
Constraint Satisfaction
and

Constraint Programming

Pedro Meseguer
 IIIA-CSIC

Bellaterra, Spain

November 13, 2002 IBERAMIA-2002 2

Overview
 Introduction
 Constraint Satisfaction

• Search
• Inference
• Hybrids

 Constraint Programming
• Modelling with Constraints
• Optimization
• Existing Solvers

 Summary

November 13, 2002 IBERAMIA-2002 3

Modern Art

November 13, 2002 IBERAMIA-2002 4

Modern Art: Accident

How can we
reconstruct
the painting?

November 13, 2002 IBERAMIA-2002 5

Modern Art: Reconstruction

1. Locate pieces in
 grid slots
2. Two adjacent slots
 must have the same
 color pattern on the
 contact edge
3. Find a globally
 consistent
 arrangement

1 2 3

4 5 6

7 8 9

constraint between each
pair of adjacent slots

November 13, 2002 IBERAMIA-2002 6

Modern Art: All Constraints

12 constraints

Solution: assignment satisfying every constraint

November 13, 2002 IBERAMIA-2002 7

Modern Art: Solution

November 13, 2002 IBERAMIA-2002 8

Conclusions from Modern Art
 Constraint problems: most of the knowledge can be
 expressed in terms of constraints among problem elements

 One constraint:
• Involves a subset of problem elements
• Declares permitted (or forbidden) value combinations
• Provides a local view of the whole problem

 Solution:
• Satisfies every constraint
• Global view of the whole problem
• Process: from local to global consistency

November 13, 2002 IBERAMIA-2002 9

Overview
 Introduction
 Constraint Satisfaction

• Search
• Inference
• Hybrids

 Constraint Programming
• Modelling with Constraints
• Optimization
• Existing Solvers

 Summary

November 13, 2002 IBERAMIA-2002 10

Some Definitions

 Constraint Network (CN): (X, D, C)
• X = {x1, x2,…, xn} variables
• D = {d1, d2,…,dn} domains (finite)
• C = {c1,c2,…,cr } constraints

 c ∈C var(c) = {xi, xj,…, xk} scope
 rel(c) ⊆ di x dj x .. x dk permitted tuples

 Constraint Satisfaction Problem (CSP):
• CN solving: assignment satisfying every constraint
• NP-complete task

November 13, 2002 IBERAMIA-2002 11

Relevance

CSP: formal model to express problems

Many problems can be represented as CSP:
• Academic problems:

• SAT, Graph coloring, N-queens, . . .
• Real problems:

• Scheduling, Resource allocation, Routing, ….

Many AI tasks can be modeled as CSP:
• Automated reasoning
• Planning
• Spatial and temporal inference

November 13, 2002 IBERAMIA-2002 12

Running Example: n-queens
GOAL: Locate n queens in an n x n chessboard,
 such that they do not attack each other

x1
x2
x3
x4

1 2 3 4

4-queens

Formulation:
• Variables: one queen per row
• Domains: available columns
• Constraints:
 different columns and different diagonals
 xi ≠ xj | xi - xj | ≠ | i - j |

x1 x2

x3 x4

Constraint Graph:

November 13, 2002 IBERAMIA-2002 13

Backtrack Search

Strategy:
• Build a partial solution:

• A partial consistent assignment
• Extend consistently the partial solution

• One new assigned variable each time
• If no consistent extension:

• Backtrack: change a previous assignment

Variables:
• Past ∈ partial solution (assigned)
• Future ∉ partial solution (unassigned)

November 13, 2002 IBERAMIA-2002 14

Tree Search
 State space: explored as a tree

• root: empty
• one variable per level
• sucessors of a node:

• one sucessor per value of the variable
• meaning: variable ← value

x

a b c

 Tree:
• each branch defines an assignment
• depth n (number of variables)
• branching factor d (domain size)

November 13, 2002 IBERAMIA-2002 15

Search tree for 4-queens

x1

x2

x3

x4

1 2 3 4

(1,1,1,1) (4,4,4,4)(2,1,1,1) (3,1,1,1) (4,1,1,1)

November 13, 2002 IBERAMIA-2002 16

Backtracking Algorithm
Depth-first tree traversal (DFS)

At each node:
• check every completely assigned constraint
• if consistent, continue DFS
• otherwise, prune current branch
• continue DFS

 Complexity: O(dn)

