Constraint Satisfaction
and
Constraint Programming

Pedro Meseguer
IHA-CSIC
Bellaterra, Spain

Overview

Introduction

Constraint Satisfaction
Search
Inference
Hybrids

Constraint Programming
Modelling with Constraints
Optimization
Existing Solvers

Summary

November 13, 2002 IBERAMIA-2002

Modern Art

November 13, 2002 IBERAMIA-2002 3

Modern Art: Accident

' How can we
reconstruct
the painting?

November 13, 2002 IBERAMIA-2002 4

Modern Art: Reconstruction

1. Locate pieces in
grid

. Two adjacent slots
must have the same
color pattern on the
contact edge

3. Find a globally
consistent
/ 8 9 arrangement

constraint between each
pair of adjacent slots

November 13, 2002 IBERAMIA-2002

Modern Art: All Constraints

12 constraints

Solution: assignment satisfying every constraint

November 13, 2002 IBERAMIA-2002

Modern Art: Solution

November 13, 2002 IBERAMIA-2002 7

Conclusions from Modern Art

Constraint problems: most of the knowledge can be
expressed in terms of constraints among problem elements

One constraint:
* Involves a subset of problem elements
* Declares permitted (or forbidden) value combinations
* Provides a local view of the whole problem

Solution:
« Satisfies every constraint
* Global view of the whole problem
* Process: from local to global consistency

November 13, 2002 IBERAMIA-2002 8

Overview

Introduction

Constraint Satisfaction
+ Search
* Inference
+ Hybrids

Constraint Programming

+ Modelling with Constraints
« Optimization

+ Existing Solvers

Summary

November 13, 2002 IBERAMIA-2002

Some Definitions

Constraint Network (CN): (X, D, C)

* X ={Xy, Xo- 0y X, variables
*D={d,, d,,...,d} domains (finite)
+ C ={c,,Cy,...,C, } constraints

ceC var(c) = {x; Xy s X} scope

rel(c) ¢ d; xd, x..xd, permitted tuples

Constraint Satisfaction Problem (CSP):

+ CN solving: assignment satisfying every constraint
* NP-complete task

November 13, 2002 IBERAMIA-2002

Relevance

CSP: formal model to express problems

Many problems can be represented as CSP:
- Academic problems:
+ SAT, Graph coloring, N-queens, . . .
- Real problems:
+ Scheduling, Resource allocation, Routing,

Many Al tasks can be modeled as CSP:
+ Automated reasoning
* Planning
* Spatial and temporal inference

November 13, 2002 IBERAMIA-2002 1

Running Example: n-queens

GOAL: Locate n queens in an n x n chessboard,
such that they do not attack each other

Formulation: 12 94
- Variables: one queen per row X1
* Domains: available columns Xo
« Constraints: X3
different columns and different diagonals X,
X = X, ;-1 =1i-jl
4-queens

Constraint Graph: %4 Xo
November 13, 2002 IBERAMIA-2002 m 12
X

Backtrack Search

Strategy:
* Build a patrtial solution:
+ A partial consistent assignment
+ Extend consistently the partial solution
+ One new assigned variable each time
« If no consistent extension:
+ Backtrack: change a previous assignment

Variables:
* Past € partial solution (assigned)
* Future ¢ partial solution (unassigned)

November 13, 2002 IBERAMIA-2002 13

Tree Search

State space: explored as a tree
* root: empty
* one variable per level
* sucessors of a node:
* one sucessor per value of the variable ‘
* meaning: variable < value

Tree:
+ each branch defines an assignment
+ depth n (number of variables)
* branching factor d (domain size)

November 13, 2002 IBERAMIA-2002 14

Search tree for 4-queens

(1,1,1,1) (2,1,1,1) (3,1,1,1) (4,1,1,1) (4,44,4)

November 13, 2002 IBERAMIA-2002 15

Backtracking Algorithm

Depth-first tree traversal (DFS)

At each node:
* check every completely assigned constraint
«if consistent, continue DFS
otherwise, prune current branch
continue DFS

Complexity: O(d")

November 13, 2002 IBERAMIA-2002 16

Backtracking on 4-queens

1 2 3 4
X4
X5 Q
X; | Q
Xy Q

T

25 nodes solution

November 13, 2002 IBERAMIA-2002 17

Problems of Backtracking

the first choice|is

incompatible with

Thrashing:

* the same failure can
be rediscovered an
exponential number
oftimes A\ AN

Solutions:

+ check not completely assigned constraints: lookahead
* non-chronological backtracking: backjumping

November 13, 2002 IBERAMIA-2002 18

Backjumping

Non-chronological backtracking:

* jJumps to the last decision responsible for the dead-end
* intermediate decisions are removed

{X; < 1} 1 2 3 4
x, |1
<2 @ ‘
v X
\
X3 2
(X, < 4} }
//
X, @ (€]
Inference .
legal operations
, on variables,
Inference: P P domains,

constraints

*P’ is equivalentto P: Sol(P) = Sol(P’)
* P’ is presumably easier to solve than P
+ smaller search space
+ constraints are more explicit

Inference can be:
- complete: produces the solution
adaptive consistency
* incomplete: requires further search
arc consistency

