Lecture Notes in Constraint Satisfaction and
Constraint Programming

by
Barbara M. Smith

These lecture notes were produced by Barbara Smith for her lecture course in
constraint programming, run at the University of Leeds, up to 2001. The course title
was AR33 Constraint Satisfaction and Constraint Programming. Barbara
has very kindly given me permission to distribute these notes as supporting material
for my course, CP4, a 4th year course on constraint programming. The notes are
unchanged, and reflect the course taught at Leeds in 2001.

Patrick Prosser (January, 2003)

AR33 Notes 2001 1

AR33 Constraint Satisfaction and Constraint
Programming

1 Preface

1.1 What AR33 is all about

Constraint satisfaction problems have been an important area of AI research for
many years. The idea is a simple one: we have a number of variables, each with
a set of possible values, and we have to assign a value to each variable so that the
constraints of the problem are satisfied.

Computer vision researchers first looked at constraint satisfaction ideas around
1970, and it was even then realised that, in theory, many complex practical problems
could be expressed in terms of constraint satisfaction. In the last ten years or so,
constraint programming tools have been developed which allow the variables, values
and constraints of a problems to be easily expressed, and provide algorithms to
find solutions. Many industries are adopting these tools to solve a wide variety of
problems, and the market is expanding very fast.

AR33 combines constraint satisfaction - looking at how real problems can be
expressed in this way, how problems can be simplified, algorithms for solving them -
with constraint programming - using a commercial tool for solving constraint satis-
faction problems. There are likely to be job opportunities available for people who
have some experience of constraint programming: at the moment the demand for
expertise far outstrips the supply. Two past students are now working for ILOG
UK. So, AR33 could be useful for your future career.

1.2 What makes constraint satisfaction AI?

Algorithms for solving constraint satisfaction problems are based on methods that
people might use, if they had to solve this kind of problem by hand, rather than
on mathematical techniques. So we make use of straightforward observations about
how to simplify the problem, and find solutions by systematically searching for them.
However, although we adopt methods that a person might use, we are not aiming to
match human performance (as in expert systems), but to do much better. By using
a computer to apply simple techniques over and over again, much more quickly and
thoroughly than a human could, we can solve problems beyond the reach of human
problem solvers.

1.3 Organisation of the module
1.3.1 Exam

The exam is worth 80% of the overall assessment. It will be an ‘open-book’ exam:;
you will be allowed to take into the exam any notes you have from the course, but
not textbooks. For obvious reasons, I will try to design the questions so that mere
possession of a set of handouts is not sufficient to enable you to do well. Open-
book exams, ideally, test understanding rather than memory. During the exam, you

2 AR33 Notes 2001

should be using the notes for occasional reference; it’s too late by then to try to
start working out what they mean.

This is the fifth year that this module has run. Past exam papers are attached,
to give you some idea of the style of questions.

1.3.2 Coursework schedule

There will be two pieces of coursework, each worth 10% of the overall assessment.
One will be available in week 4 and due at the start of week 7; the other available
in week 7 and due at the start of week 11. I estimate that the total time for the
two pieces of coursework will average 15 hours, plus about 6 hours to familiarise
yourself with the software. The coursework will be based on using ILOG Solver,
a widely-used commercial constraint programming tool, which is available on the
Linux server (cslin-gps). A detailed handout on using Solver will be given out before
the first piece of coursework. Solver is a C++ library, and some programming in
C++ is inevitable. I shall assume a basic knowledge of the language. However,
since this is not a programming module, I shall try to minimise the amount of
programming effort required to do the coursework, for instance by making example
programs available which can be used as a basis. (The object-oriented aspects of
C++ will appear only marginally, if at all.)

1.3.3 Textbooks

There aren’t any. There are very few books on constraint satisfaction or constraint
programming, and none of those available are suitable. I shall rely on the module
handout and perhaps occasional journal or conference papers. The Solver manuals
are available online, but I am not sure how useful they will be. Unfortunately this
means that you will only have access to one view of the material, most of the time,
i.e. mine. On the other hand, the handout is much cheaper than a textbook and in
its complete form should be sufficiently detailed. ‘Its complete form’ means when
you have added bits to it in lectures: in its original form, as handed out, the coverage
of some topics may not be adequate or even make sense. Conversely, there will be
background material and examples in the notes which will not be covered in the
lectures, so that the notes are a bit more like a textbook.

1.3.4 Order of topics

I shall begin with a speedy introduction to the basic ideas of constraint satisfaction,
to give you a basis for starting constraint programming as soon as possible. We
shall then spend some time in lectures on how to use Solver, so that you will be able
to start work on the first coursework. After that, we shall revisit the topics already
touched on in the introduction and cover them in more detail.

At the end of the module you should have a good understanding of an important
area of Al. In addition, you will have practical experience of using commercial Al
software which can be used to solve real problems.

AR33 Notes 2001 3

1.4 Example: The Template Planning Problem

Many of the examples I shall use in this module, to illustrate ideas, show how algo-
rithms work, etc., will be trivial problems, often puzzles. I am including this example
here because it is a real (and very difficult) problem which can be tackled by the meth-
ods we shall cover. We shall return to it later and consider how to attack it using
Solver.

This problem originates from a printing firm in Leeds, which prints such things
as magazine inserts; cartons for herbs and spices, cat food, etc; and post cards. A
typical order is for several related designs: different in detail, but similar overall,
and in particular the same shape and size. Because of this fact, we know in advance
how many items can be printed on each sheet of card, and we can mix the designs on
each sheet. An order quantity is specified for each design: in general, the quantities
vary from design to design.

The following example is based on data from an order for cartons for different
varieties of dry cat-food (Brekkies).

Design Order Quantity
Liver 250,000
Rabbit 255,000
Tuna 260,000

Chicken Twin 500,000
Pilchard Twin 500,000

Chicken 800,000
Pilchard 1,100,000
Total 3,665,000

Each design of carton is made from an identically sized and shaped piece of card,
shown in Figure 1. Nine cartons can be printed on each sheet of card.

Figure 1: 2-dim. net for a Brekkies carton

The problem is to design a set of templates from which the sheets of card can
be printed, in such a way that the overall cost of meeting the order is minimised.

Because in this example there are more slots in each template (9) than there are
designs (7), it would be possible to fulfil the order using just one template. The
best way of doing this, i.e. the layout which creates least waste, is to allocate two
slots to the two largest orders (Chicken and Pilchard) and one each to the rest, as in
Figure 2. We should need to print 550,000 sheets of card (filling the Pilchard order

4 AR33 Notes 2001

Figure 2: Optimal one-template solution for the Brekkies data

exactly and over-producing the other designs). Although this is the best solution
using just one template, it would create an enormous amount of waste: 4,950,000
cartons would be produced, which is 35% more than the total order quantity. On
the other hand, it minimises the cost of producing the templates.

At the other extreme, we could produce one template for each design, which
would result in no over-production. However, even if we simply wanted to minimise
over-production, this solution uses unnecessary templates. It is usually possible to
find a solution with virtually no waste production using only a few templates.

We have little information on the relative costs to the company of card and
templates. The strategy we have adopted is to find the optimal solution with one
template (i.e. the solution with least over-production), then the optimal solution
with two templates, and so on until a solution with virtually no over-production has
been found. The company can then decide for themselves between these solutions.

The set of optimal solutions for the Brekkies problem is given below:

Design Run Length % Over-production
1 2 3 4 5 6 7

Template 1: 11 1 1 1 2 2 550k 35
Template 1: - - - - - 27 158k

Template 2: 111 2 2 2 - 260k 2.6
Template 1: - 53 - -1 - 51k

Template 2: - -1 - -71 107k

Template 3: i - -2 2 - 4 250k 0.2

It seems very difficult to find good solutions to the template planning problem
by hand, and the problem is not similar to any problem for which algorithms have
been developed. On the other hand, it is a practical problem which the printing
firm has to solve all the time. How should we tackle it?

AR33 Notes 2001 5

2 Introduction

A constraint satisfaction problem (CSP) consists of:

e a set of variables X = {z1,....,zp };
e for each variable z;, a finite set D; of possible values (its domain);

e and a set of constraints restricting the values that the variables can simulta-
neously take.

Note that the values need not be a set of consecutive integers (although often
they are); they need not even be numeric.!

A solution to a CSP is an assignment of a value from its domain to every variable,
in such a way that every constraint is satisfied. We may want to find:

e just one solution, with no preference as to which one;
e all solutions;

e an optimal, or at least a good, solution, given some objective (e.g. cost) to be
maximised or minimised.

2.1 Constraints

The constraints of a CSP are usually represented by an expression involving the
affected variables, e.g.
71 # T2
2x1 = 10x9 + z3
r1r9 < T3
or, in ILOG Solver,

x1 = x2;
2%x1 == 10*x2 + x3;
x1 * x2 < x3;

Formally, a constraint Cjj... between the variables x;, , g, ... is any subset of
the possible combinations of values of z;, z;, Ty, ..., i.e. Ciji.. € D; x Dj X Dy, X
The subset is a set of tuples of values and specifies the combinations of values which
the constraint allows. (Or you could equivalently define constraints by specifying
the tuples which are not allowed.)

For example, if variable z has the domain {1, 2,3} and variable y has the domain
{1,2} then any subset of {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)} is a valid constraint
between x and y. The constraint z = y would be represented by the subset {(1,1),
(2,2)}.

The specification of a constraint by explicitly listing all the tuples which satisfy
it is called its extensional represention; an expression like z < y which (together with

!Strictly speaking, I have just described a finite domain CSP, and we could consider similar
problems in which the variables have continuous domains, e.g. the real numbers. Professor Dew’s
research group does a lot of work with this kind of CSP for engineering design problems. However,
the techniques for solving them are very different from those which we shall consider, and they
don’t really fall into the field of Al

6 AR33 Notes 2001

the variable domains) implicitly defines the satisfying tuples is called the intensional
representation.

Although the constraints of real problems are not usually represented exten-
sionally in practice, the fact that they can be defined in this way emphasises that
constraints need not correspond to simple expressions. (And it will sometimes be
useful to think of constraints extensionally.)

We can now also define formally what it means for a solution to satisfy a con-
straint. A solution to a CSP with variables z1,....,z, is a tuple (a1, az,.....,ay),
where a; € D;. This solution satisfies a constraint Cjji... if the tuple (a;, a;,a,...) €
Cijk..., i.e. we pick out the values of the variables affected by this constraint (z;, z;,
Zk,-..) from the solution tuple and see whether the resulting tuple is in the list of
tuples allowed by the constraint Cjj... So, as is obvious, z = 1,y = 2 does not
satisfy the constraint z =y and (1,2) ¢ {(1,1),(2,2)}.

If there are m variables in a problem, a constraint can affect any number of
variables from 1 to n. The number of affected variables is the arity of the constraint.
It is useful to distinguish two particular cases:

Unary constraints affect just one variable. The constraint can be used at the
outset to remove any value which does not satisfy the constraint from the domain
of the variable. For instance, if there is a constraint xz; # 1, the value 1 can be
removed from the domain of 1, and the constraint will then be satisfied. Since unary
constraints are dealt with by preprocessing the domains of the affected variable, they
can be ignored thereafter.

Binary constraints affect two variables. Binary constraints play an important
role in many of the algorithms we shall be using, so we shall meet them again, even
though the constraints in real problems are often not binary.

2.2 Examples of CSPs

Here, 1 give some examples of problems which can be represented as constraint
satisfaction problems. Students often find it difficult at the start to see how to
map a given problem to a CSP. In fact, even with experience, it is not always
straightforward, because often there are different ways of doing the mapping, and
it may not be clear which is best.

There are three basic questions to address in formulating a problem as a CSP:

e what entities in the problem should the variables represent?
e what are their possible values?
e what are the constraints?

Having answered those questions, we also need to decide how to represent the re-
sulting CSP in whatever constraint programming tool we are using. In practice,
we may need to bear in mind what kinds of constraints we can easily express in
the constraint programming tool, while deciding how to represent our problem as a
CSP.

Many of these examples are puzzles rather than genuine problems. This is be-
cause it is hard to find practical problems which can be described in a few lines.
(As shown by the template planning problem, for instance.)

AR33 Notes 2001 7

2.2.1 Graph Colouring

Although apparently a purely theoretical problem, graph colouring can be used
to represent some very practical problems, such as timetabling. We are given a
collection of nodes, and some pairs of the nodes are joined by edges. Each node in
the graph must be associated with a colour, from one of a set of k available colours,
in such a way that any two nodes that are joined by an edge have different colours.
Here, we can use the nodes as the variables of a CSP, the colours as their values and
each edge as a # constraint.

2.2.2 A Number Puzzle

A puzzle requires the numbers 1 to 8 to be placed at the positions marked a to h in
the diagram, in such a way that wherever there is a line joining two of the positions,
the corresponding numbers must differ by at least 2, and each number must be used
exactly once.?

b e
a c f h
d g

We can represent this as a CSP by having a variable a to h for each position a to
h. Each variable’s domain will be the set {1...8}. There will be a constraint corre-
sponding to every line in the diagram, that the values of the variables corresponding
to the end points must differ by at least 2, e.g. |[a — b| < 2.

The condition that each number must be used exactly once is equivalent to a
constraint that the variables ¢ to h must all have different values. We can either
express this by a set of individual constraints between every pair of variables, e.g.
a # b or by a single constraint on all the variables at once, that they must all
be different. The allDifferent constraint is one that occurs very frequently, in real
problems as well as puzzles. It will be discussed at greater length later.

2.2.3 Cryptarithmetic

In a cryptarithmetic puzzles, like the following, each letter stands for a different
digit. The puzzle is to find values so that the sum works out correctly.

SEND
+ MORE

=MONEY

2This example appeared in a previous exam paper. But it wasn’t in the handout before that!

8 AR33 Notes 2001

This puzzle first appeared in The Strand magazine in 1924, according to http://
users.aol.com/s6sj7gt/mikealp.htm. See also http://www.cut-the-knot.com/
cryptarithms/st_crypto.html where many other similar puzzles can be found.

I shall use this example both to demonstrate how a problem like this can be
defined as a CSP, in terms of variables, domains and constraints and to give a first
example of how Solver is used. I shall use bits of Solver syntax to illustrate the
example: T hope these are reasonably understandable. I don’t expect you to be able
to write programs in Solver on the basis of this example - the Solver tutorial comes
later.