November 13, 2002 IBERAMIA-2002 17

Backtracking on 4-queens

2

3

2

1

1 2 3 4 1 2 3

3

4

4 2 4

1

1 12 3 4

1

1 2 3

x1

x2

x3

x4

x1
x2
x3
x4

1 2 3 4
Q
Q Q Q

Q Q Q Q
Q

Q Q Q Q

Q

Q Q Q Q
Q Q Q Q
Q
Q Q Q

solution25 nodes

November 13, 2002 IBERAMIA-2002 18

Problems of Backtracking

 Thrashing:
• the same failure can

be rediscovered an
exponential number
of times

Solutions:
• check not completely assigned constraints: lookahead
• non-chronological backtracking: backjumping

the first choice is
incompatible with
any last choice

November 13, 2002 IBERAMIA-2002 19

x1
x2
x3
x4

1 2 3 4

Backjumping
Non-chronological backtracking:

• jumps to the last decision responsible for the dead-end
• intermediate decisions are removed

{x1 ← 1}

 {x2 ← 4}

x4

 {x3 ← 2}

Q2

Q1

x1 x3 x3 x1

Q3

November 13, 2002 IBERAMIA-2002 20

Inference

• P’ is equivalent to P: Sol(P) = Sol(P’)
• P’ is presumably easier to solve than P

• smaller search space
• constraints are more explicit

Inference can be:
• complete: produces the solution
 adaptive consistency

• incomplete: requires further search
 arc consistency

legal operations
on variables,

domains,
constraints

Inference: P P’

November 13, 2002 IBERAMIA-2002 21

Adaptive Consistency

Idea:
• Substitute Cx by a new constraint c
• c summarizes the effect of Cx on P
• c does not mention x

 now x is isolated: it can be eliminated

solution without search

Problem P, var x, Cx ={constraints on x}

variable
elimination

Process:
problems: P → P’ → P’’ → . . . → P(n-1

#vars: n n-1 n-2 . . . 1
trivially
solved

November 13, 2002 IBERAMIA-2002 22

Variable Elimination

To eliminate var x:

• Join all constraints in Cx → c

• Substitute Cx by c

• Project out variable x from c → c

• Substitute c by c

x
Cx

c
x

c
x

November 13, 2002 IBERAMIA-2002 23

Example: 4-queens (x1)

x1 x2

x3 x4

x1 x1 x2

x3 x4

x1 x2

x3 x4

join project

x1 x2 x3 x4
 1 3 2 2
 1 3 2 3
 1 3 4 2
 1 3 4 3
 1 4 2 2
 1 4 2 3
 1 4 4 2
 1 4 4 3
 2 4 1 1
 2 4 1 3
 2 4 1 4
 2 4 3 1
 2 4 3 3
 2 4 3 4

x1 x2 x3 x4
 3 1 4 4
 3 1 4 2
 3 1 4 1
 3 1 2 4
 3 1 2 2
 3 1 2 1
 4 2 3 3
 4 2 3 2
 4 2 1 3
 4 2 1 2
 4 1 3 3
 4 1 3 2
 4 1 1 3
 4 1 1 2

November 13, 2002 IBERAMIA-2002 24

Example: 4-queens (x2)

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

join

project
 ∩

x2 x3 x4
 1 3 2
 1 4 2
 1 4 4
 4 2 3
 4 1 3
 4 1 1

November 13, 2002 IBERAMIA-2002 25

Example: 4-queens (x3)
x1 x2

x3 x4

join project
x1 x2

x3 x4

x3 x4
 4 2
 1 3

x1 x2

x3 x4

November 13, 2002 IBERAMIA-2002 26

Example: All Solutions 4-queens

x3 x4
 4 2
 1 3

 x4
 2
 3

x2 x3 x4
 1 3 2
 1 4 2
 1 4 4
 4 2 3
 4 1 3
 4 1 1

x1 x2 x3 x4
 1 3 2 3
 1 3 2 3
 1 3 4 2
 1 3 4 3
 1 4 2 2
 1 4 2 3
 1 4 4 2
 1 4 4 3
 2 4 1 1
 2 4 1 3
 2 4 1 4
 2 4 3 1
 2 4 3 3
 2 4 3 4

x1 x2 x3 x4
 3 1 4 4
 3 1 4 2
 3 1 4 1
 3 1 2 4
 3 1 2 2
 3 1 2 1
 4 2 3 3
 4 2 3 2
 4 2 1 3
 4 2 1 2
 4 1 3 3
 4 1 3 2
 4 1 1 3
 4 1 1 2

x4 x3 x2 x1
 2 4 1 3 SOLUTION 1:

