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Abstract

The Steel Mill Slab Problem is an optimization benchmark that has
been studied for a long time in the constraint-programming community
but was only solved efficiently in the two last years. Gargani and Refalo
solved the problem using Large Neighborhood Search and Van Henten-
ryck and Michel made use of constraint programming with an improved
symmetry breaking scheme.

In the first part of this paper, we build on those approaches, present
improvements of those two techniques, and study how the problem can
be tackled by Constraint-Based Local Search. As a result, the classical
instances of CSPLib can now be solved in less than 50ms. To improve
our understanding of this problem, we also introduce a new set of harder
instances, which highlight the strengths and the weaknesses of the various
approaches.

In a second part of the paper, we present a variation of the Steel
Mill Slab Problem whose aim is to minimize the number of slabs. We
show how this problem can be tackled with slight modifications of our
proposed algorithms. In particular, the constraint-programming solution
is enhanced by a global symmetric cardinality constraint, which, to our
knowledge, has never been implemented and used before.

All the proposed approaches to solve this problem have been modeled
and evaluated using Comet.
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1 Introduction

The steel mill slab problem is to assign colored sized orders to slabs of different
capacities such that the total loss is minimized and at most two different colors
are present in each slab. The CSPLib instance (111 orders, 88 colors, 20 capac-
ities) of this problem remained unsolved for years until 2007 when Gargani and
Refalo introduced an elegant constraint programming (CP) model. They solved
the instance optimally (i.e., with zero loss) with a Large Neighborhood Search
(LNS) in 3 seconds [3]. Recently, Van Hentenryck and Michel showed that a
pure CP approach can solve the problem in less that 7 seconds if one breaks
value symmetries during search [5].

In the first part of this paper, we compare three approaches to the steel mill
slab problem: CP, LNS, and Constraint-Based Local Search (CBLS). It appears
that the CSPLib instance is no longer challenging, since a very simple CBLS
model in Comet is able to solve it optimally in less than 0.05 second. This
outperforms all the previous attempts to solve this problem. For this reason,
we propose a new set of 380 instances with increasing difficulty derived from
the CSPLib instance. We compare the three approaches (CP, LNS, and CBLS)
on these new instances.

In the second part of the paper, we propose a variant of the problem with
a different objective function. Manipulating slabs is a heavy task in the steel
industry and hence limiting the number of slabs is also desirable in practice.
We propose to minimize the number of used slabs such that the loss does not
exceed a given value (typically the minimum loss). We propose a CP model
for this new problem exploiting the global symmetric cardinality constraint [6]
(sym-gcc) which enables us to solve many instances that would be intractable
otherwise. To our knowledge, this is the first time that the sym-gcc constraint
is implemented and used in practice1.

Related Work and Existing Results Beside previous unsuccessful tenta-
tives (e.g., [12]) to solve efficiently the Steel Mill Slab Design Problem, Gargani
and Refalo [3] presented in 2007 a CP model that takes advantage of the struc-
ture of the problem through global constraints. They solved the problem in
3 seconds using a specific heuristic for variable and value selection and com-
bining it with LNS. They also considered the use of static symmetry breaking
constraints but it negatively influenced the search for large instances. More re-
cently, Van Hentenryck and Michel [5] showed how dynamic symmetry breaking
could improve the search. Doing so, they were able to solve the CSPLib instance
in less than 7 seconds with an exact search procedure.

Outline The remainder of this article is as follows. Section 2 introduces the
problem and the instances. The subsequent sections (3 to 7) present the various
models and search procedures, together with their experimental results. Section
8 deals with the slab minimization variant. Section 9 concludes the paper.

1The sym-gcc is available into Comet [2] under the name setGlobalCardinality constraint

2



2 The Steel Mill Slab Problem

Steel is produced by casting molten iron into slabs. A steel mill can produce
a finite number of slab capacities. An order has two properties: a color cor-
responding to the route required through the steel mill, and a size. Given n
input orders, the problem is to assign the orders to slabs such that the total size
of steel produced is minimized [1]. This assignment is subject to two further
constraints:

1. Capacity constraints: The total size of orders assigned to a slab cannot
exceed the largest slab capacity.

2. Color constraints: Each slab can contain at most 2 colors.

The color constraints arise because it is expensive to cut up slabs in order to
send them to different parts of the mill.

Example Figure 1 shows the solution of a small instance with three possible
slab sizes (5, 6 and 8), 6 orders, and 3 different colors. Each order is represented
by a vertical bar whose height is the size (also indicated inside the rectangles).
It can be seen that there are at most two different colors in each slab. The cost
of this solution is 1, as there is 1 unit of steel wasted in slab S3. Indeed, only 4
units are used but the smallest slab size is 5. Empty slabs (S4 and S5) do not
incur costs or benefits.

Figure 1: A Small Example of the Steel Mill Slab Problem.

There exists only one available real instance for this problem, available in the
CSPLib2. We now describe some characteristics and measures about this in-
stance, before presenting the new instances.