The puzzle can be represented as a CSP by creating variables to stand for the
letters S, E, N, D, M, O, R, Y. The domain of each variable is the set of digits {0
.. 9} (except that S and M cannot be 0). ILOG Solver allows us to create a set of
constrained integer variables, S, E,... each with domain {0 .. 9}, and we can ensure
that S and M cannot have the value 1 by the constraints:

Si=1
M!=1

It is also convenient to form an array of these variables, called letters, say.
The constraints are:

e the eight variables must all be assigned a different value. In Solver, I1cA11Diff
is a constraint that ensures that the variables in the array given as its argument
all have different values:

I1cAl1Diff(letters);
e the sum given must work out:

1000*S + 100*E + 10*N + D
+ 1000*M + 100*%0 + 10*R + E ==
10000*M + 1000*0 + 100*N + 10*E + Y;

This equation can be treated as a single constraint on all eight variables.

This formulation can be improved, to allow Solver to find a solution more quickly;
we shall see details later on.

2.2.4 Magic Square

In a magic square, we arrange the digits 1 to 9 in a three by three square (as in
the diagram below) so that the sum of the three numbers in each row, column and
diagonal is the same.

We can express this as a CSP by using the variables to represent the positions
a to i in the square. The possible values for each variable are the numbers 1 to 9.
So, in solving the CSP, we decide which number to put in each position.

The constraints are:

e every variable has a different value;

AR33 Notes 2001 9

a b c
d e f
g h i

e the sum of the numbers in each row, column or diagonal are the same. We
can express this by deciding what the sum must be (it has to be one third of
the total 1 + 2 + ... + 9, i.e. 15). Or we can use another variable, say s, to
represent the sum, and write the constraints in terms of s:

atb+c =
d+e+f =
gth+i =
atd+g =
bt+e+h =
c+f+i =
ate+i =
ctetg =

n n n n n n n n

An alternative formulation. Because we have to assign nine values to nine
positions, we could think of this problem in terms of deciding on the position for
each number, rather than the number for each position. jFrom this viewpoint, the
variables would correspond to the numbers, say vy, vo, .., v9, and the domain of each
variable would be the set of possible positions a to i. (If we were going to use this
formulation, we would probably represent the positions by numbers, but for clarity,
I will continue to label them with letters instead.) The first constraint stays the
same: every variable has a different value. The other constraints, however, are now
very hard to express. We might attempt to do this by defining a constraint for every
triple of variables whose corresponding values do not sum to 15, e.g. v1, vs and vg
and specifying that they cannot be assigned values corresponding to three positions
in a line. For instance, one of the constraints might be that v1 # a or v5 # b
or vg # ¢; we would need a great many such constraints. The formulation given
earlier is definitely better. This illustrates the fact that where there are alternative
formulations, it may be much easier to express the constraints in one formulation
than in another.

2.2.5 Exam Timetabling

A practical problem which needs little explanation is that of constructing a valid
examination timetable for a group of students, say the timetable for the May/June
exams for the University of Leeds.

Here we have a known set of exams to be timetabled; we know which exams
each student is taking; and we know how many slots there are in the timetable.
(The exam period is decided a long time in advance, so this effectively limits the

10 AR33 Notes 2001

number of available slots: we can’t make the exam period as long as it needs to
be to accommodate all the exams while meeting all the constraints, as might be
preferable.)

To represent this as a CSP, we can create a variable for each exam, the possible
values being the available slots. The most basic constraint is that the exams taken
by any individual student must all be in different slots in the timetable. (The ‘allD-
ifferent’ constraint again.) In previous examples, we have had just one allDifferent
constraint. Here, we have an allDifferent constraint for every student, or for every
group of students taking the same exams. We would hope that these constraints
can be satisfied, given the number of available slots.

As well as this, we would want to satisfy some kind of ‘spreading out’ constraint,
of the form ‘no student should take more than z exams in any set of y consecutive
slots’, e.g. exams in three consecutive slots are avoided at Leeds. An evening slot
and the following morning slot are counted as consecutive.

We would like to be able to express both of these constraints as ‘hard’ constraints,
i.e. they must be satisfied. However, given that the number of slots in the timetable
is absolutely fixed, we might have to allow at least the theoretical possibility that
they could be broken. In that case, we might want to take into account the number
of students affected, and keep this to a minimum.

To express the constraint that no student has three consecutive exams, suppose
that the exam slots are numbered. One way of expressing this constraint is to say:
for all 4, j, k, where the variables v;, v;, vy represent three exams where at least one
student takes all three,

maz(v;, vj,vg) — min(v;,vj,vg) > 3

i.e. the latest and the earliest of the three exams must be at least three slots apart.
Solver allows you to define a variable whose value is constrained to be the maximum
(or minimum) of the values assigned to a set of other constrained variables.

We might also have many other preferences in exam timetabling, which could be
expressed as constraints that we should like to satisfy. This converts the problem
from one of finding a solution to satisfy all the constraints, to an optimisation prob-
lem where we want to satisfy as many constraints as possible, taking into account
their priorities.

For instance:

e as few students as possible should have two exams in consecutive slots

e departments may express preferences about the timing of specified exams (e.g.
asking for an exam taken by a large number of students to be timetabled early
to allow time for marking).

To outline how preferences can be dealt with in Solver: you can define a Boolean
expression to represent a constraint which does not have to be satisfied. The ex-
pression has the value true (1) if the constraint is satisfied and false (0) otherwise.
We can then count how many such constraints are satisfied at any time while we
are searching for a solution.

AR33 Notes 2001 11

2.2.6 n-Queens

The n-queens problem is a puzzle that has been used in Al for many years to
investigate and illustrate search algorithms. We imagine an n x n chessboard instead
of the standard 8 x 8 board, and place n queens on it in such a way that no queen
can attack any other. In chess, a queen can move any number of squares in a straight
line forward, backward, sideways or diagonally, so this means that no two queens
can occupy the same row, column or diagonal. The problem has a solution for n. > 3;
Figure 3 shows a solution for 8 queens. (For this problem, the black squares and
white squares of the board have no significance, so all the squares in Figure 3 are
shown as white.)

Q

Figure 3: 8 queens on an 8 x 8 chessboard, no queen attacking any other

A possible formulation is to have a variable for each square of the board in-
dicating whether or not we place a queen on this square. There are n? variables,
each with domain {0,1}. If we number the squares 1 to n?, and label the variables
V1, V9, ..., Up2, We can express the constraints in terms of limits on the sums of subsets
of the variables. For instance, the constraint that no two queens can occupy the first
row of the board (squares 1 to n) can be written: vy +vo + ... + v, < 1. Similarly, if
n = 8, the squares 1, 10, 19, 28, 37, 46, 55, 64 form one of the main diagonals, and
so there is a constraint vq + v1g9 + ... + vg4 < 1. We need a constraint of this kind
for every row, column and diagonal.

We also need a constraint that there must be n queens on the board (otherwise
we can satisfy the other constraints by not placing any queens at all):

n?
E Vi=T"n
i=1

An alternative formulation. If we recognise that there must be exactly one
queen on each row of the board, we can represent the n-queens problem differently.
We can have n variables, ¢1, g2, ..., gn, Where g; represents the position of the queen
on row ¢. So the value assigned to ¢; in a solution tells us which column this queen
is placed on, and the domain of g¢; is the set {1, 2, ..., n }.

In any solution to a CSP, every variable must have been assigned a value (and
exactly one value). Hence, we no longer need constraints to ensure that there are
n queens on the board and one queen in each row. We only need to express the
constraints that there is at most one queen (in fact exactly one queen) in each

12 AR33 Notes 2001

column, and at most one queen on each diagonal. To satisfy the first constraint,
41,492, ---, ¢n, must all have different values (the all-different constraint yet again).

The constraint that no two queens can be on the same diagonal is a little more
tricky, but can be ensured by specifying:

g+iFqg+j
G —1#q —J

for all pairs ¢, j, where i,7 = 1,2,...,n and i # j. (There are two constraints because
the diagonals go in two directions.)

This formulation has fewer variables and fewer constraints than the first. How-
ever, we have had to apply our knowledge of the problem to derive it, so it might
be classed as cheating. Cheating or not, it is the formulation of n-queens which is
almost universally used in constraint programming: we shall meet it again later.

A curious point. Suppose we want to place only n — 1 queens on an n X n
chessboard - we might call this the (n — 1, n)-queens problem. Placing n — 1 queens
should be easier than placing n queens, because any solution to the n-queens problem
will give us n different solutions to the (n — 1,7n)-queens problem (we just remove
any one of the n queens). However, if we try to represent the (n — 1,n)-queens
problem from scratch we cannot use the ‘trick’ that each row has exactly one queen
on it, so the formulation of the easier problem is actually harder.

3 Arc Consistency

In most cases, in order to solve a CSP, we will have to search; i.e. try different values
for the different variables, in some systematic way, until we find an assignment that
satisfies all the constraints. However, before doing this, it is often useful to see if
the problem can be simplified by identifying values which can never be part of a
solution. If we do this, and delete the values from the domains of their variables,
we save possibly a great deal of fruitless search. This is an example of a general
approach to using the constraints to derive implicit information about the possible
solutions to a CSP, called constraint propagation.

Here we consider the simplest form of constraint propagation, arc consistency.
This deals just with binary constraints. If all the constraints of a CSP are binary,
the variables and constraints can be represented in a constraint graph: the nodes or
vertices of the graph represent the variables and there is an edge joining two nodes
if and only if there is a constraint between the corresponding variables. (In graph
colouring, the edges in the graph to be coloured correspond to the # constraints and
the nodes correspond to the variables, so that the constraint graph and the graph
defining the problem are the same. Similarly, in the example of section 2.2.2, the
binary constraints exactly correspond to the lines in the puzzle, so that the puzzle
itself is a constraint graph for the problem, ignoring the allDifferent constraint.)

We can see intuitively that in Figure 4, some of the values in the variables’
domains cannot ever be assigned (which ones?), because there is no way that they
can satisfy the constraints. Hence, the domains of the variables can be reduced, if
we consider each pair of variables and the constraint between them, in turn.

AR33 Notes 2001 13

y {1.5}

§ z
{1.5} z< 2+ 1 {1.5}

Figure 4: Binary constraints represented graphically

This intuitive idea can be formalised if we define arc consistency. (Note that an
arc, say (zi,x;), has a direction attached to it, so that it is distinct from the arc
(xj, ;). The edge joining z; and z;, on the other hand, is undirected.)

If there is a binary constraint C;; between the variables z; and z; then the arc
(wi,zj) is arc consistent if for every value a € D;, there is a value b € D; such that
the assignments z; = a and z; = b satisfy the constraint C;;. Any value a € D; for
which this is not true, i.e. no such value b exists, can safely be removed from D;,
since it cannot be part of any consistent solution: removing all such values makes
the arc (z;,z;) arc consistent. A value b € D; such z; = a and z; = b satisfy Cj;is
a supporting value for a € D;. We delete any value a € D; unless it has at least one
supporting value in the domain of every variable which constrains x;. Note that we
have only checked the values of x;; there may still be values in the domain of x;
which could be removed if we reverse the operation and make the arc (z;,z;) arc
consistent.

X X<y-2 y
(1.5} (1.5}
(@
X X<y-2 y
{12 {1.5}
(b)
X X<y-2 y
{1,2} {4,5}
(©

Figure 5: Making (z,y) and (y,z) arc consistent

Figure 5(a) shows the original domains of z and y. In (b), (x,y) has been made

14 AR33 Notes 2001

arc consistent; in (c), both (z,y) and (y,z) have been made arc consistent.

It is (I hope) intuitively obvious how to make a binary CSP arc counsistent by
hand, given a small constraint graph. Later, we shall look at algorithms for achieving
arc consistency. These algorithms are fast (compared to the time taken to actually
find a solution to a CSP), and as we are only removing values which cannot be part
of any solution, they simplify the problem without changing the set of solutions. So
it is usually a good idea to make a problem arc consistent.

3.1 Matrix representation

An individual binary constraint between two variables with domain sizes my and
msg can be represented by an mq X me matrix of 0-1 values®, where 1 signifies that
the constraint allows the corresponding pair of values, and 0 that it does not. (This
can sometimes be a useful way of representing binary constraints. However, even
if we specify a constraint intensionally in a tool such as Solver, we would not do it
by a matrix, but by a list of pairs, so this is not a practical way of defining real
constraints.)

For example, the constraint z < y — 2, where z and y both have domains {1...5}
can be represented like this:

zr 1 2 3 4 5

TU LW NP

Notice that, if a binary constraint is represented by a matrix, making the con-
straint arc consistent in both directions effectively removes any values from the
domains of the two variables for which the corresponding row or column in the
matrix is all zeros.

3.2 Line Labelling

Some of the earliest work on constraint satisfaction problems was done in com-
puter vision. An early attempt at making sense of a scene made several simplifying
assumptions:

e we assume that the 2-D image is composed of straight (black) lines on a plain
(white) background, with no noise, missing portions, shadows, etc.

e we assume that the 3-D scene the image represents is composed of solid objects
whose faces are planar and polygonal, and that no more than three faces meet
at each vertex.

(Current computer vision research is of course dealing with much more complex
and realistic images: the approach described here is more than 25 years old - see M

3...or a table, for non-mathematicians.

AR33 Notes 2001 15

B Clowes, On seeing Things, Artificial Intelligence, vol. 2, pp. 79-116 (1971); D A
Huffman, Impossible Objects as Nonsense Sentences, in Machine Intelligence 6, ed.
B Meltzer & D Michie (1971).)

With the above assumptions, an edge of a solid body is a straight line and must
be either convex or concave. Each vertex in the scene represents the meeting of up
to 3 faces: in the image, anywhere between 0 and 3 faces at each vertex may be
visible, the others being occluded, or hidden.

Figure 6: Example of an image to be labelled

Each edge in the scene which is visible in the image will be in one of the categories
below. In order to understand the scene, we want to label every visible edge as
belonging to one of three categories. (There may not be a unique way of doing
this.)

e convex edges, marked +.

e concave edges, marked —.

e occluding edges, marked either » or «: moving along an occluding edge in the
direction of the arrow, the visible face of the object is on the right, and the
occluded or hidden face is on the left.

There are four possible kinds of vertex in the image, and the possibilities for the
labels on the edges meeting at a vertex are shown in Figure 7.

We can represent the line labelling problem by having a variable for each edge in
the image; the domain of each variable contains the possible labels, i.e. {+,—,», «}.
There is a constraint between the edges meeting at a vertex; the labels assigned to
the edges must be one of the valid combinations for that type of vertex shown in
Figure 7. So, the constraints of the problem correspond to the vertices in the image.