November 13, 2002 IBERAMIA-2002 27

Example: All Solutions 4-queens

x3 x4
 4 2
 1 3

 x4
 2
 3

x2 x3 x4
 1 3 2
 1 4 2
 1 4 4
 4 2 3
 4 1 3
 4 1 1

x1 x2 x3 x4
 1 3 2 3
 1 3 2 3
 1 3 4 2
 1 3 4 3
 1 4 2 2
 1 4 2 3
 1 4 4 2
 1 4 4 3
 2 4 1 1
 2 4 1 3
 2 4 1 4
 2 4 3 1
 2 4 3 3
 2 4 3 4

x1 x2 x3 x4
 3 1 4 4
 3 1 4 2
 3 1 4 1
 3 1 2 4
 3 1 2 2
 3 1 2 1
 4 2 3 3
 4 2 3 2
 4 2 1 3
 4 2 1 2
 4 1 3 3
 4 1 3 2
 4 1 1 3
 4 1 1 2

x4 x3 x2 x1
 3 1 4 2 SOLUTION 2:

November 13, 2002 IBERAMIA-2002 28

Arc Consistency
• c is arc-consistent iff: every possible value of
 every variable in var (c)
 appears in rel(c)

• If P is arc-consistent P has solution

• If c is not arc-consistent because a ∈dx :
• a will not be in any solution
• a can be removed: dx ← dx – {a}
• if dx becomes empty, P has no solution

• P is arc-consistent iff: every constraint is
 arc-consistent

inference

incomplete
inference !!

domain
filtering

November 13, 2002 IBERAMIA-2002 29

Example: 3-queens

c12 is not arc-consistent
 because value 2 of d1

c12 is not arc-consistent
 because value 2 of d2

c23 is not arc-consistent
 because value 2 of d3

x1

x2

x3

1 2 3
x1

x2

x3

1 2 3
x1

x2

x3

1 2 3
x1

x2

x3

1 2 3

November 13, 2002 IBERAMIA-2002 30

Constraint Propagation
• AC(c): procedure to make c arc consistent

• To make P arc-consistent, process each constraint ?

c1 c2 … cr c1 c2 … cr c1 c2 … cr c1 c2 … cr

AC

• But AC(c) may render other constraints arc-inconsistent

• To make P arc-consistent, iterate:
• Apply AC on {c1,c2,…,cr }
• Until no changes in domains: fix point

November 13, 2002 IBERAMIA-2002 31

Example: 3-queens

value 2 of d3 was removed
(to make c23 arc-consistent)

x1

x2

x3

1 2 3
x1

x2

x3

1 2 3
x1

x2

x3

1 2 3
x1

x2

x3

1 2 3

c13 is not arc-consistent
 because value 1 of d1

this makes c13 arc-inconsistent x1

x2

x3

1 2 3

c13 is not arc-consistent
 because value 3 of d1

x1

x2

x3

1 2 3

domain d1 empty

no solution !!

November 13, 2002 IBERAMIA-2002 32

Hybrids: Search + Inference

Idea:
• Search: backtracking (could be non-chronological)
• Inference: at each node, AC on some constraints

• Future domains are pruned
• Values no AC are eliminated

 Effect:
• Future domains are reduced: less nodes to explore
• AC at each node: more work per node
• Very beneficial: reduces thrashing

November 13, 2002 IBERAMIA-2002 33

Forward Checking

FC is a combination of:
• Search: backtracking
• Inference: at each node, AC on constraints with
 assigned and unassigned variables

When a domain becomes empty :
• No solutions following current branch
• Prune current branch and backtrack

 Caution:
• Values removed by AC at level i, have to be
 restored when bactracking at level i or above

November 13, 2002 IBERAMIA-2002 34

Example: FC on 4-queens

2

2

3

4 4

1

1

3

x1

x2

x3

x4

x1
x2
x3
x4

1 2 3 4

x1
x2
x3
x4

1 2 3 4
Qx1

x2
x3
x4

1 2 3 4
QQ

Q
x1
x2
x3
x4

1 2 3 4
QQ

Q
x1
x2
x3
x4

1 2 3 4
QQ

Q
Q

x1
x2
x3
x4

1 2 3 4
QQ

Q
x1
x2
x3
x4

1 2 3 4
QQx1

x2
x3
x4

1 2 3 4
Q Qx1

x2
x3
x4

1 2 3 4
Q Q

Q
x1
x2
x3
x4

1 2 3 4
Q Q

Q

Q

x1
x2
x3
x4

1 2 3 4
Q Q

Q

Q
Q

solution8 nodes

November 13, 2002 IBERAMIA-2002 35

Maintaining Arc Consistency

MAC is a combination of:
• Search: backtracking
• Inference: at each node, AC on all constraints
• Preprocess: subproblems are AC

When a domain becomes empty :
• No solutions following current branch
• Prune current branch and backtrack

 Caution:
• Values removed by AC at level i, have to be
 restored when bactracking at level i or above