2.1 The CSPLib Instance

The CSPLib instance is composed of 111 orders with a total of 88 different
colors. In the CSPLib instance, 20 slab capacities are available. They are in

2http://www.csplib.org/prob/prob038/111Orders.txt
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increasing order: 12, 14, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 32, 35,
39, 42, 43, 44. For a color c, let Oc denote the set of orders having color c. In
the CSPLib instance, the cardinality of such a set never exceeds 4 for any color.
The following table report the number of sets with cardinalities 1 to 4:

cardinality of color sets 1 2 3 4
number of color sets 71 13 2 2

Since very few orders have the same color, it seems natural to think that the
constraint at most two colors are present in each slab will give a lot of infor-
mation. For instance, if two orders among the 71 sets with a unique color are
placed in the same slab, we immediately know that none of the 109 remaining
orders can be placed in this slab.

Note that, from this original instance, 100 sub-instances were considered in
[3, 5] by only including the first 12, 13, . . . , 111 orders respectively. This allowed
these papers to study the behavior of the algorithm as the problem size increases.

2.2 Generation of New Instances

A fundamental observation on this problem is that the higher the density of
the slab capacities, the easier the problem becomes. This is because, in each
slab, many combinations of orders can give a loss of 0. The CSPLib instance
has 20 slab capacities ranging from 12 to 44. Furthermore, two large blocks
of consecutive slab capacities are present ([17..20] and [23..30]) making it very
easy to obtain a loss of 0 in a slab. This explains why the CSPLib instance can
be solved without any difficulty. We propose to add complexity to the CSPLib
instance by generating new slab capacities without changing the set of the 111
orders. To keep characteristics close to the original instance, the slab capacities
are uniformly randomly generated between 10 and 50. We generated instances
with a number of possible capacities varying between 2 and 20. For each number
of capacities, 20 instances were created making a data set of 19 × 20 = 380
instances of increasing difficulty (as the number of capacities decreases). We
ensure that all problems are feasible, i.e., that the largest slab capacity was at
least as large as the largest order size. When the number of capacities decreases,
the probability of reaching a loss of zero decreases. This creates instances with
an additional interesting challenge, as the optimality proof may now become
non-trivial.

These new instances and our best results (see Section 7) are available at
the url: http://becool.info.ucl.ac.be/steelmillslab. We also plan to
maintain any future improvement made on these instances.

3 The Model

To solve the steel mill slab problem, this paper considers three constraint-based
techniques (CP, LNS, CBLS), which are all based on the same high-level model,
which captures the combinatorial substructures of this application. This section
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presents the common model, while the three following sections show how this
model will be used differently by the various approaches. The model used in
this work is based on Gargani and Refalo [3].

Let n be the number of orders. The color of order o ∈ [1..n] is denoted by
color(o) and its size by size(o). Let m be the number of available slabs (if there
is no constraint on the number of available slabs we can set m = n without
restriction). Let C =

⋃
o∈[1..n]{color(o)} be the set of colors. Let Oc be the set

of orders with color c (c ∈ C). For an order o ∈ [1..n], Xo is a variable denoting
the slab assigned to order o. The domain of Xo is the interval [1..m] of slab
indices.

The following expression indicates whether color c is used in slab i:
∨

o∈Oc
(Xo =

i). The constraint that at most two different colors are present in a slab is:

∀i ∈ [1..m],
∑
c∈C

( ∨
o∈Oc

Xo = i

)
≤ 2, (1)

in which a boolean expression has value 1 when true and 0 otherwise. For
each slab j ∈ [1..m], a load variable Lj indicates the total size of the orders
assigned to this slab. These variables are linked to order variables with the set
of constraints:

∀j ∈ [1..m], Lj =
∑

o∈[1..n]:(Xo=j)

size(o). (2)

With each slab j ∈ [1..m] comes a loss variable Fj (free space available in
slab j). Since the objective is to minimize the available free space3, Fj is the
minimum possible free space available in slab j. This minimum free space is
obtained from Lj by choosing the smallest slab capacity larger or equal to Lj .
The available slab capacities4 are capa = {0, c1, . . . , cp} with 0 < c1 < . . . < cp.
The possible free spaces are precomputed in an array F for all possible load
values l: ∀l ∈ [0..cp],F[l] = min{c− l | c ∈ capa ∧ c ≥ l}. This is well defined
as we assume cp ≥ maxo∈[1..n] size(o). The free space of slab j is written with
an element constraint as Fj = F[Lj ]. The objective to minimize is

∑
j∈[1..m] Fj

that is the total loss. Although there is no explicit variable telling the capacity
chosen for a slab j, this can be easily deduced as Lj+Fj . The model also replaces
the set of constraints given in Equation 2 by the global packing constraint Pack
which enables more propagation in CP [10] and more incrementality in CBLS.

4 Constraint Programming

The CP solution uses the above model with the heuristic from [5]. The search
procedure selects the order with the smallest domain to assign next. Ties are
broken by preferring the largest order.

3This is equivalent to minimizing the total steel produced as the consumed part is constant
and equal to

P
o∈[1..n] size(o).

4We introduce the capacity of 0 to allow empty slabs.
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Figure 2: Experimental Results of CP on the CSPLib Instance.

4.1 Dynamic Symmetry Breaking (DSB)

The Steel Mill Slab problem exhibits value symmetries since every non empty
slab is interchangeable with an empty slab in the final solution. These symme-
tries can be avoided during the search by considering only one empty slab for
each order variable. In other words, when an order variable Xi is chosen for
assignment, only non-empty slabs and one empty slab should be considered as
possible values for Xi. This search procedure is due to [5] and allows to solve
the CSPLib instance in less than 10 seconds.