Figure 8 shows the image of Fig. 6 marked to show the variables and their
domains. We can then use Fig. 7 to reduce the possible values of each variable (Fig.
9). In this case, every remaining value is part of a possible solution, and in fact
there are four possible solutions (Fig. 10).

e

RN
oo
N

Figure 7: Valid combinations of labels at vertices

a {+-,-> <}
L\ L’\
Z
X3 +
oy ‘o\x o
\
\%
c{+,--><} A
-
—
(0] ~
-~ +
-+ - o3
- Vv 7
v A x 3
A -~ K
- \

h{+--><-}

Figure 8: Image showing the variables and their domains

a {+-,-> <}
23 >
3 27l
X3 +
oy ‘o\x o
v
c{+,--><} A
-
o =
-~ +
-+ - o3
- Y% 73
y RS
—~ - \\'
h{+--><-}

Figure 9: The reduced domains (to be completed in lectures)

AR33 Notes 2001 17

Figure 10: Two possible solutions (to be completed in lectures)

3.3 Two Logic Puzzles

These two puzzles are of a kind which you can find in the puzzle books sold in
newsagents. They can often be expressed quite easily as binary CSPs, and if so, 1
have found that the ones available in this country are invariably amenable to arc
consistency: if you make the problem arc consistent, there is only one value left in
each variable’s domain. (For some reason, you can find much more difficult puzzles
of this kind in American puzzle books.) I don’t know the origin of the zebra problem:
it’s been well-known to CSP researchers for many years. It’s much more difficult
than the first puzzle. You might like to try solving it by hand, before we apply
Solver to it.

3.3.1 Visiting time.

Five children are in hospital and at visiting time each is visited by a friend or relative,
bringing two presents: something to eat or drink, and something to play with. The
task is to link each child with his/her visitor and presents, using the information
given below.

The five children: Elizabeth, Jane, Peter, Simon, Wendy.

The visitors: aunt, father, friend, grandfather, mother.

The presents: bananas, cake, jelly-babies, orange squash, toffees.

colouring book, comics, doll, playing cards, story book.

Each child is to be linked with a different item from each category.

We can represent this as a binary CSP and hence draw a constraint graph.

We are also given the following information:

e The child who was given the doll did not receive any sweets.

e The bananas and playing cards were given to the same girl.

e The person who brought the orange squash was not a female relative.
which can be represented by additional constraints. Finally, using the following
information, we can find the solution by reducing the domain of every variable to
just one child:

e Simon’s friend brought him comics.

e The doll was given to a girl.

e The cake was for Elizabeth’s birthday.

e The toffees were brought for a boy.

e Wendy’s visitor was not a female relative.

e Jane’s grandfather brought her favourite sweets.

18 AR33 Notes 2001

e Peter’s visitor was his aunt; he did not receive the colouring book.

3.3.2 The zebra problem.

There are five houses of different colours, inhabited by five different nationalities,
with different pets, drinks and cigarettes:

e The Englishman lives in the red house.

e The Spaniard owns a dog.

e Coffee is drunk in the green house.

e The Ukrainian drinks tea.

e The green house is immediately to the right of the ivory house.

e The Old Gold smoker keeps snails.

e Kools are smoked in the yellow house.

e Milk is drunk in the middle house.

e The Norwegian lives in the first house on the left.

e The Chesterfield smoker lives next to the fox owner.

e Kools are smoked next to the house with the horse.

e The Lucky Strike smoker drinks orange juice.

e The Japanese smokes Parliament.

e The Norwegian lives next to the blue house.

Who drinks water and who owns the zebra?

3.4 The Limits of Arc Consistency

Techniques such as arc consistency use the constraints of the problem to make
explicit some information about the problem which was previously only implicit.
If we did not remove the values which arc consistency tells us can be deleted, and
found all solutions to the CSP, we would find that there is no solution involving
these values. Constraint propagation is the general term for techniques such as this.
If we have an arc consistent problem and add another binary constraint to it, and
then make the new problem arc consistent again, the effects can indeed propagate
throughout the network. As well as potentially reducing the domains of the two
variables linked by the new constraint, it can indirectly reduce the domain of any
other variable, if successive reductions elsewhere in the network eventually remove
the only supporting values for some value in its domain.

Arc consistency is a powerful technique for reducing the domains of variables.
In a few special cases, we may find that making the problem arc consistent is all we
need to do:

e the result of making the problem arc consistent is that every variable has only
one value remaining, as in the logic puzzle above. Assigning its remaining value
to each variable yields the only possible solution. However, this is exceptional,
and the puzzle was clearly designed to behave in that way.

e in the course of removing any values which have no support, we find that
some variable in the problem has no values left. In that case we know that
the problem has no solution.

AR33 Notes 2001 19

e every value left when the problem is arc consistent is part of a solution. In
some cases, we can then easily find a solution. (It is not possible to detect this
by inspection, but it is true of some special classes of problem.)

In general, however, there is no guarantee that an arc consistent problem has a
solution at all. To find a solution, or to prove that there is no solution, we need
other techniques.

y
{45}
x<y-2 y<z
z>= 5X
X z
{12} {6..10}
w>= 5x w+z< 20
w
{6..10}

Figure 11: An arc consistent constraint network

4 Finding Solutions

The example T shall use throughout this section is the n-queens problem, already
described in section 2.2.6: place n queens on an n X n chessboard in such a way
that no queen attacks any other. (No two queens can be on the same row, the same
column or the same diagonal.) This is the best example I know of from the point
of view of visualising what a search algorithm is doing.

As described earlier, we can represent the n queens problem as a CSP by using
n variables, q1, g2, ..., qn, representing the rows of the chessboard. Each variable has
domain {1,..,n} representing the n columns.

We want to find an assignment of a value to each variable such that all the
constraints are satisfied. In this case, the problem is already arc consistent, as you
can check, so that we cannot simplify the problem in that way. We need some kind
of algorithm to solve this and other CSPs. What properties do we want such an
algorithm to have? Two that we might insist on are:

e soundness: any solution that the algorithm finds is a genuine solution;

o completeness: the algorithm guarantees to find a solution in a finite time, if
there is one. (Hence, if it terminates without finding a solution, this is because
the problem has no solution.)

Soundness is clearly of prime importance. Completeness may also seem a neces-
sity, and all the algorithms we shall use will be complete. But there are incomplete

20 AR33 Notes 2001

algorithms for solving CSPs (for example, local search algorithms, which I shall dis-
cuss briefly later on). If problems are very hard to solve (and large CSPs can be),
a complete algorithm may in practice take far too long to prove that a particular
instance has no solution. So an algorithm which is in theory complete may be in-
complete in practice. In those circumstances, it may be better to use an algorithm
which we know is incomplete, if it has a better chance of finding a solution when
there is one. On the other hand, if a problem has no solution, an incomplete algo-
rithm will have no way of detecting this, no matter how long it runs for, whereas a
complete algorithm may be able to prove that there is no solution.

4.1 Generate and Test

A very simple way of finding a solution to a CSP is to generate all possible assign-
ments of values to variables, in some systematic way, and test each one in turn to see
if it satisfies the constraints. If it does, we have a solution and can stop (if we only
want one solution); otherwise we carry on. If all assignments have been tested and
no solution has been found, then there isn’t one. So this algorithm is both sound
and complete.

If every variable has a m possible values and there are n variables, then there
are m” possible assignments. We shall have to examine all of these if either there is
no solution or the very last assignment is the only solution or we want all solutions
or we want the best solution (in which case we find all solutions, and pick the best).
If there is a solution, and we only want one, we might be very lucky and find that
the first assignment we examine satisfies the constraints. On the whole, however,
this is a really stupid algorithm.

To see why, suppose that the constraints do not allow v; = 1 and vo = 1 (as
with the n-queens problem, for instance). There are m”™~2 assignments in which this
combination of values appears. We will have to generate them all and find out each
time that the assignment is invalid; the algorithm has no way of learning that this
is a mistake. Most algorithms for finding solutions to CSPs are based on systematic
search, and can avoid, to a greater or lesser extent, considering partial assignments
which can be shown not to lead to a solution.

4.2 State-Space Search

This is a basic problem solving technique in AI, which I shall briefly review. Given
an initial state, one or more goal states, and a set of operators which will produce
the possible successors to a state, we want to find out how to get from the initial
state to a goal state.

We can represent the search for a goal state as a tree, with the nodes representing
the states (the initial state being the root node) and the edges the possible operators.
In searching for a solution, we gradually construct this tree, by repeatedly choosing a
node and one of the operators leading from it, and creating a new node representing
the resulting state. Two important search techniques are depth-first search and
breadth-first search. (See any general Al textbook.)

In depth-first search, we always choose to explore a node which is a child of the
most recently-explored node. If this node has no children we backtrack up the path

AR33 Notes 2001 21

which led to this node until we find a node with an unexplored sibling. We have to
keep in memory all the unexplored siblings of any node on the path from the current
node back to the root of the tree (in case we need to backtrack to any of them).
In breadth-first search, every node at level d is explored before any node at level
d + 1. The memory requirements in this case are far larger (and increase as we
progress down the tree.)
There are some advantages to breadth-first search:

e it will find the shortest path to the goal state (which is important in some
problems).

e depth-first search can in some types of problem get trapped in exploring an

infinitely long path and so never reach a goal state.

4.2.1 Finding a solution to a CSP as State-Space Search

A possible way of viewing finding a solution to a CSP in terms of state-space search
is as follows:

e in the initial state, no variables have been assigned values

e a goal state is a state in which every variable has been assigned a value and
all the constraints are satisfied (i.e. it corresponds to a solution).

intermediate states correspond to partial solutions in which some variables
have been assigned values and the relevant constraints are satisfied

the operators are:

— select a variable which has not yet been assigned a value;
— at a node where a variable has just been selected, select one of the values
in its domain

(See diagram in lectures.)
The search tree formed in this way when solving a CSP has several special
characteristics:

e the search tree is finite; there can be no infinitely long paths in it.

e all solutions occur at the same depth in the tree (i.e. depth 2n, if n is the num-
ber of variables, and we count the root node of the tree as depth 0. We have
n levels corresponding to choosing each of the variables in turn, alternating
with n levels at which we choose a value for the current variable.)

Because of these characteristics, we choose depth-first search rather than breadth-
first search.

In the rest of this section, we shall assume that the order in which variables are
selected is predetermined, so that selecting the next variable is not shown as part
of the search process. However, the variable selection strategy does in fact play an
important role in successfully solving CSPs and we shall return to this later.

The simplest algorithm based on depth-first search is called simple backtracking.

1. choose a variable which has not yet been assigned a value. If there are none,
then stop: a solution has been found.

22 AR33 Notes 2001

2. choose a value for this variable.

3. test whether the new partial solution satisfies all the relevant constraints (i.e.
all the constraints which affect the current variable and one or more of the
past variables (those that have already been assigned values):

e if so, return to step 1.

e if not, choose another value for this variable; if there are no more values,
backtrack to a variable which still has values which have not been tried;
if there is no such variable, stop: there is no solution.

Figure 12 shows the search tree for the 4-queens problem using simple backtrack-
ing. (As already mentioned, we ignore the selection of next variable in this search

Q Q
Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q
X X X X X
Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q
X X X X X X X
Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
X X X X X X v

Figure 12: Search tree for 4-queens using simple backtracking

tree; we assume that the variables are considered in the order ¢1, g2, ¢3,44.)

4.3 Forward Checking

Because the backtracking algorithm only checks the constraints between the current
variable and the past variables, it tries many assignments which we can see are
clearly going to fail. For instance, if the queen in the first row is in the first column,
there is no point in trying to place any other queen in that column. The forward
checking algorithm tries to avoid useless assignments of that kind by looking ahead
at the effect of any assignment on the future variables (the future variables are those
that have not yet been assigned).

When a value is assigned to the current variable, any value in the domain of a
future variable which conflicts with the new partial solution is (temporarily) removed
from the domain. The advantage of this is that if the domain of a future variable,
say vy, becomes empty, it is known immediately that the current partial solution is
inconsistent, and as before, either another value for the current variable is tried or

AR33 Notes 2001 23

the algorithm backtracks to the previous variable; the state of the domains of future
variables, as they were before the assignment which led to failure, is restored. With
simple backtracking, this failure will not be detected until much later. When vy
becomes the current variable and an attempt is made to assign a value to it, it will
then be discovered that none of its values are consistent with the current partial
solution. Forward checking therefore allows branches of the search tree that will
lead to failure to be pruned earlier than with simple backtracking.

This can again be illustrated using the 4-queens problem. If we start by placing
a queen on the first row, then none of the other queens can be placed in the same
column or on the same diagonal. The values corresponding to the squares attacked
by this queen can be removed from the domains of the variables representing the
queens in rows 2 to 4, unless and until this branch leads to a dead end, and the first
row queen has to be moved. The full search tree built by forward checking for this
problem is shown in Figure 13. Squares with crosses denote values removed from
the domains of future variables by the past and current assignments.

Q Q
Q Q Q
Q Q Q
X
Q Q
Q Q
Q Q
X
Q
Q
Q
Q
v

Figure 13: Search tree for 4-queens using forward checking

Note that whenever a new variable is considered, all its remaining values are
guaranteed to be consistent with the past variables, so that checking an assignment
against the past assignments is no longer necessary.

The only constraints that we need to consider when checking forward are those
that involve both the current variable and exactly one future variable. These con-
straints could be either binary constraints or constraints of higher arity in which all
but these two variables have already been assigned values. In the latter case the
constraint has effectively become binary (although this may only be temporary: we
may find later that we have to backtrack and undo some of these assignments). This
is an example of why binary constraints or constraints involving only a small number
of variables are so important in CSPs; we can use binary constraints to propagate
the effects of an assignment to unassigned variables, and even if the constraints are

24 AR33 Notes 2001

not binary at the outset, they will eventually become binary during search, as the
variables are assigned values.

Provided that the same variable ordering is used in both cases, it is guaranteed
that forward checking will explore no more nodes than simple backtracking, usually
far fewer. (Changing the variable ordering will have unpredictable effects on the
search tree: for instance, a different solution may be found. The guarantee then no
longer holds.)

However, at each node, forward checking does more work than simple backtrack-
ing, so that overall it can take longer to find a solution. For instance, if it is very
easy to satisfy the constraints, it may be that simple backtracking can find a solution
without ever having to backtrack to a previous variable; in that case, checking the
effects of assignments on the domains of future variables is a waste of effort. This
rarely happens in practice, however, and almost always forward checking is much
faster than simple backtracking.

