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Overview
 Introduction
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•    Search
•    Inference
•    Hybrids

 Constraint Programming
•   Modelling with Constraints
•   Optimization
•    Existing Solvers

 Summary



November 13, 2002 IBERAMIA-2002 3

Modern  Art

November 13, 2002 IBERAMIA-2002 4

Modern Art: Accident

How can we 
reconstruct 
the painting?
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Modern Art: Reconstruction

1. Locate pieces in 
    grid slots
2. Two adjacent slots
    must have the same 
    color pattern on the 
    contact edge
3. Find a globally
    consistent 
    arrangement

1              2             3

4              5             6

7              8             9

constraint between each 
pair of adjacent slots
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Modern Art: All Constraints

12 constraints

Solution: assignment satisfying every constraint
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Modern Art: Solution
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Conclusions from Modern Art
 Constraint problems: most of the knowledge can be
   expressed in terms of constraints among problem elements

 One constraint:
• Involves a subset of problem elements
• Declares  permitted  (or forbidden ) value combinations
• Provides a local view of the whole problem

 Solution:
• Satisfies every constraint
• Global view of the whole problem
• Process: from local to global consistency
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Some Definitions

 Constraint Network (CN):  (X, D, C)
• X = {x1, x2,…, xn}               variables
• D = {d1, d2,…,dn}                 domains (finite)
• C = {c1,c2,…,cr }                   constraints

   c ∈C          var(c)  =  {xi, xj,…, xk}        scope
                     rel(c)  ⊆   di  x dj  x .. x dk         permitted tuples

 Constraint Satisfaction Problem (CSP):
• CN solving: assignment satisfying every constraint
• NP-complete task
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Relevance

CSP: formal model to express problems

Many problems can be represented as CSP:
• Academic problems:

• SAT, Graph coloring, N-queens, . . .
• Real problems:

• Scheduling, Resource allocation, Routing, ….

Many AI tasks can be modeled as CSP:
• Automated reasoning
• Planning
• Spatial and temporal inference
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Running Example: n-queens
GOAL: Locate n queens in an n x n chessboard,
            such that they do not attack each other

x1
x2
x3
x4

1    2     3    4 

4-queens

Formulation:
• Variables: one queen per row
• Domains: available columns
• Constraints:
   different columns and different diagonals
         xi  ≠ xj            | xi - xj | ≠ | i - j |

x1 x2

x3 x4

Constraint Graph:
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Backtrack Search

Strategy:
• Build a partial solution:

•   A partial consistent assignment
• Extend consistently the partial solution

•   One new assigned variable each time
• If no consistent extension:

•   Backtrack: change a previous assignment

Variables:
• Past ∈ partial solution    (assigned)
• Future ∉ partial solution (unassigned)
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Tree Search
 State space: explored as a tree

• root: empty
• one variable per level
• sucessors of a node:

• one sucessor per value of the variable
• meaning: variable ← value

x

a b c

 Tree:
• each branch defines an assignment
• depth n (number of variables)
• branching factor d  (domain size)
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Search tree for 4-queens

x1

x2

x3

x4

1 2 3 4

(1,1,1,1) (4,4,4,4)(2,1,1,1) (3,1,1,1) (4,1,1,1)
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Backtracking Algorithm
Depth-first tree traversal (DFS)

At each node:
• check every completely assigned  constraint
• if  consistent, continue DFS
•     otherwise, prune current branch
•                       continue DFS

 Complexity: O(dn)
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Backtracking on 4-queens

2

3

2

1

1 2 3 4 1 2 3

3

4

4 2 4

1

1 12 3 4

1

1 2 3

x1

x2

x3

x4

x1
x2
x3
x4

1    2     3    4 
Q
Q Q Q

Q Q Q Q
Q

Q Q Q Q

Q

Q Q Q Q
Q Q Q Q
Q
Q Q Q

solution25 nodes
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Problems of Backtracking

 Thrashing:
• the same failure can

be rediscovered an
exponential number
of times

Solutions:
• check not completely assigned constraints: lookahead
• non-chronological backtracking:  backjumping

the first choice is
incompatible with
any last choice
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x1
x2
x3
x4