4.2 Value Heuristic (VAL)

None of the models presented in [3, 5] make use of a specific value heuristic.
They try to place the orders from the smallest slab index to the largest slab
index. We propose to try the slabs increasingly according to the loss increase
induced into that slab for the partial solution if the order is placed into it. The
idea is to keep the loss of the partial solution as small as possible (as we would
do for a greedy search). This value heuristic is evaluated against the default
labeling heuristic used in [3, 5].

4.3 Experimental Results on the CSPLib Instance

In this section, we analyze the behavior of the CP Model using Comet [2] on
the 100 instances of CSPLib. Figure 2 compares the execution time of the model
from [3] using the dynamic symmetry breaking (DSB) heuristic of [5], with and
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without our value heuristic (VAL). As can be observed, the value heuristic has
a real positive effect. For the largest instance: 2251 backtracks and 5 seconds
are necessary without the value heuristic, against only 1434 backtracks and less
than 3 seconds using it.

5 Large Neighborhood Search

Large Neighborhood Search (LNS) [9] is the idea of using constraint program-
ming to improve an existing solution. More precisely, given a solution, LNS
freezes a part of the solution and searches for new assignments to the remaining
variables (the fragment). The chosen neighbor is found by solving this reduced
problem with CP (with the strategy described in Section 4 using the value
heuristic DSB-VAL). A limit is generally given to improve the current solution
by solving the reduced problem. If no better solution can be found upon this
limit, the variables of the fragment are restored to their previous values and the
process is repeated again.

5.1 Experimental Results on the CSPLib Instance

As suggested in [3], we use fragments constituted of a random subset of the
X1, . . . , Xn variables. We experimented with two cardinality policies to choose
the fragment size:

1. a cardinality chosen randomly between 50 and 95% of n (as in [3]), and

2. a cardinality chosen randomly between 5 and 10 orders.

The limit is set to 60 failures as in [3]. The search used is identical to Section
4 with the dynamic symmetry breaking and the value heuristic.

Figure 3 reports the average time for 100 runs with each of the two cardi-
nality policies. Dashed lines represent the average ± the standard deviation.
It appears that choosing smaller fragment sizes (between 5 and 10 orders) de-
creases the time to find the optimal solution. In comparison with the pure CP
approach, we cannot really say that LNS is faster on these instances. Subse-
quent experiments (in Section 7) will show that LNS outperforms pure CP on
more difficult problems.

6 Constraint-Based Local Search

Constraint Based Local Search (CBLS) [11] is the idea of performing local search
on high-level models. Constraints and objectives in CBLS incrementally main-
tain properties such as their violations and their values, and they support queries
to determine how these properties change under local moves (differentiation).

We consider two approaches to solve the Steel Mill Slab problem with CBLS.
Both CBLS methods operate on the model described in Section 3 but differ in
the search procedure. The first approach, CBLSh, maintains a neighborhood of
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Figure 3: Experimental Results of LNS on the CSPLib Instance with Two
Different Fragment Size Policies.

feasible assignments and only considers local moves which maintain feasibility.
In other words, this model considers that all constraints are hard. The second
approach, CBLSs, considers both feasible and infeasible assignments and uses
an objective function that combines the loss and the constraint violations. In
this model, all constraints are soft and the objective drives the search towards
feasible assignments.

For the two approaches, there are many decisions to make, and parameters
to tune. Here are the main choices to perform:

• Neighborhood: Do we only use the move of a single order from one slab
to another one, or do we allow swaps between two orders as well?

• Greediness of the moves: To reduce complexity, we choose the move to
perform in two steps. First, an order is chosen and given that order, a
slab to move it to or another order to swap it with, is selected. We have to
decide how the first order is chosen (one inducing a largest cost or at ran-
dom), and how the slab or the second order is chosen (the one producing
the largest improvement, or anyone producing some improvement).

• Use of metaheuristics: We considered the use of periodic restarts and of
tabu search. For each metaheuristic, different parameters must be chosen.

To settle on a choice, we ran experiments on a small subset of the newly
generated instances, exploring different combinations. The following two sub-
sections detail the resulting search procedures.
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6.1 CBLSh (Hard Constraints)

In the CBLSh model, the constraints of the problem (maximum capacity and
number of colors for each slab) are always satisfied during the search. An initial
solution is constructed to be feasible (one order per slab) and the neighborhood
is defined by all assignments which maintain feasibility. More precisely, the
neighborhood of a given assignment is composed of all the assignments where all
orders but one remain unchanged and the remaining order is placed in another
slab without violating the capacity and color constraints of this slab. For each
order, the set of slabs where it can move is maintained incrementally using
invariants, which allows this tightly defined neighborhood to be calculated with
minimal overhead.

We also tried to allow the swap of two orders. This neighborhood is larger
and should lead to good solutions faster. However, the verification of the fea-
sibility of those moves is time-consuming, and the potential benefits are lost
by the lower number of moves that can be performed in a given amount of
time. As this is an important design decision, we ran the two algorithms (with
and without swaps) on the whole new set of instances, with a time limit of 5
minutes. Without swaps, the search reaches the best known solution for 521
instances, and for only 500 with the swaps. The total deviation from the best
known solutions is also better without swaps: 626 units without swaps and 856
with swaps. It is however interesting to note that the swaps improve the results
for the difficult problems with only two slab sizes.