The following artificial example will show that forward checking can save an
arbitrary amount of work compared with simple backtracking: suppose we have
variables z1, 2, x3,, T, where x1, 2, T, all have domain {1,2} and the constraints
on these three variables are that they should all have different values. Clearly this
subproblem, and thus the whole problem, is infeasible. (It does not matter what
the domains of the remaining variables zs,, xnp—1 are, or what the constraints on
these variables are: we assume that this part of the problem can be solved without
any difficulty.) The backtracking algorithm will instantiate variables z; and z to 1
and 2 respectively, and then assign values to z3,, £, 1 in turn, before discovering
that there is no value for z,, which is consistent with the first two assignments. It
will then backtrack to z,_1 and try all the alternative assignments for this variable,
then backtrack to z,_o, and so on, even though these variables are not part of
the subproblem which is causing the difficulty. It could take a very long time to
discover that the problem has no solution. Forward checking, on the other hand, will
discover that there is no remaining value in the domain of z,, as soon as values have
been assigned to z; and z: it will never consider assigning values to the remaining
variables.

4.4 Maintaining Arc Consistency

The MAC, or full-lookahead, algorithm does still more work than forward checking in
looking ahead when an assignment is made. Whenever a new subproblem consisting
of the future variables is created by a variable instantiation, the subproblem is made
arc consistent. As well as checking the values of future variables against the current
partial solution, as forward checking does, this checks the future variables against
each other. Any value in the domain of a future variable which has no supporting
value in the domain of some other future variable which constrains it is deleted, in
addition to those which are not consistent with the current partial solution. This
may remove more values from the domains of future variables than forward checking
does, and as with forward checking, the hope is that in doing additional work at the
time of the assignment, there will be an overall time-saving.

Figures 14 and 15 compare forward checking and MAC on 6-queens. As before,
squares marked with a cross are those which were eliminated by a previous assign-

AR33 Notes 2001

Figure 14: Search tree for 6-queens using forward checking

25

26

AR33 Notes 2001

o

Figure 15: Search tree for 6-queens using MAC

AR33 Notes 2001 27

ment, or are inconsistent with the current assignment. We can cross out additional
squares by making the future subproblem arc consistent. (The diagram needs to be
completed in lectures.)

The rightmost branch in Figure 15 shows that there is only one possible solution
following the first two assignments, and again reduces the amount of searching
along this branch compared with Figure 14. In fact, as with simple backtracking
v. forward checking, it is guaranteed that the nodes explored by MAC are a subset
of those explored by forward checking, provided that the same variable ordering is
used.

The MAC algorithm interleaves constraint propagation and search. Re-establishing
arc consistency after each variable instantiation can be done efficiently using an in-
cremental AC algorithm (which we shall consider in more detail later) rather than
starting from scratch. This is essentially the algorithm used by constraint program-
ming tools, including ILOG Solver.

5 Variable and Value Ordering

In the n-queens examples considered so far, the variables have been considered in
the order q1,¢o, ..., q, and the values in the order 1, 2, ..., n. There is no particular
reason to believe that this is the best order in which to consider the variables and
values, and selecting the next variable to consider and the value to assign to it are
clearly part of the search process.

The order in which variables are considered for instantiation has a dramatic
effect on the time taken to solve a CSP, as does the order in which each variable’s
values are considered. For instance, suppose the problem has a solution in which
vy = l1,v9 = lg,....., and we happen to choose the values for each variable in such
a way that the first value considered for each variable is its value in this solution.
Then we can ‘find’ this solution, even using simple backtracking, very quickly.

There are general principles which are commonly used in selecting the variable
and value ordering, and a few specific heuristics.

5.1 Variable Ordering

A good variable ordering will reduce the size of the tree explored by the search
algorithm, in comparison with a poor ordering. Hence, even if there is no solution,
so that a complete search is required, or if all solutions are required, the search can
be expected to take less time. (See the example given in lectures.)

The variable ordering may be either a static ordering, in which the order of the
variables is specified before the search begins, and is not changed thereafter, or a
dynamic ordering, in which the choice of next variable to be considered at any point
depends on the current state of the search.

Dynamic ordering is not feasible for all tree search algorithms: for instance, with
simple backtracking there is no extra information available during the search that
could be used to make a different choice of ordering from the initial ordering: all
the future variables look the same as they did at the start, so there is no reason to
change the ordering. We shall consider static variable orderings later.

28 AR33 Notes 2001

5.1.1 Dynamic Variable Ordering

With the FC and MAC algorithms, the current state includes the domains of the
variables as they have been pruned by the assignments already made, and so it
is possible to base the choice of next variable on this information, resulting in a
dynamic variable ordering. To put it another way, the future subproblem which
these algorithms are faced with changes after every assignment, so there is no reason
why the initial ordering of the variables should remain the best. Dynamic variable
ordering heuristics generally perform much better than static ordering, since they
use information about the current state of the search.

With a dynamic variable ordering, the order may be different on different paths
through the search tree: this still, however, falls within the framework of depth-first
state space search.

A common heuristic for variable ordering is to choose the most constrained vari-
able, i.e. the one with smallest current domain. The explanation given by Russell
and Norvig in Artificial Intelligence: A Modern Approach (Prentice-Hall, 1995) is
that this minimises the branching factor at the current node, i.e. the number of
potential branches formed.

When several variables have the same minimum number of values, we need a tie-
breaker: for instance, in many problems all the domains are initially the same size,
as in the n-queens problem, for instance. The most constraining variable heuristic
says that we should choose the variable which constrains the greatest number of
unassigned variables. Russell and Norvig’s justification for this is that it attempts
to reduce the branching factor at future nodes.

This combination, choosing the variable with the smallest remaining domain and
breaking ties by choosing the variable which constrains most unassigned variables,
was first proposed for graph colouring by Brélaz (‘New Methods to Color the Vertices
of a Graph’, Communications of the ACM, 22, pp. 251-256, 1979). In terms of graph
colouring, we choose next the node (or vertex) with fewest available colours, and
break ties by choosing the vertex which is adjacent to (i.e. is linked by edges to) the
largest number of uncoloured vertices. This works well in graph colouring, and in
many CSPs in general. In graph colouring, it tends to explore the densest areas of
the graph first; if there is a large clique*, which will make the graph uncolourable if
it has more nodes than the available number of colours, this increases the chances
of finding it early in the search. However, in graph colouring, all the domains are
the same size initially and all the constraints are the same. For general CSPs, where
these conditions may not hold, it doesn’t always work so well. For instance, if some
of the constraints are much harder to satisfy than others, it might be a good idea
to assign values to the variables involved in these constraints before the others,
irrespective of the domain sizes.

5.2 Value Ordering

Having selected the next variable to assign a value to, a search algorithm has to
select a value to assign. As with variable ordering, unless values are to be assigned
simply in the order in which they appear in the domain of each variable, we should

4A clique is a set of nodes in which every node is connected to every other node.

AR33 Notes 2001 29

decide how to choose the order in which values should be assigned. A different
value ordering will rearrange the branches emanating from each node of the search
tree. This is an advantage if it ensures that a branch which leads to a solution
is searched earlier than branches which lead to dead ends, provided that only one
solution is required. If all solutions are required, or if the whole tree has to be
searched because there are no solutions, then the order in which the branches are
searched is immaterial.®

Suppose we have selected a variable to instantiate: how should we choose which
value to try first? It may be that none of the values will succeed; we are in fact
exploring what will turn out to be a dead end, and we shall have to backtrack to the
previous variable. In that case, every value for the current variable will eventually
have to be considered, and the order does not matter. On the other hand, if we
can find a complete solution based on the past instantiations, we want to choose a
value which will lead to such a solution; a good general principle, then, is to choose
a value which is likely to succeed, and unlikely to lead to a conflict (if we can detect
such a value).

Some value ordering heuristics based on this principle have been proposed for
use with forward checking, e.g. N. Keng and D.Y.Y. Yun, A Planning/Scheduling
Methodology for the Constrained Resource Problem, Proceedings IJCAI’89, pp. 998-
1003, 1989; P.A. Geelen, Dual Viewpoint Heuristics for Binary Constraint Satisfac-
tion Problems, Proceedings ECAI’92, pp. 31-35, 1992. In both cases, in order to
select a value for the current variable, the state of the domains of the future vari-
ables which would result from each choice is found, i.e. forward checking is done for
each value in turn. Keng & Yun suggest then calculating the percentage of values in
future domains which will no longer be usable, as a measure of the cost of making
this choice: the best choice would be the value with lowest cost. Geelen suggests
instead calculating the ‘promise’ of each value, that is the product of the domain
sizes of the future variables after choosing this value (this is an upper bound on the
number of possible solutions resulting from the assignment): the value with highest
promise should be chosen.

Unfortunately, there is a great deal of work involved in forward checking from
each possible value in turn. In general, the benefit of choosing a value which seems
more likely to lead to a solution than the default choice is probably not worth the
work involved in assessing each value. In particular problems, on the other hand,
there may be information available which can be used to choose a value likely to
succeed.

6 A Digression on Complexity

(A lot of this section is based on Kevin McEvoy’s notes.)

At least this is true for the algorithms considered so far. It has been reported that if an
algorithm employs a fancy backtracking strategy, the value ordering can make a difference even if
the problem has no solution. And I have found that in Solver, the value ordering can affect the size
of the search tree when finding all solutions to a problem.

30 AR33 Notes 2001

6.1 Big-O notation

Suppose we are dealing with functions which for every natural number n give us
a ‘result’” which is a real number. If f is such a function, we write £ N — R. We
will use functions of this kind to describe the running time of an algorithm in terms
of the size of the problem instance it is applied to. The problem is assumed to be
represented by an integer (e.g. the length of a list to be sorted) and the time by a
real number (e.g. the cpu time in seconds).

Given two functions f N — R and g: N — R, ‘big-O’ notation allows us to
express the idea that the function g grows at least as fast as f and so will eventually
be as big or bigger than f. f = O(g) means:

Jk, m € N such that for all n > m, f(n) < k x g(n)
So from some value of n onwards, f is no bigger than g (give or take a constant
factor k).

6.2 Complexity of Algorithms

Suppose we can roughly estimate how long an algorithm takes to run, in terms of
some measure of its size, n. We will not be concerned with precise measurements,
just how fast the cost of running the algorithm grows with n. Suppose the algorithm
has two main steps, one of which has to be executed n? times and the other n times.
Everything else is just ‘housekeeping’ which has to be done whatever the size of the
problem. Then the time taken to run the algorithm can be expressed in the form
f(n) = an?® 4 bn + c where a, b, c are positive constants (the time to execute each of
the two main steps just once, and the housekeeping time).

Then f(n) = O(n?) and we say that the algorithm is O(n?).

The point of this is that it gives us a simple way of comparing the running time
of two algorithms: an O(n?) algorithm will take longer to solve a problem, if the
problem size n is large enough, than an O(n?) algorithm.

Usually we cannot find a simple function to describe the time taken to run the
algorithm in all cases; it will depend on the input to the algorithm in a particular
instance. We then concentrate on the worst case, which gives us an upper bound
on the growth rate of the time it takes to run the algorithm, or the best case, or
sometimes the average case. We use the big-O notation to describe the worst case
performance of the algorithm.

How long does it take to solve a CSP? Suppose we measure the size of an instance
by the number of variables, n, and every variable has m values in its domain (to
simplify the analysis). (Other factors might also be taken into account in measuring
size, notably the number of constraints, and we shall sometimes include these.)
Let’s consider the generate-and-test algorithm. There are m™ possible assignments
of values to variables, and in the worst case the algorithm will have to consider all
of them. The worst case will occur either if there is no solution, or if there is just
one solution and it happens to be the last one that the algorithm looks at. If we
assume that the cost of checking an assignment is constant and does not increase
as the instances get larger, then the cost of the algorithm is proportional to m™,
so this is an O(m™) algorithm. (In practice, the number of constraints is likely to
increase as n increases, so that the cost of checking an assignment will also increase;

AR33 Notes 2001 31

but exponential worst-case performance is bad enough, so we will disregard this
extra element in the cost.) On the other hand, if an instance has a solution, the
algorithm might find that the first assignment it considers satisfies the constraints;
this is obviously more likely to happen the more solutions there are, but it could
happen even if there is only one solution. So the best-case performance, if there is
a solution, is the cost of checking a single assignment.

Any algorithm which is O(n*) for some fixed constant k is said to be a polynomial
algorithm. An algorithm which is O(k™) for fixed k is ezponential. The rate of
growth of exponential functions is so much larger than any polynomial function
that problems which have a polynomial-time algorithm are said to be tractable,
whereas those that only have exponential-time algorithms, or worse, are said to be
intractable.

The constraint satisfaction problem belongs to a class of problems called NP-
complete®, which have the following properties:

e No problem in the class is known to be tractable, i.e. to have a polynomial-time
algorithm.

e If one problem in the class is tractable, then they all are.

e It has not been proved that these problems cannot have a polynomial-time
algorithm (but it is strongly suspected that this is the case.)

e If by some means you can find a solution to an instance of an NP-complete
problem, you can check whether it is a valid solution in polynomial time.

This means that although generate-and-test is the worst of the algorithms we
have considered, the others are all also exponential-time algorithms. In fact, any
complete CSP algorithm, i.e. any algorithm which is guaranteed to find a solution, is
exponential in the worst case. Hence even the best algorithm that we have considered
may take a very long time to solve a large instance.

However, although they are both exponential, there is a big difference between
say 2" and 10". Hence, finding a better CSP algorithm will allow us to solve bigger
instances, in practice, even though we will still eventually run into trouble, in the
worst case, as the number of variables increases.

If you want to read more about big-O notation, complexity of algorithms and
NP-complete problems, I recommend ‘Algorithmics - The Spirit of Computing’ by
David Harel, which is an excellent book. It gives an informal treatment and is very
readable. Chapters 6 and 7 are particularly relevant (‘The Efficiency of Algorithms,
or Getting it Done Cheaply’ and ‘Inefficiency and Intractability, or You Can’t Always
get It Done Cheaply’).

6.3 When does the worst case happen?

A considerable amount of research has been done in recent years into when you can
expect to meet ‘worst-case’ behaviour in NP-complete problems. This research, as
far as CSPs are concerned, has been done with randomly-generated binary CSPs;

5This stands for Non-deterministic Polynomial-time Complete.

32 AR33 Notes 2001

since we can represent a binary constraint as a matrix of Os and 1s, binary constraints
can easily be generated randomly.

