N O NS SN\

AN NN SNNN

\ / N /\l/l l/l\l l\l/'

r e Y

The Vehicle Routing Problem !

- - . / /
with Time Windows

Dr Philip Kilby | Team Leader, Optimisation Applications and Platforms
June 2017

www.data61l.csiro.au

http://www.data61.csiro.au

: e
Outline |g\m/|$

e Problem Description
e Solving the VRP
 Construction
 Local Search
e Meta-heuristics
« Variable Neighbourhood Search
e Including Large Neighbourhood Search
e CP101
e A CP model for the VRP

Vehicle routing problem | @y

Given a set of customers, and a fleet of vehicles to make deliveries,
find a set of routes that services all customers at minimum cost

Travelling Salesman Problem

e Find the tour of minimum cost that visits
all cities

Why StUdy the VRP? DATA | @

e It’s hard: it exhibits all the difficulties of comb. opt.

e It’s useful:
o The logistics task is 9% of economic activity in Australia

o Logistics accounts for 10% of the selling price of goods

Why study the VRP in Robotics? ﬁm D

Appears as a sub-problem

Task allocation to agents
e Multiple agents with multiple tasks
e Best allocation minimizes cost

Scheduling with setup costs
e Can be modelled as a VRPTW

6 | Presentationtitle | Presentername

Vehicle Routing Problem | 6

For each customer, we know
e Quantity required
* The cost to travel to every other customer

For the vehicle fleet, we know
e The number of vehicles

e The capacity

We must determine which customers each vehicle serves,
and In what order, to minimise cost

Vehicle Routing Problem | @y

Objective function

e In academic studies, usually a combination:
o First, minimise number of routes
o Then minimise total distance or total time

e In real world
o0 A combination of time and distance
o Must include vehicle- and staff-dependent costs
o Usually vehicle numbers are fixed
o Includes “preferences” — like pretty routes

Time window constraints @m D
N~

Vehicle routing with Constraints
e Time Window constraints
— A window during which service can start
— E.g. only accept delivery 7:30am to 11:00am

— Additional input data required
e Duration of each customer visit

* Time between each pair of customers

* (Travel time can be vehicle-dependent or time-dependent)
— Makes the route harder to visualise

Time Window constraints OATA

Pickup and Delivery problems) @
~N 7~

* Most routing considers delivery to/from a depot (depots)
 Pickup and Delivery problems consider FedEx style problem:

e pickup at location A, deliver to location B

e Load profile:

- =L

Other variants o | @y
\N 7
Profitable tour problem _ _
e Not all visits need to be

completed
« Known profit for each visit
e Choose a subset that gives
maximum profit =
(revenue from visits) —
(routing cost)

Orienteering Problem o o

e Maximum revenue In 0 0
limited time . 0

VRP meets the real world 0 | €

Many groups now looking at real-world constraints

Rich Vehicle Routing Problem

o Attempt to model constraints common to many real-life enterprises
— Multiple Time windows
— Multiple Commaodities
— Multiple Depots
— Heterogeneous vehicles
— Compatibility constraints

» (Goods for customer A {must | can’t} travel with goods from
customer B

» (Goods for customer A {must | can’t} travel on vehicle C

VRP as an instance o | @y

VRP is a Combinatorial Optimization problem
e Others include
0 Scheduling
0 Assignment
o Bin Packing

14 | Presentationtitle | Presentername

Solving VRPs

Solution Methods |é\m @
N 7

Exact:
* Integer Programming or Mixed Integer Programming
 Constraint Programming

Heuristic:
e Construct
e Improve
* Local Search
* Meta-heuristics

Exact Methods ,ém D
~N 7

VRP:
e MIP: Can only solve problems with 100-150 customers
e CP: Similar size

ILP lé\m | &
N
minimise) ¢; > Xy X;j = 1 if vehicle k travels
ik directly fromito|

subject to
DD Xy = 1 V] Exactly one vehicle in
Ik
D3 Xy = 1 Vi Exactly one vehicle out
ik
X — X.. = 0 Vk,h It’s the same vehicle
Zjlzk: hk ZJ:Zk: hjk
Zq.zx..k < Q, Vk Capacity constraint
[ij —
T

injk — |s| -1 Sc P(N)’O 2z S Subtour elimination
X €{0L

||_P |€m | &

minimise) ¢; > Xy Advantages
i,] k Can find optimal solution
Disadvantages
e Only works for small problems
szijk -1 vj ° One extra constraint = back to the
ik

drawing board
e Sishuge
D ¥ Xy = 1 Vi
i ok
D X =2, D X = 0 Vk,h
ik i ok
Zqizxijk < Q¢ Vk
I]

J
D X =[S|-1 Scp(N)0eS
X €40,

subject to

ILP — Column Generation Iém @
N~

Columns
represent routes W
Column/route cost ¢, > 89 | 76 | 99 | 45 | 32

Rows represent
customers > 2101]1]0]1

Array entry a, = 1 iff
customer i is —~Ja|1]of1|1]o0

covered by route k ™

Column Generation | @

 Decision var x,: Use column k?