The search is semi-greedy. On even iterations, a slab with a positive loss
is randomly chosen. On odd iterations, a slab with the largest loss is chosen.
An order in the selected slab is randomly chosen. The chosen order is then
moved to the best among the possible slabs (obtaining the largest decrease
of the total loss). We experimentally observed that, with greedy moves only,
the search quickly converges to a local optimum and becomes stuck. On the
contrary, with only semi-random moves, the search does not converge towards
good quality solutions. Alternating the two approaches proved to be a good
compromise between intensification and diversification. In addition, this semi-
greedy search is diversified through two mechanisms: a totally random move
every 20 iterations and a full restart every 5000 iterations. These parameters
have been fixed experimentally.

6.2 CBLSs (Soft Constraints)

The CBLSs model assigns weights to the constraints and to the objective in order
to drive the search towards feasible assignments. The feasibility constraints are
given an arbitrarily large weight while the objective is given a weight of one.
An initial assignment is constructed by randomly placing two orders on each
slab (this ensures the color constraint is initially satisfied). The neighborhood
consists of assigning an order to a new slab and of swapping two orders. Moves
assigning a singleton order to an empty slab and swapping two singleton orders
are not considered. For this search approach, swaps have been shown to be
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size(o1)o1 slab capacities

s1s2

Figure 4: Illustration of the Differentiation of the Objective

useful. As the constraints are soft, the feasibility of the move should not be
checked. There was thus no real overhead in enlarging the neighborhood.

The search is semi-greedy and uses a tabu component. On even iterations, a
greedy move is performed. The order with the most impact is selected, all moves
(assignments or swaps) involving the chosen order are considered, and the move
minimizing the violations is selected. On odd iterations, a semi-greedy move
is made. An order is selected at random and is assigned to a new slab which
minimizes the objective value. As for CBLSh, this odd/even mechanism follows
from a need to balance intensification and diversification. In addition, the search
is diversified after 10,000 iterations without improvement. The diversification
procedure is as follows: select 1/7 of the slabs at random and, for each such
slab o, select a new slab d at random and place the orders from slab o onto
slab d. This causes a number of violations of the maximum capacity and color
constraints but they are quickly resolved by the greedy steps. It was observed
that a greedy search procedure rarely uses the largest slab capacities and this
diversification was designed to help the search discover order configurations
using the largest slab sizes. Again, the details of the algorithm have been
calibrated by experiments on a subset of the generated instances.

6.3 Differentiation in CBLS

Both CBLS models rely on differentiation to guide their search. Here we pro-
vide a simple example of differentiation to illustrate what is happening. Con-
sider an order o1 of size size(o1) in slab s1 which has a current load of l1.
Consider the effect of moving o1 in slab s2 (which is computed by method
getAssignDelta(o1,s2) in Comet), that is how the total loss would change if
the order o1 were moved to slab s2. This is illustrated on Figure 4. Assume
that the current load of the slab s2 is l2 and recall the precomputed table
of the losses as function of the loads (table F in Section 3). The current loss
of these two slabs is F[l1]+F[l2]. Now, if the order o1 is moved to slab s2,
the loss of these two slabs becomes F[l1-size(o1)]+F[l2+size(o1)]. The
loss of any other slab does not change. Hence getAssignDelta(o1,s2) returns
in constant time the value F[l1-size(o1)]+F[l2+size(o1)]-(F[l1]+F[l2]).
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Figure 5: Result of the Two CBLS Comet Models on the CSPLib Instance.

In the CBLSh model, the differentiation of the objective is used to guide the
search to optimality via feasible neighbors. In the CBLSs model, the differenti-
ations of the constraints and the objective are carefully composed to give every
neighbor a unique rank and to drive the assignment towards both feasibility and
optimality.

6.4 Experimental Results on the CSPLib Instance

To solve the largest instance with 111 orders, the CBLSh model needs on average
50 iterations and less than 50ms. This outperforms significantly any previous
approaches and does not require any special meta-heuristic. Figure 5 depicts the
same experiment as for the CP and LNS models on the 100 instances derived
from the CSPLib instance. Since the CBLS searches are also stochastic, the
results are averages for 100 runs. The dashed lines reports the average ± the
standard deviation. The results of CBLSh are very impressive since the time
never exceeds 0.05 seconds and are reasonably stable. The CBLSs model is
slower and obtain running time more comparable (up to 2.5 seconds) to LNS.
We will see later on that CBLSs obtains smaller total loss than CBLSh on really
difficult instances.

7 Comparison of CP, LNS, and CBLS

We now compare the three approaches on the set of the 380 newly generated
instances. On these new instances, the total optimal loss found is not always 0.
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Table 1: Value of the minimum loss found for each instance

# capas 2 3 4 5 6 7 8 9 10 11 12 13-20
0 28 6 34 0 0 0 0 0 0 0 0 0
1 64 20 24 22 22 0 0 0 0 0 0 0
2 107 13 16 6 2 3 0 0 0 0 0 0
3 41 28 12 2 0 0 0 0 0 0 0 0
4 19 9 8 13 0 4 0 0 0 0 0 0
5 50 35 6 10 2 3 0 0 0 0 0 0
6 44 19 9 0 2 0 0 0 0 0 0 0
7 44 59 3 0 0 3 0 0 0 0 0 0
8 531 77 1 4 0 0 0 0 0 0 5 0
9 76 158 15 5 1 0 0 0 0 0 0 0
10 85 49 17 8 1 7 0 0 1 0 0 0
11 78 19 10 6 7 0 0 0 0 0 0 0
12 28 7 2 20 0 2 0 4 0 0 0 0
13 104 23 22 10 17 4 6 0 0 0 0 0
14 61 18 1 2 5 0 0 0 0 0 0 0
15 296 45 15 14 5 0 0 0 0 0 0 0
16 70 40 23 5 0 0 0 0 0 0 0 0
17 162 9 0 13 0 1 0 0 1 0 0 0
18 45 35 5 21 0 0 0 0 0 0 0 0
19 45 21 13 0 1 1 0 0 0 0 0 0

