3v - 1 = 0, 

which can be factorized 

(2u - 1)(2v” - v + 1) = 0. 

However tl = 1, v = 4 gives t, = t, , so we have to look for the roots 
of2rP--v++ =o. 

To solve that equation it is necessary that -7 be a quadratic residue, 
and this is so if p = 1,2,4 (mod 7). 

Calling i2 = -7, u = 1 gives x = 2, y = (5 & i)/4 and using s, = 1, 
t2 = 0 we obtain as solution of the system 

1Ti 
Sl=T’ 

tl=lfi -3 2 

3Ti 
s3=7--’ 5, = 2, 

S4L32if 
8 

t =9T5i 
4 -. 

8 

It is easy to check that 28 differences are not equal to zero for both 
values of i except for p = 11. In this case s2 = t, = 1 for i = -2. 
However, using i = 2 we obtain s1 = 8, s3 = 6, s4 = 7, t, = 5, t, = 2, 
t, = 4. Notice that Theorems 1 and 2 do not preclude the possibility of 
constructing three orthogonal squares using the method of sum compo- 
sition since to each value of x correspond two values of y, except for 
p = 11. However, our attempts to construct three mutually orthogonal 
Latin squares using the method of sum composition failed thus far. 

THEOREM 3. If n2 # 6 is even, then for any prime number p > 2n, it is 
alwayspossible to compose O(p”, 2) basedon GF(p”) with O(nz , 2) to obtain 
a O(p@ + n2 , 2) set. 



238 RUIZ AND SEIDEN 

Proof. Consider the pattern 

$1 = MS2 > t2>, I1 = KG2 3 f2), 

$2 = MS1 9 fl>, 12 = &(Sl 2 h>. 

This system is solvable and will yield distinct solutions provided that the 
rank is two and 

yp = 1 fp. 

Taking tI = sr + 1 we obtain 

32 = Sl - P., t, = Sl -yp = s2 - 1; 

that is, t2 , s2 are also consecutive numbers. By properly choosing y, which 
uniquely determines x, since the equation of compatability is of first degree 
in s, we may achieve that t2 = t, + 1; the choice is p = -3, which 
provides y = Q and x = &. The sets S and T are therefore 

s = (31 , 81 + 3), 

T = 1.~1 + 1, s, + 2). 

By starting with s1 = 0 and repeating the above process n,/2 times, we 
obtain the sets of transversals 

S = (0, 3; 4, 7; ..‘; 2n2 - 4, 2n2 - l}, 

T = (1, 2; 5, 6; .a.; 212, - 3, 2n, - 2). 

We could also have considered the pattern 

$1 = K&2, tz), tl = Us1 , &I, 

sz = K&l > td, t, = K&2, 0 

Taking s, , r, as independent unknowns, the compatibility condition 
reduces to 

YPU + l-4 = 1. 

Using again tl = s, 4 1 we obtain 

s2 = Sl - p, t2 = s, - (1 + /L) = s2 - 1; 

that is, tz , s2 are also consecutive numbers; t2 = t1 + 1 would imply as 
before p = -3, y = Q, x = $ and we will get 

s = is1 , $1 + 31, 

T = {sl + 1, sl + 2). 
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Again by starting with s1 = 0 and repeating the process n,/2 times we 
obtain 

S = (0, 3; 4, 7; -a*; 2n, - 4, 2n, - I}, 

T = { 1, 2; 5, 6; *a.; 2n, - 3, 2nz - 2); 

however this time we have to reverse the order of the set T before 
projecting vertically. 

Note that XY = 1, the condition used by Hedayat and Seiden for 
constructing orthogonal Latin squares using the method of sum compo- 
sition, does not hold in this theorem. However, as in their work this 
theorem precludes obtaining more than two orthogonal Latin squares. 

We shall conclude this paper showing that in some of the work of 
Hedayat and Seiden the condition xy = 1 was in fact necessary. 

PROPOSITION. If a pattern for composition of a O(p*, 2) and a 0(3,2) set 
is such that horizontal projection recovers transversals from both sets S 
and T, then xy = 1. 

Proof. Any of the six equations which determine the pattern, three will 
involve the function Kh and the other three equations will involve the 
function K, . Adding the six equations we will always obtain, no matter 
what the pattern is, 

C si + C ti = (I + P + l + VP) C si - (P + YP) C ti 
or 

(CSi-Cti)(l+P+YP)=o. 

If the horizontal projection recovers transversals from both S and T, 
adding the three equations involving Kh we will obtain in the 1.h.s. the sum 
of either two s’s and one t, or one s and two t’s; in the r.h.s. we will obtain 
C si - ,u(C ti - 2 si). Therefore, if C ti - C Si = 0 we will have si = tj 

for some i, j. We must then have 1 + TV + yp = 0; but 1 + p + yt~ = 
XY - 1, thus the result. 

This proposition applies to 36 of the 48 possible patterns to compose 
O(p”, 2) and 0(3,2) sets; they have been fully investigated by Hedayat and 
Seiden. 

Remark. The condition c si - C ti)(l + p + yp) = 0 must hold 
for all patterns and is independent of the size of the system of equations 
involved. Hence, if we search for orthogonal Latin squares by the method 
of sum composition we must have either xy = 1 as assumed by Hedayat 
and Seiden or C Si = C ti , which will reduce the rank by at least 2. 
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