Column only appears if feasible
ordering is possible

Cost of best ordering Is ¢, i
Best order stored separately min Z Cy Xy

» Master problem at right subject to
A’i Zk: Ay X,
x, €{0,1}

Heuristics for the VRP

Heuristics:
Often variants of

e Construct
e Improve

23 | Presentationtitle | Presentername

Heuristics for the VRP @m @
N~

Construction by Insertion

e Start with an empty solution

e Repeat
e Choose which customer to insert
e Choose where to insert it

E.g. (Greedy)
« Choose the customer that increases the cost by the least
* Insert it in the position that increases the cost by the least

Solving the VRP the easy way | @y

Insert methods

Order Is important:

Reg ret | DATA | &

Reg ret | DATA | &

Regret DT
19

Regret o | @y

Reg ret | DATA | &

Regret w6y

Regret = C(insert in 2"d-best route) — C(insert in best route)
=ft@2n) - T(1,1)

K-Regret =3, « (F(k,1) — F(L,i))

Insert customer with maximum regret

Insertion with Regret 0 | €

Seeds | DATA | &

Initialise each route with one (or more) customer(s)
« Indicates the general area where a vehicle will be
e May indicate time it will be there

« Depends on time window width

Distance-based seeding

 Find the customer (s,) most distant from the depot
Find the customer (s,) most distant from s,

Find the customer (s3;) mist distance from sy, S,

Continue until all vehicles have a seed

Implementation | @)
N7
e Heart of algorithm is deciding which customer to insert next, and
where

e Data structure of “Insert Positions”
o legal positions to insert a customer
o0 Must calculate cost of insert
o0 Must ensure feasibility of insert
e After each modification (customer insert)
o0 Add new insert positions
0 Update cost of affected insert positions
0 Check legality of all insert positions
0 O(1) check important for efficiency

34 | Presentationtitle | Presentername

Local Search

Improvement Methods 3 ©
~N 7

Local Search
« Often defined using an “operator”

Improvement Methods 3 Do
~N 7

Local Search
« Often defined using an “operator”
e e.0. 1-move

Improvement Methods 3 O
~N 7~

Local Search
« Often defined using an “operator”
e e.g.1-move

Improvement Methods | @

Local Search
« Often defined using an “operator”
e e.g.1-move

Improvement Methods 3 Do
~N 7

Local Search
« Often defined using an “operator”
e e.g.1-move

Improvement Methods 3 Do
N~

Local Search
 Often defined using an “operator”
e e.g.1-move

Improvement Methods | @y

Local Search
* Often defined using an “operator”
e e.0.1-move

 Solutions that can be reached
using the operator termed the
neighbourhood

 Local Search explores
the neighbourhood of
the current solution

Local Search | @

Other Neighbourhoods for VRP:
e Swap 1-1

Local Search 0 | @)

Other Neighbourhoods for VRP:
e Swap 1-1

Local Search | @

Other Neighbourhoods for VRP:
e Swap 2-1

Local Search | @y

Other Neighbourhoods for VRP:
e Swap 2-1

Local Search | @

Other Neighbourhoods for VRP:
e Swap tails

Local Search 0 | @y

Other Neighbourhoods for VRP:
e Swap tails

Local Search | @

Other Neighbourhoods for VRP:
e Swap tails

Improvement Methods o |

2-opt (3-opt, 4-opt...)
e Remove 2 arcs
* Replace with 2 others

Improvement Methods | @

Or-opt
 Consider chains of length k
e ktakesvaluel..n/?2
e Remove the chain from its current position
 Consider placing in each other possible position
e In forward orientation
 and reverse orientation

e \ery effective

Local Search 0 | @)

e | ocal minima

|

Objective value

@ Current solution

Local Search | @

Escaping local minima

Meta-heuristics
 Heuristic way of combining heuristics
« Designed to escape local minima

Local Search ar-
~N 7~

Escaping local minima

« Define more (larger) neighbourhoods
— 1-move (move 1 visit to another position)
— 1-1 swap (swap Vvisits in 2 routes)
— 2-2 swap (swap 2 visits between 2 routes)
— Tail exchange (swap final portion of routes)
— 2-opt
— Or-opt (all sizes 2 .. n/2)
— 3-opt