1    2     3    4 

Backjumping
Non-chronological backtracking:

• jumps to the last decision responsible for the dead-end
• intermediate decisions are  removed

{x1 ← 1}

             {x2 ← 4}

x4

       {x3 ← 2}

Q2

Q1

x1 x3 x3 x1

Q3
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Inference

• P’  is equivalent to P:    Sol(P) = Sol(P’)
• P’  is presumably easier to solve than P

• smaller search space
• constraints are more explicit

Inference can be:
• complete:    produces the solution
                     adaptive consistency

• incomplete: requires further search
                     arc consistency

legal operations 
on variables, 

domains, 
constraints

Inference:         P                 P’
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Adaptive Consistency

Idea:
• Substitute Cx  by a new constraint c
• c  summarizes the effect of Cx  on P
• c  does not mention x

  now x  is isolated: it can be eliminated

solution without search

Problem  P,    var x,    Cx ={constraints on x}

variable 
elimination

Process:
problems:    P   →  P’  →  P’’  → . . . →  P(n-1

#vars:          n       n-1      n-2      . . .     1
trivially
solved
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Variable Elimination

To eliminate var x:

• Join all constraints in Cx →  c

• Substitute Cx by c

• Project out variable x  from  c →  c

• Substitute c  by   c

x
Cx

c
x

c
x



November 13, 2002 IBERAMIA-2002 23

Example: 4-queens (x1)

x1 x2

x3 x4

x1 x1 x2

x3 x4

x1 x2

x3 x4

join project

x1   x2   x3   x4
 1        3         2        2
 1        3         2        3
 1        3         4        2
 1        3         4        3
 1        4         2        2
 1        4         2        3
 1        4         4        2
 1        4         4        3
 2        4         1        1
 2        4         1        3
 2        4         1        4
 2        4         3        1
 2        4         3        3
 2        4         3        4

x1   x2   x3   x4
 3        1         4        4
 3        1         4        2
 3        1         4        1
 3        1         2        4
 3        1         2        2
 3        1         2        1
 4        2         3        3
 4        2         3        2
 4        2         1        3
 4        2         1        2
 4        1         3        3
 4        1         3        2
 4        1         1        3
 4        1         1        2   
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Example: 4-queens (x2)

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

join
 

project
    ∩

x2   x3   x4
 1        3         2
 1        4         2
 1        4         4
 4        2         3
 4        1         3
 4        1         1
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Example: 4-queens (x3)
x1 x2

x3 x4

join project
x1 x2

x3 x4

x3   x4
 4         2
 1         3

x1 x2

x3 x4
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Example: All Solutions 4-queens

x3   x4
 4         2
 1         3

 x4
   2
   3

x2   x3   x4
 1        3         2
 1        4         2
 1        4         4
 4        2         3
 4        1         3
 4        1         1

x1   x2   x3   x4
 1        3         2        3
 1        3         2        3
 1        3         4        2
 1        3         4        3
 1        4         2        2
 1        4         2        3
 1        4         4        2
 1        4         4        3
 2        4         1        1
 2        4         1        3
 2        4         1        4
 2        4         3        1
 2        4         3        3
 2        4         3        4

x1   x2   x3   x4
 3        1         4        4
 3        1         4        2
 3        1         4        1
 3        1         2        4
 3        1         2        2
 3        1         2        1
 4        2         3        3
 4        2         3        2
 4        2         1        3
 4        2         1        2
 4        1         3        3
 4        1         3        2
 4        1         1        3
 4        1         1        2   

x4     x3    x2     x1
 2  4  1  3 SOLUTION 1:
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Example: All Solutions 4-queens

x3   x4
 4         2
 1         3

 x4
   2
   3

x2   x3   x4
 1        3         2
 1        4         2
 1        4         4
 4        2         3
 4        1         3
 4        1         1

x1   x2   x3   x4
 1        3         2        3
 1        3         2        3
 1        3         4        2
 1        3         4        3
 1        4         2        2
 1        4         2        3
 1        4         4        2
 1        4         4        3
 2        4         1        1
 2        4         1        3
 2        4         1        4
 2        4         3        1
 2        4         3        3
 2        4         3        4