A time-out of 300 seconds is fixed for each run on each instance and we measure
the smallest loss found during this period. For one experiment, a deterministic
technique is applied once per instance (CP-DSB-VAL), while the losses are
averaged over 5 runs for the stochastic methods (LNS, CBLSh, CBLSs). For a
given instance i, the loss5 obtained by each technique is denoted respectively
CP-DSB-VAL(i), LNS(i), CBLSf (i) and CBLSs(i). As explained in Section 2.2,
there are 19 × 20 = 380 instances: 20 instances for each number of capacities
ranging from 2 to 20. The difficulty of the instances increases as the number of
capacities decreases.

The best known solution for each instance is reported in Table 1. They
were obtained by taking the minimum loss over the CP-DSB-VAL, and the 5
LNS, CBLSh, CBLSs runs with a timeout of 300 seconds for each run. One
can observe that all instances with more than 13 slab capacities have a solution
with a zero loss. Of course, the loss increases when the number of slab capacities
decreases and the largest best loss we found was 531 for an instance with 2 slab
capacities.

We first computed the average deviation from the best known solution for
each number of capacities and each approach. A plot of these average deviations

5averaged over 5 runs for LNS, CBLSh and CBLSs
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Figure 6: Comparison of the Different Approaches with Respect to their Average
Deviation from the Best Known Objective Values. The Timeout is 300 Seconds.

CP-DSB-VAL LNS CBLSs CBLSh

103 301 302 328

Table 2: Number of Times that Each Technique Wins on the 380 Instances.

is reported on Figure 6. For example, assume that the best known solution for
instance i is a loss of 20. Assume that CP-DSB-VAL(i) = 50, LNS(i) = 22.4,
CBLSf (i) = 21.2, and CBLSs(i) = 22.4. The deviations of the minimum loss
for each technique are respectively 30, 2.4, 1.2, and 2.4. Figure 6 depicts the
average of these deviations for each technique over the 20 instances associated
with each number of capacities (from 2 to 20). It is clear that stochastic methods
outperform significantly exact method (CP-DSB-VAL). Focusing on the three
stochastic methods, CBLSs seems slightly better than LNS and CBLSh for hard
instances in terms of quality of the solution (Figure 6).

The above presentation does not exclude the possibility that the results in
Figure 6 may be heavily influenced by a very small number of instances. For this
reason, we present complementary results in Figure 7 by reporting the number
of instances on which a technique exhibits the best solution. More precisely,
assume that for an instance i, the losses obtained are CP-DSB-VAL(i) = 10,
LNS(i) = 3.6, CBLSf (i) = 4.2, CBLSs(i) = 3.6, then the counters of LNS and
CBLSs are incremented by 1 while the others are not. Table 2 contains the sum
over all the instances. Based on this summary of the results, we can say that
CBLSh outperforms all the other techniques, since it wins most of the time.
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Nevertheless, CBLSs is the best when there are only two capacities. LNS and
CBLSs perform very similarly for the remaining instances.

Since stochastic techniques outperform the classical CP approach on this
problem, we focus on the stochastic approaches in the rest of this section. Our
goal is to analyze the behavior of the three stochastic techniques for increasing
timeout values. The objective of this experiment is to discover if one technique
can find good solutions faster than another one. We use exactly the same
settings as for the first experiment. The timeout values are set successively to
75, 150, and 300 seconds. The results are reported in Figure 8 for average results
and in Figure 9 for the number of best solutions found.

The results in Figure 8 indicate that each technique finds better solutions
when given additional time, but are inconclusive in showing that one technique
is significantly faster than another one to find good solutions. Indeed, the three
curves keep their relative positions as available time increases. From the results
in Figure 9, we can notice however that with a timeout of 75 seconds, on the
difficult instances with two capacities, CBLSs does not outperform LNS as it is
the case with a timeout of 300 seconds.

Conclusion Our experiments showed that CBLSh is the best approach for
problems with 3 to 20 capacities even if CBLSs obtains more often the best
solution for difficult instances with only 2 capacities. LNS is very competitive
with CBLSh in terms of quality of the optimum reached and very close to CBLSs

in terms of the number of best values reached. It is very surprising that LNS
behaves so well compared to dedicated fine-tuned local search algorithms. Note
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Figure 8: Comparison of the Stochastic Techniques with Respect to Different
Timeouts.

also that LNS clearly outperforms the pure CP approach which obtains very
poor results when the number of capacities is smaller that 18.

8 Minimizing the Number of Slabs

In this section, we propose a different problem that might be a post-processing
to the minimization of the loss: Find a solution to the steel mill slab problem
minimizing the number of slabs such that the total loss does not exceed a given
value (typically, the minimum loss). This requirement on a solution is quite
natural since it minimizes the manipulation of heavy slabs and it also minimizes
the number of cuts on the slabs necessary to prepare the orders. The constraint-
based model is essentially the same as the one presented in Section 3: It simply
adds a constraint on the total loss and replaces the previous objective by the
minimization of the number of slabs m.