Local Search %™ | @D

Variable Neighbourhood Search

e Consider multiple neighbourhoods
— 1-move (move 1 visit to another position)
— 1-1 swap (swap visits in 2 routes)
— 2-2 swap (swap 2 visits between 2 routes)
— 2-opt
— Or-opt
— Tail exchange (swap final portion of routes
— 3-opt
— Explore one neighbourhood completely
— If no improvement found, advance to next neighbourhood

— When an improvement is found, return to level 1

Local Search 0w | €Dy
Variable Neighbourhood Search

e For new constraints/new problems, add new neighbourhoods

e E.g. Orienteering problem
o New neighbourhoods:
— Unassign 1 customer (i.e. do not visit)
— Unassign clusters of customer (e.g. sequences of customers)
— Insert clusters of unassigned customers

56 | Presentationtitle | Presentername

Local Search lém D
~N 7~

Many Meta-heuristics have been tried
e Simulated Annealing

e Tabu Search

e Genetic Algorithms

e Ants

e Bees

e Particle Swarms

e Large Neighbourhood Search

Large Neighbourhood Search | @y

Originally developed by Paul Shaw (1997)
This version Ropke & Pisinger (2007)*
A k.a “Record-to-record” search

Destroy part of the solution

— Remove visits from the solution

Re-create solution

— Use favourite construct method to re-insert customers
If the solution is better, keep it

Repeat

1: SRopke and D Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and
Delivery Problem with Time Windows, Transportation Science 40(4), pp 455-472, 2006

Large Neighbourhood Search | @y

Destroy part of the solution (Select method)

 Remove some Visits
* Move them to the “unassigned” lists

Large Neighbourhood Search 3 ©
~N 7

Destroy part of the solution (Select method)
Examples
 Remove a sequence of visits

Large Neighbourhood Search 3 Do
N~

Destroy part of the solution (Select method)
Examples
e Choose longest (worst) arc in solution
— Remove visits at each end
— Remove nearby visits
* Actually, choose rt"worst
 r=n*(uniform(0,1))Y
c Yy~ %)
- 0.56=0.016
- 0.96=0.531

ut of 100)

Index (o

Large Neighbourhood Search

Destroy part of the solution (Select method)
Examples
e Dump visits from k routes (k=1, 2, 3)

— Prefer routes that are close,

— Better yet, overlapping

S
e |
+ @

Large Neighbourhood Search | @y

Destroy part of the solution (Select method)
Examples
e Choose first visit randomly
e Then, remove “related” visits
— Based on distance, time compatibility, load

Rij =@ C; +
x(—a;)+
v (lq —(;)

Large Neighbourhood Search 0 |

Destroy part of the solution (Select method)
Examples
e Dump visits from the smallest route

— Good if saving vehicles

— Sometimes fewer vehicles = reduced travel

Large Neighbourhood Search o | @

Destroy part of the solution (Select method)

e Parameter: Max to dump

— Asa % of n?
— As a fixed number e.g. 100 for large problems

» Actual number is uniform rand (5, max)

Large Neighbourhood Search o | @y

Re-create solution
— Systematic search
— Smaller problem, easier to solve
— Can be very effective

— E.g.: CP Backtracking search
— Constraint: objective must be less than current
— (Implicitly) Look at all reconstructions

— Backtrack as soon as a better sol is found
— Backtrack anyway after too many failures

Large Neighbourhood Search | @y

Re-create solution
« Use your favourite insert method

 Better still, use a portfolio
— Ropke: Select amongst
— Minimum Insert Cost
— Regret
— 3-regret
— 4-regret

Large Neighbourhood Search

e If the solution is better, keep it

B,650

B,600

B,550

5,500

B,450

£,400

B,350

B,300

B,250

!
200

I
400

I
600

I
200

I
1,000

I
1,200

I
1,400

I
1,600

|
1,800

|
2,000

Large Neighbourhood Search

e If the solution Is better, keep it

6,380 -

6,360

5,340

6,320

6,300

B,280 -

. 6,260

I
100

Large Neighbourhood Search | @y

 If the solution is better, keep it
Can use Hill-climbing

Can use Simulated Annealing
Can use Threshold Annealing

Large Neighbourhood Search 0 |

- %
P(acceptincreaseA)=e /T

)
=
-
o

=

o— Best

Large Neighbourhood Search

6,450

6,400 -

6,350 -

6,300 -

6,250 -

b1
o] o] o] \ /
o]
o O o0 o]
6,330 . <:>O . o] o] (o] o .
o 9 @ o
o ° , o Test
5 o o] o] o]
6,320 - o o & Incumhb
o] o}

co—e Best

Large Neighbourhood Search | @
~N 7
Adaptive

— Ropke adapts choice based on prior performance

0.40

0.35

0.30

0.25 4

0.20

015

010

0.05

-0.00 +

— “Good” methods are chosen more often

E— [
E— TS
R
—-— G [ROrEld

@ FEC e

T T T T T T T T T T T
-0 200 400 GO0 200 1,000 1,200 1,400 1,600 1,800 2,000 .