x1   x2   x3   x4
 3        1         4        4
 3        1         4        2
 3        1         4        1
 3        1         2        4
 3        1         2        2
 3        1         2        1
 4        2         3        3
 4        2         3        2
 4        2         1        3
 4        2         1        2
 4        1         3        3
 4        1         3        2
 4        1         1        3
 4        1         1        2   

x4     x3    x2     x1
 3  1  4  2 SOLUTION 2:
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Arc Consistency
• c  is arc-consistent iff: every possible value of
                                      every variable in var (c)
                                      appears in rel(c)

• If P is arc-consistent         P has solution

• If c is not arc-consistent because a ∈dx :
•  a  will not be in any solution
•  a  can be removed: dx ← dx – {a}
•  if dx becomes empty, P has no solution

•  P is arc-consistent iff: every constraint is 
                                       arc-consistent 

inference 

incomplete
inference !! 

domain 
filtering
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Example: 3-queens

c12  is not arc-consistent
      because value 2 of d1

c12  is not arc-consistent
      because value 2 of d2

c23  is not arc-consistent
      because value 2 of d3

x1

x2

x3

1     2     3
x1

x2

x3

1     2     3
x1

x2

x3

1     2     3
x1

x2

x3

1     2     3

November 13, 2002 IBERAMIA-2002 30

Constraint Propagation
• AC(c): procedure to make c arc consistent

• To make P arc-consistent, process each constraint ?

c1      c2    …  cr c1      c2    …  cr               c1      c2    …    cr               c1      c2    …   cr               

AC

• But AC(c) may render other constraints arc-inconsistent

• To make P arc-consistent, iterate:
• Apply AC  on  {c1,c2,…,cr }
• Until no changes in domains:  fix point
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Example: 3-queens

value 2 of d3 was removed
(to make c23  arc-consistent)

x1

x2

x3

1     2     3
x1

x2

x3

1     2     3
x1

x2

x3

1     2     3
x1

x2

x3

1     2     3

c13  is not arc-consistent
      because value 1 of d1

this makes c13 arc-inconsistent x1

x2

x3

1     2     3

c13  is not arc-consistent
      because value 3 of d1

x1

x2

x3

1     2     3

domain d1 empty

no solution !!
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Hybrids: Search + Inference

Idea:
• Search: backtracking  (could be non-chronological)
• Inference: at each node, AC on some constraints

• Future domains are pruned
• Values no AC are eliminated

 Effect:
• Future domains are reduced: less nodes to explore
• AC at each node: more work per node
• Very beneficial: reduces thrashing
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Forward Checking

FC is a combination of:
• Search: backtracking
• Inference: at each node, AC on constraints with
                  assigned and unassigned variables

When a domain becomes empty :
• No solutions following current branch
• Prune current branch and backtrack

 Caution:
• Values removed by AC at level i, have to be
 restored when bactracking at level i  or above
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Example: FC on 4-queens

2

2

3

4 4

1

1

3

x1

x2

x3

x4

x1
x2
x3
x4

1    2     3    4 

x1
x2
x3
x4

1    2     3    4 
Qx1

x2
x3
x4

1    2     3    4 
QQ

Q
x1
x2
x3
x4

1    2     3    4 
QQ

Q
x1
x2
x3
x4

1    2     3    4 
QQ

Q
Q

x1
x2
x3
x4

1    2     3    4 
QQ

Q
x1
x2
x3
x4

1    2     3    4 
QQx1

x2
x3
x4

1    2     3    4 
Q Qx1

x2
x3
x4

1    2     3    4 
Q Q

Q
x1
x2
x3
x4

1    2     3    4 
Q Q

Q

Q

x1
x2
x3
x4

1    2     3    4 
Q Q

Q

Q
Q

solution8 nodes
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Maintaining Arc Consistency

MAC is a combination of:
• Search: backtracking
• Inference: at each node, AC on all constraints
• Preprocess:  subproblems are AC

When a domain becomes empty :
• No solutions following current branch
• Prune current branch and backtrack