For this new problem, the LNS and CBLSh approaches are not appropri-
ate because the problem is already strongly constrained by the maximum loss.
Hence even finding a feasible initial solution to start LNS or CBLSh is not triv-
ial at all. On the contrary, CP-DSB behaves very well on strongly constrained
satisfaction problems. Since all the constraints are relaxed in CBLSs, it is also
a good candidate to solve this problem. For these reasons, we only tackle this
problem with CP-DSB and CBLSs.
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Figure 9: Number of Times that each Stochastic Technique Wins on the 380
Instances with 3 Different Timeouts.

8.1 Lower Bounds on the Number of Slabs

To solve the problem exactly, it is classical to solve successive satisfaction prob-
lems starting from low values of m and increasing them until a solution is found.
Within such an approach, it is important to find a good lower bound to start
with. We first present different lower bounds.

As explained in Section 2.1, there are 88 different colors. Since at most two
colors can be present in a slab, at least d88/2e = 44 slabs must be used (color
lower bound). This lower bound can be improved by considering also the size
of the orders. In the CSPLib instance, 4 colors have more than one order larger
than the half of the maximum slab capacity (44/2=22). Because these orders
are larger than 22, they must be placed in different slabs. For these 4 colors,
there are 9 orders larger than 22. Hence (9-4) of these orders can be considered
as having colors different from the 88 existing colors. We can consider there are
93 colors to compute a lower bound. The minimum number of slabs becomes
d93/2e = 47 (color+bin-packing lower bound). In general, if a color has k > 1
orders larger than half the maximum capacity, increase the number of colors
by k − 1. Do that for each color then apply the color lower bound. This lower
bound is computed in O(n).

Without the color and the maximum loss constraints, this problem is similar
to a bin-packing problem. Hence classical bin-packing lower bounds can be used
as lower bound on the number of slabs. We use the Martello and Toth’s lower
bound L2 [7] which is used in the propagator of the Pack constraint [10]. For the
CSPLib instance with the bin capacity of 44, L2=41 slabs (bin-packing lower
bound).

A comparison of the three lower bounds is given on Figure 10. The bin-
packing lower bound seems to be of bad quality for this problem. The color
lower bound behaves reasonably well until 60 orders. The color+bin-packing
lower bound dominates the previous ones and the gap between this bound and
the exact minimum is at most one on these instances. This probably means
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Figure 10: Comparison of the Lower Bounds on the Minimum Number of Slabs
on the CSPLib Instances.

that the difficulty of this problem is not only due to the bin-packing component
but to the conjunction of the bin-packing and the color constraints.

8.2 Improving the CP Model with a Global Symmetric
Cardinality Constraint

This section improves the model by introducing a global constraint to express
the color constraints allowing a stronger filtering of the domains. The following
example illustrates that the filtering of the color constraints as expressed in
Equation 1 is not optimal.

Example 8.1 We consider a partial assignment in the CP model with 3 slabs
denoted 1,2,3 and 5 orders with colors color(o1) = 1, color(o2) = 1, color(o3) =
2, color(o4) = 3, color(o5) = 4. The first two orders are assigned respectively to
slabs 1 and 2: Dom(Xo1) = {1}, Dom(Xo2) = {2}. Orders 3 and 4 can only
come in slabs 1 and 2: Dom(Xo3) = {1, 2}, Dom(Xo4) = {1, 2} while order
5 can be placed in every slab Dom(Xo5) = {1, 2, 3}. The color constraint as
expressed in Equation 1 will not be able to filter any values from the domains of
the Xi’s. However, we can immediately deduce that the slab 1 and 2 will contain
at least 2 colors different from the color 4. Hence the order o5 with color 4 cannot
go into either slab 1 or 2 and its domain can be filtered to Dom(X5) = {6 1, 6 2, 3}.

In the following, we explain how to obtain a better filtering for the color con-
straints using a global symmetric cardinality constraint sym-gcc based on flow
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theory [6]. Since the sym-gcc implies set variables, we recall the classical do-
main representation of set variables [4] assumed by the filtering algorithm of
sym-gcc.

Definition 8.1 (Set variable domain representation) The set variable rep-
resentation for a set variable S is composed of 1) a lower bound S, 2) an upper
bound S, and 3) a cardinality variable card(S) (the lower bound and upper bound
are also called the required and possible sets). These 3 elements represent the
domain {s | S ⊆ s ⊆ S ∧ |s| = card(S)}.

Definition 8.2 A global symmetric cardinality constraint [6] has the following
signature: sym-gcc([S1, . . . , Sn], [C1, . . . , Cn], [lv1 , . . . , lvm ], [uv1 , . . . , uvm ]) where
Si are set variables, Ci are integer variables, and for each integer value vj, there
are two positive integer values lvj

, uvj
with lvj

≤ uvj
. The

sym-gcc([S1, . . . , Sn], [C1, . . . , Cn], [lv1 , . . . , lvm
], [uv1 , . . . , uvm

])

holds iff

1. ∀vj , lvj
≤ |{i | vj ∈ Si}| ≤ uvj

and

2. ∀i ∈ [1..n], card(Si) = Ci.