November 13, 2002 IBERAMIA-2002 20

Adaptive Consistency

Problem P, varx, C, ={constraints on x}

|dea:
+ Substitute C, by a new constraint ¢
+ ¢ summarizes the effect of C, on P variable
* ¢ does not mention x elimination

now X is isolated: it can be eliminated

Process:

problems: P — P — P’ —.. . - trivially
#vars: n n-1 n-2 .. solved

<

solution without search

November 13, 2002 IBERAMIA-2002 21

Variable Elimination

To eliminate var x: ‘o
- Join all constraints in C, — ¢ ..
» Substitute C, by ¢ X
* Project out variable x from c¢— ¢

* Substitute ¢ by ¢

November 13, 2002 IBERAMIA-2002 22

Example: 4-queens (x,)

X4 X, o X4 Xo . X4 X,
Jjoin project
B
1 3 2 2 = 1 4 4
1 3 2 3 3 1 4 2
1 3 4 2 3 1 4 1
1 3 4 3 = 1 2 4
1 4 2 2 3 1 2 2
1 4 2 3 3 1 2 1
1 4 4 2 4 2 3 3
1 4 4 3 4 2 3 2
2 4 1 1 4 2 1 3
2 4 1 3 4 2 1 2
2 4 1 4 4 1 3 3
2 4 3 1 4 1 3 2
2 4 3 3 4 1 1 3
2 4 3 4 4 1 1 2
November 13, 2002 IBERAMIA-2002 23

Example: 4-queens (x,)

X5 Xie oX2 Xie oX2

join project
T 4(no

NI) 4
N

N

N}

November 13, 2002 IBERAMIA-2002 24

25

<IN~ FT AN~ ONONMNOANMAN

TIF(FTANANNDD T+~ NN~

- NN~

DO O OOFTITITTIT T

4-queens

Ions

DONODNODNDT~OFT M

NANTTNANTT OO M

OO ITITTTTTT I

X, Xo X3 Xe|X; Xo X5 X,

4-queens (X;)

4

IBERAMIA-2002

All Solut
2

Example

26

11111111 AN NN
<
X N[@ o -
[so
/X344211
o™
||

IBERAMIA-2002

Example
SOLUTION 1:

November 13, 2002

November 13, 2002

Example: All Solutions 4-queens

SOLUTION2: 3 1 4 2

R)x\\

X X Xg Xg|Xy Xo X5 X4
A 1 5 3 [3 1 4 4
| 3 | 1 2 3 3 1 4 2
1 3 4 2 3 1 4 1
1 3 4 3 3 1 2 4
1 4 2 2 3 1 2 2
1 4 2 3 3 1 2 1
Xy X, X, %o x| |1fdd s 2 d
4 2 1 2 2/ 4 1 1 4 2 1 3
[3 | 1/ 2 2" a4 1 3 [l4 2 1 2
1 4 4 2 4 1 4 |4 1 3 3
4, 2 3 2 4 3 1 4 1 3 2
I 3 | > 4 3 3 |4 1 1 3
4 1 1 2 4 3 4 4 1 1 2
November 13, 2002 IBERAMIA-2002 27
Arc Consistency
* c is arc-consistent iff: every possible value of
every variable in var (c)
appears in rel(c) domain
filtering
* If ¢ is not arc-consistent because a €d, :
- a will not be in any solution :
inference
+ a can be removed:(d, < d, —{a} |
- if d, becomes empty, P has no solution
+ P is arc-consistent iff: every constraint is
arc-consistent
incomplete

- If P is arc-consistent -4 P has solution

November 13, 2002 IBERAMIA-2002

inference !!
28

Example: 3-queens

C,, IS not arc-consistent
because value 2 of d,

1 2 3
C,, IS not arc-consistent X,
because value 2 of d,
Xp
C,; is not arc-consistent X3

because value 2 of dg

November 13, 2002 IBERAMIA-2002 29

Constraint Propagation

* AC(c): procedure to make c arc consistent

* To make P arc-consistent, process each constraint ?

* But AC(c) may render other constraints arc-inconsistent

* To make P arc-consistent, iterate:
Apply AC on {c,,C,,...,C, }
+ Until no changes in domains: fix point

November 13, 2002 IBERAMIA-2002 30

Example: 3-queens

value 2 of d; was removed
(to make c,; arc-consistent)

|

this makes c,5 arc-inconsistent

Cy3 Iis not arc-consistent
because value 1 of d,

Cy3 is not arc-consistent domain d. emot
e
because value 3 of d, 1 €mpty

!

no solution !!

