
Modeling the Car Sequencing Problem

Gerrit Renker

The Robert Gordon University

Aberdeen

Modeling the Car Sequencing Problem – p.1/10

http://www.scms.rgu.ac.uk/research/kbs/CSP/


Requirements

� cars can be configured with various options

� indicated by the car type

� for each car type, there is a demand of cars.

� capacity constraints:

� at most M out of a sequence of N cars
may have option i

goal:
arrange the sequence of all requested cars
such that none of the capacity constraints is violated

Modeling the Car Sequencing Problem – p.2/10



Instance Data for the Car Sequencing Problem

Option Capacity Car Type
Name Type M/N 1 2 3

Sunroof 1 2/3 1 1 0
Radio 2 3/4 1 0 1

Air Cond. 3 2/3 0 1 1

Number of Cars 10 20 20

� total of 50 cars:

� 30 cars with sunroofs
� 30 cars with radios fitted
� 40 cars with air conditioning

Modeling the Car Sequencing Problem – p.3/10



Structural Model

CarSP
 nbCars: Integer
 nbSlots: Integer
 nbOptions: Integer

Slot
Car

 type: Integer
 demand: Integer

Option
 type: Integer
 M: Integer
 N: Integer
 /capacity: Integer
 /demand: Integer

{ordered} 1..*

* 1 * *

1..* 1..*

� Car represents possible car types

� characterized by type and demand attributes

� Slot: the sequence of Car types

Modeling the Car Sequencing Problem – p.4/10



Multiplicity Constraints

CarSP
 nbCars: Integer
 nbSlots: Integer
 nbOptions: Integer

Slot
Car

 type: Integer
 demand: Integer

Option
 type: Integer
 M: Integer
 N: Integer
 /capacity: Integer
 /demand: Integer

{ordered} 1..*

* 1 * *

1..* 1..*

context CarSP inv:

nbCars = car->size() and

nbSlots = slot->size() and

nbOptions = option->size()

Modeling the Car Sequencing Problem – p.5/10



Domains as Unary Constraints

CarSP
 nbCars: Integer
 nbSlots: Integer
 nbOptions: Integer

Slot
Car

 type: Integer
 demand: Integer

Option
 type: Integer
 M: Integer
 N: Integer
 /capacity: Integer
 /demand: Integer

{ordered} 1..*

* 1 * *

1..* 1..*

context Option inv:

type > 0 and type <= 3

context CarSP inv: -- uniqueness constraint

option->isUnique(type)

Modeling the Car Sequencing Problem – p.6/10



Instantiation: tabled values for the domain of Car

CarSP
 nbCars: Integer
 nbSlots: Integer
 nbOptions: Integer

Slot
Car

 type: Integer
 demand: Integer

Option
 type: Integer
 M: Integer
 N: Integer
 /capacity: Integer
 /demand: Integer

{ordered} 1..*

* 1 * *

1..* 1..*

context Car inv:

type = 1 implies (demand = 10 and option.type = Set{1,2})

and

type = 2 implies (demand = 20 and option.type = Set{1,3})

and

type = 3 implies (demand = 20 and option.type = Set{2,3})
Modeling the Car Sequencing Problem – p.7/10



Computation of Derived Attributes

CarSP
 nbCars: Integer
 nbSlots: Integer
 nbOptions: Integer

Slot
Car

 type: Integer
 demand: Integer

Option
 type: Integer
 M: Integer
 N: Integer
 /capacity: Integer
 /demand: Integer

{ordered} 1..*

* 1 * *

1..* 1..*

� can always be derived from other attributes

context Option inv:

capacity = M/N and

demand = car.demand->sum()
Modeling the Car Sequencing Problem – p.8/10



Capacity Constraints ("at most” - constraints)

CarSP
 nbCars: Integer
 nbSlots: Integer
 nbOptions: Integer

Slot
Car

 type: Integer
 demand: Integer

Option
 type: Integer
 M: Integer
 N: Integer
 /capacity: Integer
 /demand: Integer

{ordered} 1..*

* 1 * *

1..* 1..*

context CarSP inv:

option->forAll(o|

Sequence{1..(nbSlots - o.N + 1)}->forAll(i|

slot->subSequence(i, i + o.N - 1).car.option->count(o)

<= o.M ))

Modeling the Car Sequencing Problem – p.9/10



End

Modeling the Car Sequencing Problem – p.10/10


	Requirements
	Instance Data for the Car Sequencing Problem
	Structural Model 
	Multiplicity Constraints 
	Domains as Unary Constraints
	Instantiation: tabled values for the domain of 	exttt {Car}
	Computation of Derived Attributes
	Capacity emph {}Constraints (char `"{}emph {at most}'' - constraints)

	End