It means that the cardinality of each set variables Si must be equal to Ci and
that each value vj must appear in at least lvj

and at most uvj
set variables.

The constraint that at most two colors are present in each slab is expressed
with a sym-gcc by introducing a set variable Sc for each color c from C (colors
are identified by numbers on the interval [1..|C|]). These set variables represent
the slabs where the colors are present: for a color c ∈ C, Sc = {Xo | o ∈ Oc}.
Then for all the slabs identified by numbers in the interval [1..m], the color
constraint is satisfied iff

sym-gcc([S1, . . . , S|C|], [C1, . . . , C|C|], [l1 = 0, . . . , lm = 0], [u1 = 2, . . . , um = 2]).

with Dom(Cc) = [1..|Cc|] (we assume that there is at least one order of each
color).

Note that adding the sym-gcc constraint to enforce the color constraints
when minimizing the total loss as in Sections 3–4 does not produce a stronger
pruning than the constraints (1). Indeed, since the number of available slabs is
as large as the number of orders, a situation like the one described in Example
8.1 never happens.

8.3 Filtering and Implementing sym-gcc

A bound-consistency algorithm for sym-gcc was introduced in [6]. To our knowl-
edge, this constraint has never been implemented in any solver and has never
been evaluated experimentally. We recall briefly the bound-consistent filtering
introduced in [6] and show that the filtering of sym-gcc achieves the desired
filtering on the domains of Example 8.1.
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Definition 8.3 A flow network G = (V,A) is a directed graph in which each
arc (u, v) ∈ A has two non negative integers d(u, v) and c(u, v) (demand and
capacity) with 0 ≤ d(u, v) ≤ c(u, v). If (u, v) /∈ A, we assume that c(u, v) =
d(u, v) = 0. Two vertices have a special status in a network flow: the source s
and the sink t.

Given a feasible s−t flow (demand, capacity and flow conservation satisfied),
we say that an arc belongs to the flow if the number of unit(s) of flow through
this arc is larger than 0.

Definition 8.4 The flow network of a sym-gcc is obtained as follows:

• For each set variable Si there is a vertex. A directed arc is added from
the source vertex to each of the n set variable vertices. The demand and
capacity of each of these arcs (s, Si) are the values Cmin

i , Cmax
i that is the

minimum and maximum cardinalities of the set Si.

• For each value v1, . . . , vm there is a vertex. There is an arc with capacity
1 from a set vertex Si to a value vertex vj iff vj ∈ Si. The demand of this
arc is 1 if vj ∈ Si and 0 otherwise.

• Each value vertex vj is linked to the sink vertex with demand lvj
and

capacity uvj
.

There is a one to one correspondence between the solutions of the flow network
of a sym-gcc and the solutions to the constraint. Filtering rules on the domain
of the set variables Si are based on the detection of arcs from a set variable
vertex to a value vertex that

• never belongs to any feasible s-t flow (zero flow arcs), and that

• belongs to all feasible s-t flows (non zero flow arcs).

Bound consistency is achieved with the following filtering rules:

• The value of a zero flow arc is removed from the upper bound Si of the
corresponding set variable Si.

• The value of a non zero flow arc is added to the lower bound Si of the
corresponding set variable Si.

Given any feasible s-t flow in the flow network, (non) zero flow arcs are detected
efficiently as follows: (non) zero flow arcs from a set variable-vertex to a value
vertex are the arcs with zero (one) unit of flow and with endpoints belonging
to different strongly connected components of the residual graph6.

We illustrate the filtering of the constraint and its use in the steel mill slab
problem in the following example.

6Zero flow arcs are similar to the arcs detected for the classical gcc [8]
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Figure 11: Network Flow of the sym-gcc of Example 8.2 (left) and the Strongly
Connected Components of the Residual Graph (right).

Example 8.2 We consider the same domains as for Example 8.1. There are
4 colors hence 4 set variables S1, S2, S3, S4. Color 1 is present only in the first
and second slab hence S1 = S1 = {1, 2}. Color 2 and 3 can only come in the
two first slabs S2 = S3 = φ and S2 = S3 = {1, 2}. Color 4 can be present in
every slab S4 = φ and S4 = {1, 2, 3}. The sym-gcc imposing that at most two
colors are present in each slab is:

sym-gcc([S1, S2, S3, S4], [2, 1, 1, 1], [l1 = 0, . . . , l3 = 0], [u1 = 2, . . . , u3 = 2]).

The corresponding network flow and a valid flow is depicted on Figure 11 (left).
Each arc is annotated with the unit(s) of flow through this arc and the (de-
mand,capacity). One can check that the flow is valid since the flow conservation
as well as the demand and capacity requirements are satisfied. The residual net-
work and the strongly connected components (scc’s) are represented on the right
of Figure 11. Vertices belonging to the same strongly connected components are
labeled with the same capital letter. Zero flow arcs are S4 → 1 and S4 → 2 and
there is only one non zero arc with end-points in different SCCs (other than arcs
with demand > 0) that is S4 → 3. Consequently, 3 is added to the lower bound
of S4, and 1 and 2 are removed from its upper bound which means that S4 is
bound to {3}. Now, since S4 = {X5}, it means that order o5 must be assigned
to slab 3: Dom(X5) = {6 1, 6 2, 3}. This filtering was not possible in Example 8.1
without the sym-gcc.