We generate randomly a large sample of instances all with the same character-
istics and then measure the cost of solving each instance. For random binary CSPs,
the cost is measured by the number of consistency checks required to either find a
solution or to prove that there is no solution; a consistency check means referring to
the matrix representing the constraint between a pair of variables to see whether a
particular pair of values is allowed for that pair of variables. The number of consis-
tency checks correlates reasonably well with the cpu time required, and is machine
independent. (Note that in Solver we use the number of fails as a surrogate for
cpu time; because of the way the constraints are represented and used, there is no
direct equivalent to a consistency check. Also note that we don’t use Solver to solve
random binary CSPs.)

By measuring the cost of solving a large number of similar instances in this way,
we can get an idea of the distribution of cost and in particular the average cost.
If we repeat the exercise, varying the characteristics of the set of instances while
keeping the size fixed, we can find out when CSPs of this kind are likely to be easy
to solve and when they are likely to be difficult (i.e. when we are likely to encounter
worst case behaviour).

If we have a sample of CSP instances all with the same number of variables, the
same number of values in each variable’s domain and the same number of constraints,
it has been found that the average solution cost depends on the constraint tightness,
i.e. the proportion of 0s in each constraint matrix. Constraints represented by
matrices with a large proportion of Os are hard to satisfy, or tight; those with a
large proportion of 1s are easy to satisfy, or loose. Figure 16 shows the median cost
of solving a large number of randomly-generated instances, each with 20 variables, 10
values in each variable’s domain, and a constraint density of 0.3, i.e. 30% of variable
pairs have a constraint between them. 500 instances were generated for each value
of the constraint tightness, and were solved using both the simple backtracking
algorithm (BT) and the forward checking algorithm with the smallest-remaining-
domain variable ordering heuristic (FC with SD).

It has been found that this graph is qualitatively the same, whether we use
the simple backtracking algorithm or MAC (or even something more sophisticated).
The peak in cost occurs at the same constraint tightness, whatever the algorithm,
but the better the algorithm, the lower the peak.

e if the constraints are extremely loose, i.e. each constraint forbids only a few
pairs of values, the instances have very many solutions, and it is easy to find
one without ever having to backtrack.

e as the constraints get tighter, there are still many solutions, but the algorithms
have to do more search so that the cost increases.

e the peak in cost occurs when half the instances have a solution and half do
not. The instances with solutions have relatively few; they are ‘only just’ sol-
uble, and making a few constraints a little tighter would make them insoluble.
Hence, it takes a lot of searching to find a solution. The instances which have
no solutions are only just insoluble; loosening a few constraints just a little

AR33 Notes 2001 33

le+07 T

B
FC + SD heuristic ----

1et06

:

Median Consistency Checks
:

10 I I I I I I
0 0.1 0.2 03 04 . 0. 0.7 08 0.9 1
Constraint Tightness (p2)

Figure 16: Median cost of solving randomly-generated CSPs

08 [4

06 B

Proportion of problems with a solution

02 | 4

I I I I I I
0 01 0.2 03 0.7 0.8 09 1

04 . 0.
Constraint Tightness (p2)

Figure 17: Proportion of problems that have a solution

would allow a solution. Hence, there are many partial solutions involving most
of the variables which satisfy the constraints; it is often only possible to detect
that the partial solution is inconsistent a long way down the search tree.

e When the constraints are tighter, all instances in the sample are insoluble,
and as the constraints become progressively tighter, it gets easier to prove
that there is no solution.

Although the experiments only tell us about the overall behaviour of classes of
problem, and we are usually faced with solving just one instance, the research does
indicate the circumstances when we are likely to run into ‘worst-case’ performance
from our search algorithm.

34 AR33 Notes 2001

7 Consistency Techniques

Consistency techniques, for example algorithms which make a binary CSP arc con-
sistent, intend to change the original CSP into an equivalent problem which has the
same set of solutions, but is hopefully easier to solve. Some consistency techniques
remove values from the domains of some of the variables (as arc consistency does);
others, which are less useful, add new constraints.

7.1 Node Consistency

A node consistent problem is one in which every value in every variable’s domain
satisfies the unary constraints on that variable. It is trivial to remove values which
do not satisfy the unary constraints from the domain of the affected variable”: the
unary constraints have then been dealt with and can be forgotten about. We have
seen examples of this in Solver, e.g. in the program sendmory, where the constraint
S != 0 is used to remove this value from the domain of S.

7.2 Arc Consistency Algorithms

As a reminder, an arc consistency algorihm considers each binary constraint and
removes any value from the domain of either variable if there is no supporting value
in the domain of the other variable.

A number of arc consistency algorithms of varying degrees of sophistication have
been proposed. We shall look at two: AC-3 and AC-5. AC-3 was introduced by
Mackworth in 1977 (A.K. Mackworth, Consistency in networks of relations, Arti-
ficial Intelligence, 8, pp. 99-118, 1977). AC-5 (P. van Hentenryck, Y. Deville and
C.-M. Teng, A generic arc-consistency algorithm and its specializations, Artificial
Intelligence, 57, pp. 291-321, 1992) is more complex, but more efficient, and fur-
thermore can be adapted to re-establish arc consistency during search, which is what
is required for the full-lookahead algorithm.

In the algorithm descriptions, C is the set of binary constraints in the problem.
(There may be some non-binary constraints, but, at least for the time being, we
shall only use the binary constraints.) If there is a binary constraint between the
variables z and y, we will refer to it as either Cyy and Cy,. We assume that at the
start, the problem is already node consistent, so that there are no longer any active
unary constraints. All constraints in C are assumed to be at least binary.

"at least in the cases we shall see: we can imagine constraints which are hard to check, e.g. if
the domain of z consists of extremely large integers and the constraint is ‘z is prime’

AR33 Notes 2001

35

Algorithm AC-3

begin

{ form a queue consisting of all arcs (z,y) where there is a constraint

Czy between the variables z and y }

Q < {(z,9) | Coy € C};
{ while the queue is not empty ... }

while (Q # 0) do
begin

end;
end; { of AC-3}

{ choose an arc (z,y) from the queue and remove it }
Q < Q —{(z 1)}
{ delete any values in D, which are not supported by y }
Deleted < false;
for each 7€ D, do
if Vj € Dy : x = 1,y = j does not satisfy C, then
begin
Dy < Dy — {7‘}5
Deleted + true;
end
{ if any values of = have been deleted, Deleted is true }
if Deleted then

Q<+ QU{(z,2) | Cor € CAZ # y};

y {1..5} y<z z {1..5}

w {1..5}

W < X x {1..5}

Figure 18: Example constraint graph

36 AR33 Notes 2001

Arcs in the queue | Values deleted | Arcs added | Elements added by AC-5
X =y
y— X
X —> 2z
Z — X
y—z
zZ =y
X — W
Ww—X
y—ow
Wy

AR33 Notes 2001 37

7.2.1 Complexity of AC-3

To see how long AC-3 takes to run, we estimate how many times the algorithm has
to test whether a pair of values, say ¢ = %,y = j, satisfies the constraint between z
and y, in the worst case.

Let m be the maximum size of any domain and let ¢ be the number of edges in
the constraint graph (i.e. the number of binary constraints).

In processing an arc, AC-3 considers at most m? pairs of values, if every value
in D, is supported by only the last value in Dy, or by none of them. (At best, it
considers only m pairs of values, if every value in D, is supported by the first value
in D,.)

Initially, the queue contains 2¢ arcs. In the worst case, processing an arc will
delete exactly one value from D, and will cause arcs to be added to the queue each
time. Any arc (y,z) can be added to the queue at most |D;| times (it is added to
the queue whenever a value is deleted from D, which cannot happen more than
|D| times). Hence, AC-3 processes at most 2¢(m + 1) arcs. So the overall time
complexity of AC-3 is O(2cm3).

Note that the result of making a problem arc consistent is unique. The order in
which the arcs are taken from or added to the queue does not affect the final set of
domains, although it may affect the time taken to reach the result.

7.2.2 The AC-5 Algorithm

The queue in AC-3 consists of arcs (z,y). In AC-5, the queue contains elements
((z,y),7), where (z,y) is an arc and j is a value which has been removed from D,
and so justifies the need to reconsider this arc.

Algorithm AC-5
begin
Q « 0
{ consider each arc once }
for each Cjy € Cdo
begin
{ find A1, the set of values removed from D, as a result of
considering the arc (z,y) }
Ay {ie D, |VjeDy:z=1i,y=jdoes not satisfy Cpy};
{ add elements to the queue for each value in A; }
Q + Q U{((z,2),4) | C,y € Cand i € A1};
{ remove the values in A; from the domain of z }
D, <+ D, — Al;
end;
{ now look at the elements added to the queue on the first pass (and new
elements still to be added) }
while (Q #0) do
begin
{ choose an element from the queue and remove it }

Q <~ Q —{((-’E,y),j)};

38 AR33 Notes 2001

{ find the set of values removed from D, as a result of
considering this element }
Ag +{i € Dy |z =1,y = j satisfies Cyy A
Vk € Dy : x =i,y = k does not satisfy Cyy};
{ add elements to the queue }
Q + Q U{((z,2),7) | C,e € Cand i € Ag};
{ remove the values in Ay from the domain of z }
Dz — Dz — AQ;
end;
end; { of AC-5 }

AC-5 has two phases: in the first, we go through all the arcs once. For each arc,
we find Aj, the set of values to delete, building up a queue of elements ((z,y), 7)
as we go. In the second phase, we process the queue and for each element we again
compute the set of values to be deleted, As.

In AC-3, whenever an arc (x,y) is added to the queue, as a result of one or more
values being deleted from D,, then for each value of z, we potentially have to check
every value of y to see if there is one that supports this value of z. This is wasteful:
unless a value of z was previously supported by one (or more) of the values deleted
from Dy, it will still be supported by at least one of the values left in Dy. So the
computation of Ay for an element ((x,y),j) in the second phase of AC-5, i.e.

Ag < {i € Dy | x =i,y = j satisfies Cpy A
Vk € Dy : z =i,y = k does not satisfy Cyy};
finds out which values of x should now be deleted because their only support in D,
was j (and possibly other values which have now been deleted along with j). For
each possible value of z, say ¢, we first check that j supported 7, i.e. that z = i,y = j
satisfies C'z,. We then find out whether there is any other supporting value amongst
the values remaining in Dy; if not, ¢ should be deleted from D,, and is added to As.

7.2.3 Complexity of AC-5

In the first phase of AC-5 we go through the 2¢ arcs in the constraint graph, so we
compute A; at most 2¢ times. There are (at most) 2cm possible elements ((z,y),),
and each one can be added to the queue at most once: so we compute Ay at most
2cm times.

Each computation of A is equivalent to the loop in AC-3 which checks whether
any value should be deleted from the domain of a variable x because of the constraint
Cyy, and so requires at most m? tests to see whether a pair x = 4,y = j satisfies
Cry-

However, the computation of Ay similarly requires at most m? tests. If {(x,y), j)
is the element selected from the queue, we need to test z = ¢,y = j for every value
i in D,. At worst, if y = j supported every value in D, and none of the remaining
values in D, do, we shall have to test every possible pair of values z = i,y = k for
all i in D, and all k£ in Dy. Overall, this requires up to m? tests.

So it appears that the worst-case complexity of AC-5 is no better than that of
AC-3. In practice, however, it will be quicker.

AR33 Notes 2001 39

AC-5 has other significant advantages over AC-3. First, it allows the computa-
tion of A; and Ay to be tailored to each type of constraint, and there are many
commonly-occurring constraint classes for which they can be computed very quickly.
Secondly, AC-5 can be easily adapted for integration with the full-lookahead algo-
rithm.

There are AC algorithms which have lower complexity (O(cm?)) than AC-3 and
AC-5, in general, notably AC-4. However, AC-4 and similar algorithms require more
complex data structures: AC-4 for instance is based on the idea of counting how
many supporting values there are in D, for each value z = i, for every arc (z,y).
Unless at least this many values are deleted from Dy, we know that z = ¢ must
still have at least one supporting value, and so does not need to be checked. This
algorithm has a time-consuming first phase in which all the supporting values are
counted; thereafter it runs more quickly than AC-3. However, it is not used in any
of the constraint programming tools: it is hard to see how it could be integrated
with full-lookahead in order to deal with non-binary constraints which effectively
become binary as the variables involved are assigned values.

7.2.4 Monotonic constraints

As an example of how AC-5 can be tailored for particular types of constraint, we here
consider monotonic constraints. A monotonic constraint Cy, on integer variables®
z and y is such that:

if =4,y = j satisfies Cpy and ¢ <4 and j' > j then z = #',y = j' satisfies Cyy.
z < y+3 is a monotonic constraint: for instance, z = 1,y = 4 satisfies the constraint
and so does £ = ',y = j' for any ' < 1 and j' > 4. z + y = 5 is not monotonic:
z = 1,y = 4 satisfies the constraint, but x = 0,y = 6 does not.

(Note that if Cy, is monotonic according to the above definition, then Cy; is not;
the algorithms below for computing Ay and Ay need to be adapted for the reverse
constraint Cy,, for instance replacing maz by min.)

Computation of A; if Cy, is monotonic
begin
Al — (D;
{ find the largest integer i* such that = = i*,y = maxz(D,) satisfies Cyy }
{ 7* is not necessarily in D,. We assume that i* can be directly computed
from Cyy, e.g. if the constraint is <y — 3, i* = maz(Dy) — 3 }
i* < maz{i' | ¢ =1,y = maz(Dy) satisfies Cpy};
i < max(Dy);
{ add to A; all the values in D, which are larger than * }
while (¢ > +*) and (¢ > min(D,)) do

begin
A~ AU
141 —1;

end

end

8(or any other type of variable whose domain has a total ordering).

40 AR33 Notes 2001

For example, if the domains of z and y are {1..5} and the constraint is z < y—3,
then maz(Dy) = 5, i* = 2 and A; = {3,4,5}.

In computing As, we observe that if any value in Dy supports a value in D,
so does any larger value of y. It is only when the largest value in Dy has been
removed, i.e. the maximum has been reduced, that we may need to remove further
values from D,.

Computation of A, for the element ((z,y),j) if Cy, is monotonic
begin
Ay (D;
{ deleting j makes no difference to D, if j < maxz(Dy), for monotonic
constraints (and j cannot be equal to maz(Dy) since j € Dy)}
if j > maz(Dy) then
begin
i* <~ maz{i' | £ =14,y = maz(Dy) satisfies Cpy};
i < maz(Dy);
while (i > i*) and (i > min(D,)) do

begin
AQ «— Ag U{’l},
11— 1;

end

end
end

e.g. Suppose the constraint between = and y is z < y and both variables initially
have domain {1..5}. In the first phase these will be reduced to {1..4} for D, and
{2..5} for Dy. Then suppose that as a result of some other constraint involving y,
D, is reduced to {3}.