November 13, 2002 IBERAMIA-2002 31

Hybrids: Search + Inference

|dea:

+ Search: backtracking (could be non-chronological)
* Inference: at each node, AC on some constraints

* Future domains are pruned

* Values no AC are eliminated

Effect:

* Future domains are reduced: less nodes to explore
+ AC at each node: more work per node

* Very beneficial: reduces thrashing

November 13, 2002 IBERAMIA-2002 32

Forward Checking

FC is a combination of:
« Search: backtracking

* Inference: at each node, AC on constraints with
assigned and unassigned variables

When a domain becomes empty :
* No solutions following current branch
* Prune current branch and backtrack

Caution:

+ Values removed by AC at level i, have to be
restored when bactracking at level i or above

November 13, 2002 IBERAMIA-2002 33

Example: FC on 4-queens

’
T
¢

8 nodes solution

November 13, 2002 IBERAMIA-2002 34

Maintaining Arc Consistency

MAC is a combination of:
« Search: backtracking
* Inference: at each node, AC on all constraints
* Preprocess: subproblems are AC

When a domain becomes empty :
* No solutions following current branch
* Prune current branch and backtrack

Caution:

+ Values removed by AC at level i, have to be
restored when bactracking at level i or above

November 13, 2002 IBERAMIA-200!

35

Example: MAC on 4-queens

Xo ()
X3 ®
X4 ®

5 nodes solution

November 13, 2002 IBERAMIA-2002

36

Search Heuristics

Dynamic variable selection:
+ Variable may have different orders in branches
* Freedom to choose next variable

Heuristic:
1. Select the variable with minimum domain
domain
2. Select the variable involved in most constraints
degree

Combination: min (domain / degree)

November 13, 2002 IBERAMIA-2002 37

Overview

Introduction

Constraint Satisfaction
« Search

* Inference
« Hybrids

Constraint Programming
+ Modelling with Constraints
« Optimization
+ Existing Solvers

Summary

November 13, 2002 IBERAMIA-2002 38

Modelling

Problem P as CSP:
+ Several formulations are possible

» Select variables and domains
* Search space size: ldy I xldyIx .. x1d, |
 Select formulation with smallest size

* Select constraints:
* Number of constraints
* Arity
* AC cost
* Pruning power

November 13, 2002 IBERAMIA-2002 39

Constraints

Number:
+ High: causes a high overhead
* Low: is preferred (compact representation)
+ Keeping low number, some redundancy is advised

Arity: number of variables involved in a constraint

Arity and AC: trade-off
- arity(c) = k, AC(c) is O(d ¥)
* high arity causes higher AC cost
+ but AC on high arity constraints prunes more !!

November 13, 2002 IBERAMIA-2002 40

Global Constraints

c is global iff:
- arity(c) > 2
- ¢ is logically equivalent to {c,,C,,...,C, } binary
* AC(c) prunes more than AC(c,,C,,...,Cy)

Propagation:
* specialized algorithms decrease AC complexity
+ exploits the constraint semantics

Catalog:
+ set of common structures to reuse
* best known algorithms for propagation

November 13, 2002 IBERAMIA-2002 41

Example: all-different

x {1,2} x {1,2}
logically
equivalent
#
all-different
z y z y
{1, 2} > {1,2} {1,2} {1,2}

3 binary constraints, 1 ternary constraint,

they are AC, it is not AC,

no pruning AC pruning —empty domain
no solution!!

November 13, 2002 IBERAMIA-2002 42

Optimization

Constraint Optimization Problem: (X, D, C, F)

F(X) is a cost function
GOAL: min F(X), satisfying C

Solving method:

* Hybrid: search + consistency assigned constraints

DFS

* When F(X) = Z*, add constraint F(X) < Z*

*
Branch and Bound

November 13, 2002 IBERAMIA-2002

43

Branch and Bound
Search: depth-first

At each node:
+ Consistency on assigned constraints
+ AC on (some) constraints (optional)
« Computes a lower bound of F(X): F(X)

Prunes current branch: when
* Inconsistent assigned constraint
« Empty domain (because AC)
* F(X) > Z* : no solution will improve Z*

November 13, 2002 IBERAMIA-2002

Constraint Programmming

Declarative Programming: you declare
+ Variables
* Domains

« Constraints
and ask the SOLVER to find a solution!!

SOLVER offers:

+ Implementation for variables / domains / constraints

+ Hybrid algorithm: backtracking + incomplete inference
+ Global constraints + optimized AC propagation

+ Empty domain detection

+ Embedded heuristics

November 13, 2002 IBERAMIA-2002 45

Constraint Logic Programming

Logic Programming:
* Depth-first search
+ Unification: substitute equals by equals clauses/database

special case of constraint solving

substituted |by

Constraint
More general constraint solver ——— Logic
Programming

Existing solvers:
+ Chip, Eclipse, Mozart, Sictus Prolog (and many others)

November 13, 2002 IBERAMIA-2002 46

Imperative Constraint Programming
Library to be included in your program

Provides:
* Special objects:
* Variables / Domains / Constraints (global)

« Special functions to find:
* One solution / the next solution

Existing Solvers:
* llog Solver, Choco

November 13, 2002 IBERAMIA-2002 47

Summary

Constraint Satisfaction
*Search: backtracking
* Inference: complete / incomplete (AC)
* Hybrids: backtracking + AC

Constraint Programming
* Modelling: formulation / global constraints
* Optimization: branch and bound
« Existing Solvers: logical vs imperative CP

November 13, 2002 IBERAMIA-2002 48

To know more...

Next week, slides and a list of references
available at

http://www.iiia.csic.es/~pedro/

November 13, 2002 IBERAMIA-2002

49