November 13, 2002 IBERAMIA-2002 36

Example: MAC on 4-queens

2

3

4

1

1x1

x2

x3

x4

x1
x2
x3
x4

x1
x2
x3
x4

1 2 3 4
QQx1

x2
x3
x4

1 2 3 4
Q Qx1

x2
x3
x4

1 2 3 4
Q Q

Q
x1
x2
x3
x4

1 2 3 4
Q Q

Q
Q

x1
x2
x3
x4

1 2 3 4
Q Q

Q
Q

Q

solution5 nodes

November 13, 2002 IBERAMIA-2002 37

Search Heuristics

Dynamic variable selection:
• Variable may have different orders in branches
• Freedom to choose next variable

Heuristic:
1. Select the variable with minimum domain
 domain
2. Select the variable involved in most constraints
 degree

Combination: min (domain / degree)

November 13, 2002 IBERAMIA-2002 38

Overview
 Introduction
 Constraint Satisfaction

• Search
• Inference
• Hybrids

 Constraint Programming
• Modelling with Constraints
• Optimization
• Existing Solvers

 Summary

November 13, 2002 IBERAMIA-2002 39

Modelling
Problem P as CSP:

• Several formulations are possible

• Select variables and domains
• Search space size: |d1 | x |d2 | x .. x |dn |
• Select formulation with smallest size

• Select constraints:
• Number of constraints
• Arity
• AC cost
• Pruning power

November 13, 2002 IBERAMIA-2002 40

Constraints

Number:
• High: causes a high overhead
• Low: is preferred (compact representation)
• Keeping low number, some redundancy is advised

Arity: number of variables involved in a constraint

Arity and AC:
• arity(c) = k, AC(c) is O(d k)
• high arity causes higher AC cost
• but AC on high arity constraints prunes more !!

trade-off

November 13, 2002 IBERAMIA-2002 41

Global Constraints

c is global iff:
• arity(c) > 2
• c is logically equivalent to {c1,c2,…,ck } binary
• AC(c) prunes more than AC(c1,c2,…,ck)

Propagation:
• specialized algorithms decrease AC complexity
• exploits the constraint semantics

Catalog:
• set of common structures to reuse
• best known algorithms for propagation

November 13, 2002 IBERAMIA-2002 42

Example: all-different

x {1, 2}

y
{1, 2}

z
{1, 2}

≠ ≠

≠

3 binary constraints,
they are AC,
no pruning

x {1, 2}

y
{1, 2}

z
{1, 2}

all-different

1 ternary constraint,
it is not AC,

AC pruning → empty domain
 no solution!!

logically
equivalent

November 13, 2002 IBERAMIA-2002 43

Optimization

Constraint Optimization Problem: (X, D, C, F)
 F(X) is a cost function
 GOAL: min F(X), satisfying C

Solving method:
• Hybrid: search + consistency assigned constraints
 DFS

• When F(X) = Z*, add constraint F(X) < Z*

Branch and Bound

November 13, 2002 IBERAMIA-2002 44

Branch and Bound

Search: depth-first

At each node:
• Consistency on assigned constraints
• AC on (some) constraints (optional)
• Computes a lower bound of F(X): F(X)

Prunes current branch: when
• Inconsistent assigned constraint
• Empty domain (because AC)
• F(X) > Z* : no solution will improve Z*

November 13, 2002 IBERAMIA-2002 45

Constraint Programmming
 Declarative Programming: you declare

• Variables
• Domains
• Constraints

 and ask the SOLVER to find a solution!!

 SOLVER offers:
• Implementation for variables / domains / constraints
• Hybrid algorithm: backtracking + incomplete inference
• Global constraints + optimized AC propagation
• Empty domain detection
• Embedded heuristics

November 13, 2002 IBERAMIA-2002 46

Constraint Logic Programming

 Logic Programming:
• Depth-first search
• Unification: substitute equals by equals clauses/database

special case of constraint solving

Constraint
Logic
Programming

More general constraint solver

substituted by

 Existing solvers:
• Chip, Eclipse, Mozart, Sictus Prolog (and many others)

November 13, 2002 IBERAMIA-2002 47

Imperative Constraint Programming
Library to be included in your program

Provides:
• Special objects:

• Variables / Domains / Constraints (global)

• Special functions to find:
• One solution / the next solution

Existing Solvers:
• Ilog Solver, Choco

November 13, 2002 IBERAMIA-2002 48

Summary

Constraint Satisfaction
• Search: backtracking
• Inference: complete / incomplete (AC)
• Hybrids: backtracking + AC

Constraint Programming
• Modelling: formulation / global constraints
• Optimization: branch and bound
• Existing Solvers: logical vs imperative CP

November 13, 2002 IBERAMIA-2002 49

To know more . . .

 Next week, slides and a list of references
 available at

 http://www.iiia.csic.es/~pedro/