We will then have three elements ((z,y), 2), ((z,y),4) and ((x,y), 5) in the queue.
Since maz(Dy) = 3, the deletion of y = 2 makes no difference to .

When we process the element ((z,y),4), i* = 2 and we delete any values in D,
which are greater than i*, i.e. Ay = {3,4}. Next we process ((z,y),5) and again
i* = 2, but now maz(D,) = 2, so we make no further deletions.

So, if we consider the values deleted from the top end of the range of y in
ascending order, it is only the smallest that creates a non-empty Ag. (Solver creates
the same As for monotonic constraints by only considering the reduction in the
range of y, i.e. it computes A based on the new domain maximum, rather than on
the individual values deleted. The result will be the same, but the Solver version is
more efficient.)

Several other classes of constraint can similarly be treated very efficiently, giving
an overall complexity for AC-5 for these constraints which is O(em). For instance,
although z + y = 5 is not monotonic, it is functional, i.e. for each value of x there
is at most one value in D, which satisfies the constraint. (Van Hentenryck, Deville

AR33 Notes 2001 41

and Teng (cited earlier) give more details of these constraint classes, and the proof
that their complexity is O(cm).)

For any class of constraint, the computation of A; and As can be written specif-
ically to make use of any special properties of the constraint, and to be as efficient
as possible. Solver, for instance, does this for its built-in constraints, and users who
define their own constraints are expected to define how the constraint propagates
(roughly, how to do forward checking and how to compute As) themselves.

7.2.5 Combination of AC-5 and full lookahead

We can use an arc consistency algorithm both as a pre-processing step and also
during search, as in the full lookahead algorithm.

Suppose the algorithm has chosen a variable to assign and a value to assign to
it. At this point, the problem is arc consistent (because the algorithm made it arc
consistent at the start and has kept it so ever since). Hence, it is only necessary to
propagate the effects of the changes resulting from this assignment.

The algorithm does forward checking from the assignment, i.e. it removes values
from the domains of future variables which are not consistent with it. At the same
time, a queue of elements ((z,y),J) is formed, where j is a value which has just
been removed from the domain of y, and z is some other future variable. (We can
at this point take account of non-binary constraints: the constraint between z and
y can be of any arity as long as these are the only unbound variables involved in it.)
The algorithm then processes this queue, adding new elements to it if necessary, as
in the second phase of AC-5.

By this process, re-establishing arc-consistency can be done very efficiently: it
is only necessary to follow up the effects of deleting values in the forward checking
step.

7.2.6 The Importance of Complexity in AC Algorithms

We have seen that AC-5 has complexity at worst O(cm?) where c is the number
of (binary) constraints and m is the maximum domain size; and for many types of
constraint, the algorithm can be made to run much faster (O(cm)).

This compares very favourably with the cost of searching for a solution. In the
worst case, as we have seen, the time taken to solve a, CSP increases exponentially
with the size of the problem, e.g. it increases like k™, where k is a constant (probably
depending in some way on m).

The time taken to make a problem arc consistent increases roughly like n? (be-
cause ¢, the number of edges in the constraint graph, is at most n(n —1)/2). Hence,
even if making a small problem arc consistent may not give a time-saving overall
(because it may take very little time to find a solution anyway), as problems get
larger, the time taken to achieve arc consistency rapidly becomes relatively insignifi-
cant and the time saved by deleting values from the domains of some of the variables
becomes potentially very large. If the original size of every domain is m then remov-
ing just one value from the domain of one variable reduces the number of possible
assignments which potentially need to be considered from m™ to m™~!(m — 1), i.e.
m™ ! possible assignments are immediately ruled out.

42 AR33 Notes 2001

So making a problem arc consistent at the start potentially saves a lot of search
effort and is not expensive to do: the algorithm is quick and we only run it once.
Integrating constraint propagation with search, as in full lookahead, is a different
matter; since we then run an arc consistency algorithm after every variable instan-
tiation, we cannot afford to spend much time on it. If implemented as described
above (i.e. so that it is incremental, and has linear complexity for many commonly-
occurring constraint types), it has been shown to be cost effective.

7.3 Path Consistency

In Figure 11, the problem is arc consistent, but it is clear that the variable x cannot
have the value 2. In general, even when a problem has been made arc consistent, it
is possible to make further deductions from the constraints, short of searching for a
complete solution. The next step (still with binary constraints) is to consider triples
of variables, in which two pairs of variables have a non-trivial constraint between
them. (A trivial constraint here is one that allows every pair of values.)

In Figure 19, suppose there are non-trivial constraints between z; and z;, and
between z; and xy.

Figure 19: A triangle of constraints

The path (z;,z;,) is path consistent iff for every pair of values v; € D; and
v € Dy, allowed by the constraint Cjy, there is a value v; € D; such that (v;,v;) € Gy
and (vj,vx) € Cji. If there is no such value v; then (v;, v;) should be removed from
the constraint Cj, i.e. the constraint should be tightened. In other words, if no value
can be found for z; which is simultaneously consistent with z; = v; and z} = vy,
then we cannot allow v; and v to be simultaneously assigned z; and xj, respectively.

In the example of Figure 11, making (z,w, z) path consistent would show that
the constraint between z and z has to be tightened to exclude the simultaneous
assignment of £ = 2 and z = 10; making the problem arc consistent again would
show that the value 2 must be removed from the domain of . So in this case, path
consistency would allow the problem to be considerably simplified.

Mathematical note: if we represent the constraints by matrices, as described
earlier, we can achieve path consistency by multiplying matrices (although this is
not the most efficient way to do it). In Figure 11, the relevant constraint matrices
are:

AR33 Notes 2001 43

11111

11111
11111 11111
wa:()szzlllll sz:()
00 001 1111 1 00 001

11110

If we now multiply Ry, and Ry, (bearing in mind that the values are booleans, so
that any value > 0 is written as 1) we get the constraint induced between z and z
by the path (z,w, z):

11111
wasz:(1 111 0)

We can then combine R,, and R, X R, to get the new constraint between z and
z: a pair of values must be allowed (i.e. have an entry of 1) in both the induced
constraint and the original constraint:

1 1111
Rzz%RmzAszwaz:(O 00 0 O)

so that, as we have already seen, z cannot have the value 2.

We can make a binary CSP path consistent by checking every triple of variables
and tightening the constraints where necessary. The number of possible triples is
much greater than the number of pairs of variables that need to be checked to make
the problem arc consistent, and the best algorithm has worst case time complexity
O(m3n?). This is one reason why path consistency algorithms are not in common
use: it would almost certainly be out of the question to integrate a path consistency
algorithm with search, as we can do with arc consistency. Another is that since
constraints are not generally expressed as allowed tuples of values, it is not easy to
remove individual pairs of values in order to tighten a binary constraint. In Solver,
each pair of values removed would have to be represented by a new constraint, e.g.
to prevent X=1 and Y=2 being simultaneously assigned, the constraint

H((X==1) & (Y == 2))

(or an equivalent constraint) must be posted.

The induced or implied constraints required for path consistency are occasion-
ally easy to see when the problem is formulated. For instance, in the triangle of
constraints in Figure 20 (from the zebra problem), path consistency shows that the
constraint between red and spain must be red # spain. Because the Englishman
lives in the red house, and the Englishman and the Spaniard live in different houses,
the Spaniard does not live in the red house.

44 AR33 Notes 2001

england

Figure 20: Example of an induced constraint between ‘red’ and ‘spain’

7.4 k-consistency

It is also possible, when we have non-binary constraints, to consider groups of three
or more variables and attempt to induce new constraints (which will also in general
be non-binary).

To make a problem k-consistent (k > 1) we have to consider all possible subsets of
k—1 variables, say z1, T2,,Zx_1, and all possible tuples of values (a1, ag,,ax_1)
that satisfy the constraints on these variables, and check that for every possible
choice of a kth variable z;, there is at least one value a; in its domain such that
the tuple (a1,a9,....,ax_1,a;) satisfies the constraints on the k variables. If not,
the tuple (a1, ag,, ax—1) must be removed from the constraint Cy,4,....s;, , (which
may not previously have been specified, i.e. may have been the trivial constraint).

Note that arc consistency is 2-consistency and (if there are only binary con-
straints) path consistency is 3-consistency. The induced constraints found by this
process are (k — 1)-ary, and in the form of forbidden tuples of values. These again
cannot easily be handled by constraint programming software like Solver, and in
any case are less useful than deleted values (as in arc consistency) and binary con-
straints (as in path consistency), since the search algorithms can only make use of
non-binary constraints when all but two variables have been instantiated. Making
a problem k-consistent also rapidly becomes very time-consuming as k increases.
However, as with path consistency, if it is possible to identify implied constraints
when formulating the problem, they should usually be included in the model.

7.5 Generalised Arc Consistency

The essential difference between arc consistency and the higher levels of consistency
just discussed is that arc consistency considers only one constraint at a time; path
consistency for instance, considers the combination of two constraints to induce a
third. We can generalise the idea of arc consistency to non-binary constraints. We
again consider a single variable in relation to a single constraint and try to remove
values from the domain of this variable if they are not supported by the other
variables involved in the constraint.

Suppose there is a constraint Cy,z,z,...z,- If for any value a; € D; there is no
set of values as,as, ..., ay, for the variables zo, z3,, xx such that (a1, as,as...,ax)
satisfies Cp,zyz5...2;, then a1 can be removed from the domain of z;.

A problem is arc consistent in this generalised sense if, for every value a; of every
variable z;, for every constraint Cy,y;....z;, that this variable is involved in, there is

AR33 Notes 2001 45

a set of values aj, ..., ar such that (a;,aj,...,ax) satisfies the constraint. (NB Just
as both arcs (z,y) and (y,z) have to be checked when there is a binary constraint
between z and y, in the general case, each variable z;,z;,...,z; has to be checked
separately to see whether any values in its domain should be deleted.)

Removing values from the domains of variables is a more useful way of reducing
the problem than tightening the constraints by removing individual tuples of values,
so generalised arc consistency for constraints of arity k is a more useful property, if
it can be achieved, than k-consistency.

General algorithms for achieving generalised arc consistency are too expensive
to apply. In specific types of constraint, however, it may be economical to make at
least some reductions to the domains of the variables involved.

Arithmetic constraints are a clear example where it is economical to look for some
reductions in the domains of the variables, but not to look for all possible reductions.
For instance, Solver uses the constraint SEND + MORE == MONEY, where the variable
domains are SEND: {1000..9999}, MORE: {1000..9999}, MONEY: {10000..99999},
to reduce the domain of the variable MONEY to {10000..19998}. This can be done
very quickly by reasoning about the maximum and minimum values of the variables
(bounds consistency).

However, in the DONALD + GERALD = ROBERT puzzle, we have a constraint

2xD == T + 10%C1

where the domains of the variables are D: {1..9}, T: {0..9}, C1: {0,1}. If
we applied a generalised arc consistency algorithm to this constraint, we would find
that T must be even. Solver misses this inference, although it is obvious to us.
Using a GAC algorithm even in this case, where the domains are small, would be
time-consuming in relation to the size of the problem. In this constraint alone, we
should have to check for reductions to the domains of D and C, as well as T. Since
we cannot reduce the domains of D and C, this would be wasted effort.

Solver is a compromise between efficiency and completeness...In the example...
[of constraint propagation of arithmetic constraints] the incompleteness comes from
the fact that arithmetic expressions only propagate bounds..

This is an example of the choice we made. Propagating holes in expressions would
require much more memory and time than the current implementation. ;From tests
made on a very large set of examples, we found that the current compromise is by
far better.” Jean-Francois Puget, ILOG

7.5.1 The ‘allDifferent’ constraint

A common constraint where there is an efficient algorithm for achieving full gener-
alised arc consistency is the allDifferent constraint. Solver has a constraint IlcAIIDiff
which can be applied to an array of any number of variables and which specifies that
they must all have different values. By default, the IlcAlIDiff constraint behaves like
a collection of binary # constraints.

However, this may miss opportunities to reduce the domains of variables. For
instance, if we have four variables z1,x2, 3,24 each with domain {1,2,3}, then
an allDifferent constraint cannot be satisfied. However, each # constraint can be
satisfied, if considered individually.

46 AR33 Notes 2001

In fact, if we treat an allDifferent constraint as a set of binary # constraints, we
can only remove values from the domains of the variables if a value has been assigned
to one of the variables. Then that value can be removed from the domains of every
other variable in the allDifferent constraint. (Note that # is an anti-functional
constraint.)

Régin® gives a specialised algorithm for the allDifferent constraint which achieves
generalised arc consistency relatively cheaply.

For example, suppose we have an allDifferent constraint between the following
variables:

Variable Original domain Reduced domain
T {1,2} {152}
i) {2,3} {2,3}
T3 {1,3} {1,3}
T4 {2,4} {4}
Ty {3,4,5,6} {5,6}
Tg {6,7} {6,7}

If we use this algorithm, the constraint is propagated whenever there is any
change to the domain of any variable in the constraint.

The time complexity of the algorithm, for a single allDifferent constraint, is
O(p?d?), where p is the number of variables involved in the constraint and d is the
size of the union of their domains (i.e. the number of values which they share).
Hence it is much more time-consuming than treating the constraint as a collection
of binary constraints, though much more efficient than the general-purpose GAC
algorithms.

Solver also has a consistency algorithm for the allDifferent constraint which
propagates whenever there is a change to the range of one of the variables in the
constraint. This is intermediate, in terms of the amount of domain reduction it can
do and the time it takes to run, between the other two.

The user can choose how an allDifferent constraint should be propagated when
the constraint is defined, by choosing the type of propagation event when the con-
straint should be propagated (value, range or domain). Typically, choosing the full
GAC algorithm reduces the number of fails, in comparison with the basic propaga-
tion of # constraints, but increases the cpu time overall. However, there could be
cases where it does reduce the running time.

7.6 How Solver Really Works

Having looked in more detail at constraint propagation algorithms, we can recon-
sider how the integration of search and maintaining arc consistency works in Solver.
Whenever a constraint is defined (in no-edit mode) or as soon as Solver starts
searching for a solution (in edit mode), the constraints that have been posted are
propagated, and this continues until no further deductions can be made. Solver then
searches for a solution by repeatedly selecting a variable var and then a value for
that variable, val. It then constructs a choice between two alternatives: var = wval

9A filtering algorithm for constraints of difference in CSPs, in Proceedings AAAI-94, pp. 362-367,
1994.