 Caution:
• Values removed by AC at level i, have to be
 restored when bactracking at level i  or above
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Example: MAC on 4-queens

2

3

4

1

1x1

x2

x3

x4

x1
x2
x3
x4

x1
x2
x3
x4

1    2     3    4 
QQx1

x2
x3
x4

1    2     3    4 
Q Qx1

x2
x3
x4

1    2     3    4 
Q Q

Q
x1
x2
x3
x4

1    2     3    4 
Q Q

Q
Q

x1
x2
x3
x4

1    2     3    4 
Q Q

Q
Q

Q

solution5 nodes
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Search Heuristics

Dynamic variable selection:
• Variable may have different orders in branches
• Freedom to choose next variable

Heuristic:
1. Select  the variable with minimum domain
                                    domain
2. Select  the variable involved in most constraints
                                    degree

Combination:    min    ( domain / degree )
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Modelling
Problem P as CSP:

• Several formulations are possible

• Select  variables  and  domains
• Search space size:       |d1 | x |d2 | x .. x |dn |
• Select formulation with smallest size

• Select constraints:
• Number of constraints
• Arity
• AC cost
• Pruning power
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Constraints

Number:
• High: causes a high overhead
• Low: is preferred (compact representation)
• Keeping low number, some redundancy is advised

Arity: number of variables involved in a constraint

Arity and AC:
• arity(c) = k,  AC(c) is O(d k)
• high arity causes higher AC cost
• but AC on high arity constraints prunes more !!

trade-off
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Global Constraints

c is global iff:
• arity(c) > 2
• c  is logically equivalent to  {c1,c2,…,ck } binary
• AC(c) prunes more than AC(c1,c2,…,ck )

Propagation:
• specialized algorithms         decrease AC complexity
• exploits the constraint semantics

Catalog:
• set of common structures to reuse
• best known algorithms for propagation
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Example: all-different

x   {1, 2}

y
{1, 2}

z
{1, 2}

≠ ≠

≠

3 binary constraints,
they are AC,
no pruning

x   {1, 2}

y
{1, 2}

z
{1, 2}

all-different

1 ternary constraint,
it is not AC,

AC pruning → empty domain
                    no solution!!

logically
equivalent
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Optimization

Constraint Optimization Problem: (X, D, C, F )
                      F(X) is a cost function
    GOAL:       min F(X),  satisfying C

Solving method:
• Hybrid:  search + consistency assigned constraints
                 DFS

• When F(X) = Z*, add constraint F(X) < Z*

Branch and Bound
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Branch and Bound

Search: depth-first

At each node:
•  Consistency on assigned constraints
•  AC on (some) constraints (optional)
•  Computes a lower bound of F(X): F(X)

Prunes current branch: when
• Inconsistent assigned constraint
• Empty domain (because AC)
• F(X) > Z* : no solution will improve Z*
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Constraint Programmming
 Declarative Programming: you declare

•  Variables
•  Domains
•  Constraints

  and ask the SOLVER to find a solution!!

 SOLVER offers:
• Implementation for variables / domains / constraints
• Hybrid algorithm: backtracking + incomplete inference
• Global constraints + optimized AC propagation
• Empty domain detection
• Embedded heuristics
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Constraint Logic Programming

  Logic Programming:
• Depth-first search
• Unification: substitute equals by equals clauses/database

special case of constraint solving

Constraint
Logic 
Programming

More general constraint solver

substituted  by

  Existing solvers:
• Chip, Eclipse, Mozart, Sictus Prolog (and many others)
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Imperative Constraint Programming
Library  to be included in your program

Provides:
• Special objects:

• Variables / Domains / Constraints (global)

• Special functions to find:
•  One solution / the next solution

Existing Solvers:
•  Ilog Solver, Choco
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Summary

Constraint Satisfaction
• Search:     backtracking
• Inference: complete  /  incomplete (AC)
• Hybrids:    backtracking + AC

Constraint Programming
• Modelling:           formulation  /  global constraints
• Optimization:       branch and bound
• Existing Solvers: logical vs imperative CP
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To know more . . .

     Next week, slides and a list of references
     available at

               http://www.iiia.csic.es/~pedro/