8.4 Experimental Results

In our first experiment, we compare the CP model with and without the sym-gcc
to minimize the number of slabs by imposing a loss of 0 on the 100 instances

20



20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0

number of orders

tim
e(

s)

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●

CP−DSB−VAL without sym−gcc
CP−DSB−VAL with sym−gcc

Figure 12: Experimental Results of CP to Minimize the Number of Slabs on
the CSPLib Instance With and Without the sym-gcc Constraint.

derived from the single instance in CSPLib (remember that for all these in-
stances there exists a solution with a loss of 0). To find the minimum number
of slabs, we solve a series of satisfaction problems with increasing number of
slabs. We start with the lower bound (color+bin-packing) on the number of
slabs until a solution is found which is optimal by construction.7 The time-out
is 500 seconds. The results of Figure 12 show that the sym-gcc allows us to
solve optimally all the instances but one (with 33 slabs), while 69 instances
could not be solved without this global constraint.

The most difficult instances are exactly those for which the lower bound
color+bin-packing (light gray line on Figure 10) is below the exact minimum
number of slabs (black line on Figure 10). The time required by these instances
are marked with a circle on Figure 12. For those instances, most of the time is
spent to prove that there is no solution with the number of slabs found by the
lower bound color+bin-packing. Finding the optimal solution is very easy (less
than 1.5 seconds and 77 backtracks for all the instances).

We can conclude from this first experiment that the difficulty of this problem
is not to find an optimal solution but to prove its optimality. It is important
however to remember that, without the sym-gcc, even finding an optimal solu-
tion is difficult for most of the instances.

In our second experiment, we compare the CBLSs approach with the CP+
sym-gcc. The objective is to discover which technique is more appropriate to

7This approach is classical when optimizing something on the structure of the problem as
the number of bins in bin-packing [10].
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Figure 13: Time to Find the Optimal Solution with CP+sym-gcc and CBLSs

when Minimizing the Number of Slabs on the CSPLib Instance.

find good solutions quickly (without proving optimality). For this reason, we
start from an upper bound on the number of slabs and, each time a solution
is found, the next one is constrained to have fewer slabs. We compare the
two approaches with the time necessary to find the best solution. The time
is averaged on five runs on each instance for CBLSs. The results are given
on Figure 13. It seems that CP-DSB+sym-gcc is faster than CBLSs on these
instances and also more stable.

Finally, we also made some experiments on 267 difficult instances from the
380 generated instances having a known solution with zero loss. On these in-
stances, 99 could not be solved by CP-DSB-VAL, only 13 could not be solved
by CBLSs, and 167 instances could be solved by both approaches. The total
number of slabs used on instances that could be solved by both is 8206 for CP
and 7897 for CBLSs. On these 184 instances, CP-DSB-VAL is never strictly
better, while CBLSs is strictly better on 100 instances.

These results might be contradictory with the results of Figure 13 but are not
so surprising. Indeed, finding a solution with zero loss is already very difficult
for CP-DSB-VAL when there are less than 18 capacities. Not surprisingly,
minimizing the number of slabs by constraining the loss to be zero was not
more successful. On such instances with less than 18 capacities, CBLSs should
be preferred over pure CP.

Since LNS was very good also when there is a few number of capacities (see
Section 7) we investigate another approach to solve this problem using the LNS
model of Section 5 + the sym-gcc constraint starting from an upper-bound on
the number of slabs:
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• If a solution with a zero loss is found with LNS within the timeout period,
the number of slabs is constrained to be the number of slabs used -1 in
this solution. The LNS process is repeated with this new number of slabs
unless it is smaller than the lower bounds given on Section 8.1.

• Else if at least one solution with zero loss was found during the process,
the last solution found with a zero loss is reported as the best one.

On the 267 difficult instances from the 380 generated instances having a
known solution with zero loss, 29 could not be solved by LNS, only 13 could
not be solved by CBLSs, and 233 instances could be solved by both approaches.
The total number of slabs used on instances that could be solved by both is
11192 for LNS and 11009 for CBLSs. On these 184 instances, LNS is strictly
better on 2 instances while CBLSs is strictly better on 110 instances. We can
conclude that LNS obtains better results than pure CP but is still clearly behind
CBLSs on the slabs minimization problem.

9 Conclusion

This paper evaluated CP, LNS, and CBLS approaches on the Steel Mill Slab De-
sign problem, a well-known benchmark in the CP community. The approaches
are all based on the same high-level model originally proposed by Garnani and
Refalo. Since the traditional instance of the CSP library can be solved in 50ms
by CBLS, the paper considered harder instances with fewer available capacities.
The experimental results on these instances indicated that CBLS and LNS dom-
inates the pure CP. Moreover, a CBLS approach maintaining feasibility typically
outperforms a CBLS approach with soft constraints, except on instances with
very few available slab capacities. The LNS approach obtains very competitive
results in terms of quality of the objective but reaches the best solution less
often than the CBLS model maintaining feasibility.

The paper also considered a generalization of the problem in which the
number of slabs must be minimized for a fixed loss. For this new problem, the
paper proposed a CP approach using a global symmetric cardinality constraints
and a CBLS approach exploring infeasible solutions. The experimental results
demonstrated the benefits of the global constraint. They also indicated that CP
is effective on this problem when many capacities are available, and that CBLS
dominates CP and LNS when the number of capacities decreases.
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