AR33 Notes 2001 47

or var # val. Each gives a branch in the search tree; the first is explored first. The
choice defining the branch is added to the CSP as a (possibly temporary) constraint.
The effects of that constraint are propagated, and again this continues until no fur-
ther deductions can be made or until an empty variable domain is encountered, in
which case this branch fails. If the branch does not fail, another variable is selected
and a value for it; otherwise, the constraint var = wval is retracted, the constraint
var # val is imposed, and an alternative value for the variable var is chosen.

During constraint propagation, a constraint is considered if one of the propaga-
tion events (value, range or domain) has occurred for one of the variables involved in
the constraint, and some action for this constraint following this kind of propagation
event has been specified. For instance, the var = wval constraint triggers the value
event for the variable var (i.e. var has been assigned the value val). Since a value
event is also both a domain event and a range event, any constraint in the problem
which involves the variable var will be activated, and some domain reduction of the
other variables in those constraints is likely to follow. These reductions in turn may
have an effect on the domains of other variables.

This is essentially the MAC algorithm, although its implementation is somewhat
different from what we saw before. In particular, there is no way of distinguishing
a ‘forward checking’ phase from a ‘re-establishing arc consistency in the future sub-
problem’ phase.

The search procedure that I have described is what [lcGenerate does. However, it
is reasonably straightforward to rewrite IlcGenerate in order to search in a different
way (the code for IlcGenerate is given in the Solver manual). For instance, it might
be better in some problems to search by splitting the domain of the chosen variable,
rather than committing to a specific value. So we could create a choice point between
say var < mid and var > mid, where mid is the current midpoint of var’s domain.

8 Static Variable Ordering Heuristics

A number of general static variable ordering heuristics have been developed, but in
practice they are not much used. They have been developed for algorithms such as
the simple backtracking algorithm, where you have to use a static ordering rather
than a dynamic ordering, because the information needed for a dynamic ordering
is not available. But the simple backtracking algorithm is so much worse than the
other available algorithms that it is no longer used in practice. If you are using
an algorithm which looks ahead, such as forward checking or MAC, you could in
theory use either a static or a dynamic ordering. However, most if not all of the
research on general ordering strategies has been done on binary CSPs, and for such
problems the best available dynamic ordering heuristics (e.g. choose a variable with
smallest remaining domain; break ties by choosing the variable which constrains the
largest number of unassigned variables) are better than the available static ordering
heuristics.

The situation is different for non-binary problems. You may then have a con-
straint which will not be propagated until most of the variables in it have been
assigned values and in that case it is often better to use the constraints to guide
the variable ordering, i.e. choose a constraint, rather than a variable, and assign

48 AR33 Notes 2001

the variables involved in the constraint, until constraint propagation can take place.
Or there may be a specific ordering of the variables indicated by some underlying
structure in the problem.

This happens, for instance, in the Golomb ruler problem. A Golomb ruler may
be defined as a set of m integers 0 = a1 < a2 < ... < an, such that the m(m —1)/2
differences a; — a;,1 < i < j < m are distinct. Such a ruler is said to contain m
marks and is of length a,,. The objective is to find optimal (minimum length) or
near optimal rulers. These problems are said to have many practical applications
including sensor placements for x-ray crystallography and radio astronomy.

0 1 4 9 11
Figure 21: Minimum length Golomb ruler with 5 marks

This problem can be modelled as a CSP by using variables corresponding to the
marks as, as, ..., am, (a1 is fixed). We can also use additional variables d;; to represent
the differences a; — a; (j > i). Experiments with this problem have shown that
choosing variables as if we were building up the ruler from left to right solves the
problem much more easily than the smallest-domain ordering. The smallest-domain
ordering tends to ‘jump’ from one part of the ruler to another. Possibly the reason
why this is a bad strategy is that the smallest available values are assigned first; if
we assign a small value to a mark which is some way along the ruler from those we
have already assigned, this is more likely to be a wrong choice (or to put it another
way, we may not have left enough room for the intervening marks).

So, static orderings have their uses, particularly when the constraints are non-
binary, but the ones used in practice tend to be chosen with a specific problem
in mind. However, we shall consider one of the general purpose static ordering
heuristics, because it leads on to the next main topic.

8.1 Minimum Bandwidth Ordering

This heuristic (like most, if not all, general-purpose static variable ordering heuris-
tics) has been developed for binary CSPs, which can be represented by a constraint
graph.

If we order the nodes in a (constraint) graph, the bandwidth of a node v is the
maximum distance in the ordering between v and any other node such that there is
an edge joining joining it to v (i.e. there is a constraint between the two variables).
The bandwidth of an ordering is the maximum bandwidth of all the nodes in the
graph under that ordering.

In the pathological example considered in section 4.3, to show that FC can do
arbitrarily better than BT, the variables x1, o, ..., z,, were considered in mazimum
bandwidth order, since there is a constraint between z; and z,. The poor per-
formance of BT was caused by having to backtrack from z, to z,_1 to ... to zo

AR33 Notes 2001 49

and then z; in order to reach the source of the failure, taking an enormous amount
of time. A minimum bandwidth ordering would presumably place 1,2, , close
together (if the other constraints allow), thus avoiding the difficulty. The intuition
behind this heuristic is therefore that variables that constrain each other should be
placed as close together as possible in the ordering, so that backtracking can be
minimised.

Finding the minimum bandwidth ordering is in itself a difficult problem, but an
approximate algorithm which will give a small bandwidth ordering quickly can be
used. However, the difficulty which the minimum bandwidth heuristic is addressing
is that an algorithm might have to backtrack a long way before arriving at the true
cause of the failure. A more intelligent approach is to redesign the algorithm so that
it backtracks directly to a possible cause of the failure, rather than backtracking to
unrelated variables which cannot possibly have any role in the failure.

9 Intelligent Backtracking Algorithms

All the backtracking search algorithms for constraint satisfaction that we have met
are both sound and complete. Soundness means that any solution that they find is a
genuine solution, satisfying all the constraints. Completeness means that if there is
a solution they will find one, and if there is no solution they will prove it. However,
in carrying out the search, the algorithms sometimes do unnecessary work. Each
improvement to the simple backtracking algorithm was introduced to eliminate an
observed inefficiency, and we now extend this to inefficiencies in backtracking, while
maintaining soundness and completeness.

So far algorithms have always backtracked to the previous variable when they en-
counter a failure; this is called chronological backtracking. Why is this (sometimes)
inefficient, and how can the inefficiency be avoided?

Suppose the algorithm has attempted to assign a value to a variable x; and failed.
This means that the current partial solution, consisting of the current assignments
to the previous variables 1 = l1,29 = lg,...,z;—1 = [;_1 cannot be consistently
extended to include an assignment to x;; at least one of these assignments will have to
be changed. A chronological backtracking algorithm undoes the last assignment (i.e.
to x;—1) and tries another; assuming that the new assignment is consistent (either
with the past assignments or the future variables, depending on the algorithm), the
algorithm again tries to extend the partial solution to x;.

However, what if the assignment to x;_1 has nothing to do with the failure to
assign a value to z;7 An obvious example of this is when there is no constraint
between x; and z;—1. In that case, changing the value assigned to z;—1 will make
no difference to z;: once again attempting to assign a value to z; will fail. The
algorithm will again backtrack to z; ; and try yet another value for it, and this will
be repeated until all values for z; 1 have been tried. Only then will the algorithm
backtrack to z;_o.

If we can instead identify the most recently-assigned variable whose assignment
could possibly be responsible for the failure to assign a value to x;, the algorithm
could jump back immediately to that variable. This would avoid stepping back to
each of the intervening variables in turn, and fruitlessly trying alternative assign-

50 AR33 Notes 2001

ments for those variables, none of which will make any difference to the failure.

How do we choose the variable to backtrack to, say xz,?7 As I have suggested,
there must at least be a constraint between z; and z;. We can impose a stronger
condition and insist that at least one of the possible assignments to z; failed because
it was inconsistent with the current assignment z; = [;. In simple backtracking,
this means that when the algorithm was trying to assign a value to x; and checking
against past assignments, at least one value of z; was found to be inconsistent with
zp, = I, (and so was not inconsistent with the assignments z1 = Iy, ...,zp_1 = lp_1)-
In forward checking, it means that when the assignment xz; = [}, was made, at least
one value was removed from the domain of z; as a result. And we must choose to
jump back to the most recent such variable, otherwise we might miss a solution and
the algorithm would no longer be complete.

Having identified the variable zj to jump back to, what should we do about the
intervening variables? Some of the current assignments will have to be undone, be-
cause values for these variables which were previously ruled out by the assignments
to zp, will now be possible and should be chosen instead. But some of these variables
may be unaffected by the reassignment to zp: this would be true, for instance, if
one of these variables say z; is not constrained by z; nor by any of the variables
between zj, and z;. In that case, when z; is assigned a new value, and the vari-
ables xp41,...,7j_1 are assigned values, z; will be assigned the value which it had
previously. So in theory, it would be possible to leave some of the variables between
xp, and z; with their current instantiations. In practice, however, this is difficult to
manage (although there is an algorithm that does it) and instead, we simply undo
all the assignments back to xzj,.

The second, more serious, complication is: what should happen if z; in turn has
no alternative values left and the algorithm has to backtrack again? We cannot just
repeat the process and jump back to the most recent variable which had an effect
on zp because that ignores the fact that we are primarily trying to find a way of
assigning a value to z;. It may be that the most recent variable responsible for the
fact that there are no other values to try for zj is (say) zy, but that x4, which was
assigned a value more recently than xy, was also responsible for the failure to find
an assignment for z;. It could be that simply by assigning a new value to z, the
algorithm will be able to find a value for z; while still keeping the rest of the original
partial solution, including the current assignment to z;. Again, if we jump back
to xy rather than z, the algorithm will no longer be complete. Some algorithms
avoid this complication by jumping back from the first failure, but then if further
backtracking is required before moving forward again, stepping back chronologically.
However, the algorithm we shall look at always jumps back (if possible) to the most
recent variable whose assignment could be implicated in the failures to assign values
to any of the variables it is backtracking from.

9.1 Implementing Backtracking Algorithms

We can implement any of the backtracking search algorithms we have considered
using two basic procedures (which Patrick Prosser'® of Glasgow University calls

Hybrid Algorithms for the Constraint Satisfaction Problem, Computational Intelligence,
9(3):268-299, 1993.

AR33 Notes 2001 51

label and unlabel) which are repeatedly called in turn, until either a solution is
found or it has been shown that the problem has no solution; implementing these
procedures in different ways will give us different algorithms. (There are of course
other ways of implementing these algorithms: we could for instance use recursion.)
The procedure label attempts to find a consistent assignment for the current
variable z;. If it succeeds, it returns consistent = true and V[i], which contains the
value assigned to the variable. If it fails, it returns consistent = false. In either
case, it returns a variable next indicating which variable label should assign next or
which variable unlabel should backtrack from.
So label can terminate in one of three states:
1. counsistent = true, 1 < next < n: on the next iteration, label is called again
to try to assign a value to the next variable.
2. consistent = true, next = n + 1: a value has been consistently assigned to
every variable and so a solution has been found and the program terminates.
3. consistent = false, 1 < next < n: on the next iteration, unlabel is called to
backtrack from the unsuccessful attempt to assign a value to variable z;.

The procedure unlabel backtracks from the current variable z; when all values
have been tried for z; without success. If ¢ = 1, the algorithm has backtracked
all the way to the start, and there is no solution; next is set to 0. Otherwise, the
procedure selects a variable z; to backtrack to, where h < ¢. If h < ¢ — 1, the
variables between x); and x; are reset.

The unlabel procedure is also responsible for keeping track of which values have
already been tried without success. The value in V[h] is removed from CurrentDomain|h]
(since it is supposedly responsible for the failure to assign a value to variable z;)
and if CurrentDomain[h] is still non-empty, consistent is set to true and next is set
to h.

So unlabel terminates in one of three states:

1. next = 0: the problem has no solution and the program terminates.

2. consistent = true and 1 < next < i: on the next iteration, label is called to
try to assign a new value to variable xj,.

3. consistent = false and 1 < next < i: on the next iteration, unlabel is called
to backtrack again from variable xp,.

So for instance, to implement simple backtracking, the label procedure considers
each value of the current variable in turn and checks it for consistency with the
previous assignments. If any of these checks fails, the next value is tried; if they
all fail, label terminates with consistent = false, and unlabel is called to backtrack
from this variable to a previous variable. In simple backtracking, unlabel always
backtracks to the immediately preceding variable, if there is one.

9.2 Conflict-directed BackJumping (CBJ)

This algorithm was introduced by Patrick Prosser in 1993 and incorporates the ideas
already discussed. The ideas can be used simply as a way of introducing intelligent
backtracking into simple backtracking, or in conjunction with forward checking to
produce the algorithm FC-CBJ. (It is also possible to link it with MAC to produce
MAC-CBJ.)

52 AR33 Notes 2001

The first algorithm, CBJ, differs from the basic algorithm BT mainly in the
backtracking step (of course), but is also slightly different in the labelling step. We
record for each variable x; which previous variables it failed consistency checks with,
for some value in its domain. This list of previous variables is called the conflict-set.
The conflict-sets (an array of lists) are passed as an extra parameter to cbj_label
and cbj_unlabel.

cbj_unlabel backtracks to x;, the most recent variable recorded in variable x;’s
conflict-set, i.e. h =maz (ConflictSet[i]). It then combines the conflict-sets of vari-
ables x;, and z;, so that if the algorithm backtracks again, it jumps to the most recent
variable which has affected either zj, or z;, i.e. ConflictSet[h] becomes ConflictSet|]
J ConflictSet[h] - h.

cbj_unlabel also undoes all the assignments after xj in the current partial solution
and resets the domains of all these variables to their original values. As in simple
backtracking, it removes the value currently assigned to xp from its current domain.

9.3 FC-CBJ

The combination of forward checking with conflict-directed backjumping is slightly
tricky, but the implementation will turn out to be straightforward. Suppose that the
algorithm has to backtrack from variable z; because none of the remaining values
can be assigned without causing a failure. The reason for the failure is partly that
previous assignments have removed values from z;’s current domain. But the failure
is also due to the fact that every remaining value causes a domain wipeout in some
future variable when we check forward. This is not directly the fault of the past
assignments, but indirectly it is, because past assignments may have removed from
the domains of these future variables some values which otherwise would have been
consistent with the assignment to x; which now causes a wipeout.

As with standard forward checking, whenever the algorithm tries to assign a
value to a variable, it checks this assignment against the future variables, and re-
moves values from the domains of future variables which are inconsistent with the
current assignment. fc-cbj_label keeps a record of which past variables have reduced
the domain of any variable in an array of lists Past_fc, such that Past_fc[j] is the list
of past variables whose assignments have reduced the domain of variable z;. If the
attempt to assign a value to a variable z; fails (because some future variable z; has
an empty domain after forward checking) we add the variables listed in Past_fc[j]
to z;’s conflict set.

fc-cbj_unlabel starts by computing the conflict set for variable z; (the variable it
is backtracking from). The conflict-set is the union of the conflict-set already com-
posed by fc-cbj_label, and Past_fc[i], i.e. it consists of any past variables which have
reduced the domain of z;, together with any variables which reduced the domains of
future variables whose domains were then wiped out by the assignment of a value to
z;: these variables thereby indirectly prevented z; from being assigned a value. As
with cbj_unlabel, fc-cbj_unlabel backtracks to the variable z;, where h is the largest
value in z;’s conflict set.

The other main difference between fc-cbj_unlabel and other versions of unlabel
is that in jumping back over the variables between zp and z;, it has to restore the
current domains of these variables to their proper state. This is not their original

AR33 Notes 2001 53

domain (as in cbj-unlabel), but the state the domains were in after any values
inconsistent with the assignments to variables z; to x;_1 had been removed.

9.4 Is CBJ of any practical use?

Intelligent backtracking (not just in constraint satisfaction algorithms) has been an
active research topic in Al for many years. In constraint satisfaction, CBJ seems to
be generally accepted as one of the best ways to do it. (There are some potential
improvements in theory, to do with either remembering about failures in one part
of the tree and applying this experience elsewhere in the tree, or not undoing all
intervening assignments when jumping back, but these have either a very large
space requirement or are very complex.) Yet intelligent backtracking is not used in
constraint programming tools such as Solver. Why not?
Some possible reasons are:

e CBJ is a big improvement on simple backtracking. But then simple back-
tracking is such an inefficient algorithm that it is very easy to improve on it.
Experiments have shown that the improvement from adding CBJ to FC or
MAC is much less. To a large extent, looking forward as these algorithms do
makes jumping back less necessary: they avoid making some kinds of mistake
in the first place, and so don’t need to jump back from them.

e Most experiments with constraint satisfaction algorithms have been carried out
on randomly-generated problems. (A binary constraint can be represented as
a Boolean maftrix, and so can easily be generated by choosing the 0’s and 1’s
randomly.) The constraints in most real problems, however, are not binary.
Although the CBJ algorithm can be adapted to non-binary constraints, it is
somewhat tricky. Furthermore, the nearest culprit for a failure is less likely
to be a long way back in the tree if there are constraints of large arity in the
problem.

e Good variable ordering heuristics tend to ensure that the next variable is
chosen from those that were affected by the last assignment (although this is
not always possible). This means that chronological backtracking is already
doing what CBJ would do, for the most part. For instance, if all domain sizes
are initially the same, the variable with smallest remaining domain will tend
to be one whose domain was reduced by the last assignment. When there are
non-binary constraints, a good heuristic is often to choose the next variable so
as to reduce the arity of one or more of the constraints; this helps constraint
propagation, because if all but two of the variables in a constraint have been
assigned, the constraint is effectively a binary constraint and can be made arc
consistent. This heuristic again tends to assign a variable which is constrained
by the previous variable.

The current feeling amongst developers of constraint programming tools is that
intelligent backtracking algorithms such as CBJ are probably not worthwhile. How-
ever, in particular types of problem it could improve performance significantly; it
might be useful if the facility were available, to be turned on or off as appropriate.

54 AR33 Notes 2001

10 Practical Problem Solving

In this section, I want to look at some of the things that need to be taken into
account when solving a practical problem as a constraint satisfaction problem. In
theory, if we can express a problem as a CSP, then the algorithms that we have will
be able to solve it. In practice, however, how the problem is translated into a CSP
can have a huge effect on the time taken to solve it, and thus on whether it can
actually be solved in a reasonable time or not.

10.1 Formulating Problems

There may be an ‘obvious’ way to formulate a problem as a CSP, i.e. to represent the
problem in terms of variables, values and constraints. But there is often a choice of
more than one formulation, with a little more thought. To make the idea of different
formulations of the same problem more formal, we need the idea of two CSPs being
equivalent.

Rossi, Petrie and Dhar'! defined the idea of equivalence for CSPs. Their defi-
nition is that two CSPs are equivalent if they are mutually reducible: a CSP P is
reducible to another, P», if it is possible to obtain the set of solutions of P; from
the set of solutions of P» by mapping the variables and values of one problem to
the variables and values of the other. A special case of this is two CSPs which have
the same variables and values but different constraints: if they have the same set of
solutions they are equivalent. (This covers the case of implied constraints, discussed
below.) However, two CSPs can have different variables and values, but still be
equivalent; for instance, we considered two different formulations of the DONALD
+ GERALD = ROBERT puzzle, one having the ‘carry’ variables, and the other
not; these are still equivalent according to the above definition.

10.2 Reducing the Arity of the Constraints

Since arc consistency (as opposed to generalised arc consistency) is a property as-
sociated with binary constraints, arc consistency algorithms can only be used to
reduce the domains of variables involved in either binary constraints or constraints
in which all but two variables have been instantiated, so that the constraint has ef-
fectively become binary. Similarly, forward checking can only use those constraints
in which exactly one variable remains to be instantiated when pruning the domains
of the future variables. For these reasons, constraints involving a large number of
variables are undesirable, if they can be avoided.

We have already considered the cryptarithmetic puzzle DONALD + GERALD
= ROBERT, which can be formulated using a constraint involving all ten variables.
This constraint will not be of much use for constraint propagation. The problem can
be re-formulated by adding the extra variables C1, C2, ..., C5, each with domain
{0,1}, representing the quantities carried from one column to the next as the addition
is done. The constraint representing the sum can then be re-written as the following
six constraints:

0On the Equivalence of Constraint Satisfaction Problems, In Proceedings of the European AT
Conference (ECAI’90), pp. 550-556, 1990.

AR33 Notes 2001 55

2xD 10xC1 + T
2L + C1 = 10%xC2 + R
2%A + C2 = 10%C3 + E
N+R+ C3 =10%xC4 + B
E + C4 = 10%C5
D+G+ Cs =R

involving at most five variables. As we have seen, this considerably speeds up finding
a solution.

10.3 Reducing the Number of Possible Assignments

Another consideration in formulating problems is the initial size of the search space
(i.e. before any pruning is done), which is given by the total number of possible
assignments of the variables'?. Tt is often a good heuristic to choose a model with
a smaller initial search space, if there is a choice. This means that we should prefer
models using a few variables with large domains to models using many variables with
small domains, for the same problem. In particular, a formulation using Boolean
variables, with domains {0,1}, is not usually desirable if an alternative can be found
using variables with larger domains.

As an example, we have seen in section 2.2.6 two different formulations of the
n-queens problem. One has n? variables v;, where

v; = 1 if there is a queen on the i"square

= (0 otherwise

The size of the search space in this formulation is 27", The formulation with one
variable for each row, each with domain {1..n}, has a search space of size n". (In
addition, as described earlier, the first formulation requires more constraints than
the second.)

It should be remembered that this rule is only a heuristic, and what we are
really trying to minimize is the size of the search tree that will be explored before
a solution is found. The total number of possible assignments is an upper bound
on this, but it will depend to a great extent on how much pruning results from the
constraints.

10.4 Implied Constraints

Another technique is to look for constraints implied by those already in the prob-
lem, especially constraints with fewer variables than the existing constraints, or
which constrain variables which did not previously have an explicit constraint be-
tween them. The constraints resulting from making a problem path consistent or
k-consistent are an example of implied constraints, but we normally find implied
constraints just by considering the problem, rather than applying any systematic
algorithm (because of the reasons given earlier for not using path or k-consistency
algorithms).

12The total number of possible assignments is the product of all the domain sizes.

56 AR33 Notes 2001

10.5 Symmetries

In many problems, if there are any solutions at all, there are classes of equivalent
solutions. To be specific, there is a subset of the problem variables such that if
there is a solution to the problem, some permutation of the assignments to these
variables yields another solution. For instance, in timetabling problems, it may be
possible to interchange the allocations to the time slots and still have a feasible
solution; in rostering problems, a group of staff may have the same skills and the
same availability and so be interchangeable in the roster. As a simple example
suppose there are two problem variables z1 and zs which represent entities which
are, from the point of view of the CSP, identical: the variables will for instance have
the same domain, and the variables will be involved in identical constraints with
other variables. Then z; and z, are interchangeable and for any solution in which
z1 =1 and z9 = 2 (say) there is another solution with z; =2 and zo = 1.

Symmetries of this kind in the problem may cause difficulties for a search al-
gorithm: if the problem turns out to be insoluble, or the algorithm is exploring a
branch of the search tree which does not lead to a solution, then all symmetrical
assignments will be explored in turn. This is a waste of effort, because if one such
assignment is infeasible, then they all are. (In the example, if assigning 27 = 1 and
zo = 2 will not lead to a solution, neither will ;1 = 2 and zo = 1, so there is no
point in exploring this possibility.)

Such symmetries should be avoided, if possible, by including additional con-
straints in the formulation which will allow only one solution from each class of
equivalent solutions. So we could for instance insist that z; < z9; this creates a
distinction between two variables which were originally indistinguishable.

It is very common to artificially distinguish between identical variables in this
way, by imposing an ordering on them.

By eliminating symmetries we are producing a non-equivalent CSP which has
fewer solutions. But the solutions eliminated can be derived from those which are
still allowed, and for all practical purposes we have only eliminated solutions which
are equivalent to solutions which still exist. On the other hand, implied constraints
do not change the set of possible solutions at all.

11 When Systematic Search is Not Good Enough

Constraint satisfaction problems are difficult to solve; there is no known method
which has reasonable complexity, so that as we try to solve larger and larger prob-
lems, sooner or later we shall meet a problem which cannot be solved, or proved not
to have a solution, in a reasonable time. For instance, I have tried to solve instances
of the template design problem where there are 50 different designs and 40 slots in
each template, and sometimes no solution can be found even if the program is left
running overnight. It is often possible to improve the performance of the algorithms
by thinking of better variable and value ordering heuristics, new implied constraints,
etc. (for instance, a program which previously found no solution overnight may now
find a solution in a few seconds) but suppose we have done everything we can think
of. What do we do then?

It is often tempting to assume that the problem we are trying to solve has no

AR33 Notes 2001 57

solution, especially if we have an optimisation problem; this means that the last
solution we have (if we have one) is the optimal solution. However, in reality we
may be a long way from the optimal solution, unless we have some independent
evidence that suggests that the solution we already have may be ‘good enough’.

In other cases, we may simply be trying to find a solution that satisfies the
constraints; then, if the algorithm fails to find a solution, and appears to be running
for an indefinite amount of time, we have no answer to our problem at all. Sometimes
in these circumstances, if we suspect that there really is no solution, we may be
willing to relax some of the constraints so as to find a solution of some kind. Even if
there is a solution, but the algorithm cannot find one, we may prefer to settle for a
solution that satisfies most of the constraints rather than having no solution at all.

It is possible to express the problem of satisfying as many constraints as possible
as a CSP; rather than posting every constraint, the constraints which we allow
to be relaxed are simply defined. In Solver, each such constraint corresponds to
a constrained Boolean expression. We can create another constrained (integer)
expression representing the number of these constraints that are satisfied, and then
maximise its value. Unfortunately, the resulting problem is likely to be even harder
to solve than the original problem (although it will have a solution, whereas the
original problem may have been infeasible). Unless a constraint definitely applies
(i.e. has been posted) its effects cannot be propagated, so that the algorithm has to
do correspondingly more search.

An alternative is to abandon the systematic search algorithms we have used so
far, and use some kind of local search procedure, which always has a solution of
sorts, and continually attempts to improve it.

An example is the min-conflicts heuristic (S. Minton, M.D. Johnston, A.B.
Philips and P. Laird, ‘Solving Large-Scale Constraint Satisfaction and Scheduling
Problems Using a Heuristic Repair Method’, Proceedings AAAI-90, pp. 17-254,
1990). This grew out of a neural network developed for scheduling the use of the
Hubble Space Telescope. The neural network was extremely successful, and it was
analysed to try to find out why; the min-conflicts heuristic is a simple algorithm
which was developed from this analysis, and is reported to perform better than the
neural network.

This heuristic can be built into a procedure which attempts to find a solution
which maximises the number of satisfied constraints as follows:

e form an initial solution by assigning a value to each variable at random

e until a solution satisfying all the constraints is found, or a pre-set time limit
is reached:

— select a variable that is in conflict i.e. the value assigned to it violates
one or more constraints involving one or more other variables

— assign this variable a value that minimizes the number of conflicts (i.e.
attempt to minimize the number of other variables that will need to be
repaired)

— break ties randomly

58 AR33 Notes 2001

It is important to have a time-limit on an algorithm of this kind, because in
abandoning systematic search, we have abandoned completeness; the algorithm has
no means of telling if the problem has no solution. In common with other local-
search algorithms (i.e. algorithms which repeatedly move from one solution to a
‘neighbouring’ solution), it may also get stuck in a local optimum where there is
a neighbourhood of equally good solutions surrounded by worse solutions. The
algorithm as defined above will then endlessly loop around this neighbourhood, but
if this is not the best solution, the only way to improve is to temporarily choose a
worse solution.

One way of avoiding this situation is to run the algorithm a number of times,
starting with a different random initial solution each time.

Minton et al. claim that the min-conflicts heuristic works well in its original
scheduling domain and on problems such as n-queens; they claim for instance that
it can easily solve the one million queens problem (this is not all that impressive,
apart from the memory problems associated with problems of this size, since the n-
queens problem is not especially difficult, and gets relatively easier as n gets larger,
because the constraints get looser).

One difficulty with methods of this kind is that they do not integrate easily
with constraint propagation. Nevertheless, they may offer the only way of finding
a solution of some kind to very difficult or very large problems, when the methods
we have considered earlier fail. The latest version of Solver (5.0) does in fact offer
local search as an option, as well as complete search.

12 Conclusions

Many different kinds of problem can be expressed as constraint satisfaction prob-
lems, and constraint programming tools offer a relatively easy way to express such
problems. We have seen a number of algorithms which will guarantee to find a
solution (or even an optimal solution) if given enough time. We have also seen that
solving a large problem successfully may require careful development of a solution
strategy based on insights into how the available methods will go about solving our
particular problem; so constraint programming is no panacea for difficult problems.
Nevertheless, for the right kind of problem and with a good solution strategy, it can
be the best available way to solve the problem by far.

THE END