Large Neighbourhood Search 3 ©
~N 7

Adapting Select method

0.40
. @ FOkKE
Sty [][]

0.30 H
S (]
0.245 A

0.20 4

015 4

010 +

0.05 +

-0.00 S

T T | T T | | T | | |
0 200 400 GO0 200 1000 17200 1400 1,600 1,800 2,000

Large Neighbourhood Search | @y

Ropke & Pisinger (with additions) can solve a variety of problems
* VRP

e VRP + Time Windows

 Pickup and Delivery

e Multiple Depots

e Multiple Commodities

e Heterogeneous Fleet

o Compatibility Constraints

Solution Methods ,@:\m @
~N 7

Summary so far:

e Introduced several successive insertion construction methods
o Various ways to choose the next visit to insert
o Various ways to choose where to insert

e Described two successful metaheuristics
o Variable Neighbourhood Search
o Large Neighbourhood Search

78 | Presentationtitle | Presentername

Solution Methods | @
What’s wrong with that?

 New constraint 2 new code
— Often right in the core

e New constraints interact
— e.g. Multiple time windows mess up duration calculation

e Code is hard to understand, hard to maintain

Solution Methods |é\m @
N 7

An alternative:

Constraint Programming

Constraint Programming | @

CP offers a language for representing problems
» Decision variables
« Constraints on variables

Also offers techniques for solving the problems
« Systematic search
 Heuristic Search

CPlOl lﬁm | &

Variables are represented by their domain
« (Usually finite) set of feasible values
- E.gx €[0,100] orx €[0,1,3..15,16,18,55..99]

Constraints link variables
e x <4y + 62
e x?+ y? =z
« Cardinality (X, 1, 4, 5)

(In the set X the value ‘1’ occurs at least 4 times, and no more than 5 times)

» AlIDifferent (X) (All values in X are different)
* DriverBreak (30,120,240)

(A break of 30 minutes must be inserted after 120 minutes but no later than 240
minutes after start of route)

2

CP101 -

Propagators (efficiently) enforce constraints
- Wake when the domain of a linked variable is changed
« For each value in each variable

 Ensure there is a set of feasible values of other
variables that supports that value — e.g.

x <y
x = [3,5,7,9]
y = [2,4,6,8]

* The value ‘9’ in x has no supportin y
* The value ‘2’ in y has no supportin x
- After propagation: x =[3,5,7]

y = [4,6,8]

CP101 l?m | D

Eg Mutual Exclusion constraint in VRP
e (If any visit from the set D Is assigned, then no others can be)

Uses ‘IsAssigned’ var

e Domain [0,1]

Attach propagator to the ‘isAssigned’ variable for each of the visits
Propagator wakes when ‘isAssigned’ is bound to 1 for any visit
Propagates by binding isAssigned to ‘0’ for remaining visits.

CPlOl |€m l &

 Typical execution:

o Establish choice point (store all current domains)

* Choose variable to instantiate

« Choose value to assign, and assign it

 Propagations fire until a fixed point is achieved, or an
Inconsistency is proved (empty domain)

* If Inconsistent,
 Backtrack (restore to choicepoint)
« Remove offending value from the variable’s domain

* Repeat until all variables are bound (assigned)

» For complete search, store sol, then act like inconsistent

CP101 Dama
19

‘Choose a variable to assign, choose value to assign’
 Very good fit for constructive route creation
o After each insert, propagators fire

« New variable domains give look-ahead to feasible future
Insertions

« Constraints guide insertion process
Step-to-new-solution does not work as well

 Local move operators can only use CP as a rule checker
* Do not leverage full power of CP

Expressive Language (e.g. Minizinc) | @
~N 7~

string: Name;

% Customers
int: NumCusts;
set of Int: Customers =
1. _NumCusts;

% Locations
int: NumLocs = NumCusts + 1;
set of Int: Locations =
1. .NumLocs;

% Vehicles
int: NumVehicles;
int: NumRoutes = NumVehicles;
set of Int: Vehicles =
1. .NumVehicles;

% Location data
array|[Locations] of float: locX;
array|[Locations] of float: locY;
array [Locations, Locations] of
int: dist;

% Decision variables

var int: obj;

array[Visits] of var Visits:
routeOf;

array[Visits] of var Visits:
succ;

array[Visits] of var [0,1]:
ISAssigned;

constraint alldifferent (succ);
constraint circuit (succ);

constraint
obj = sum (1 iIn Visits)
(distJLoc[i1],Loc[succ[i]]lD):;

constraint
sum (1 In Visits,j = routeOf[1])
(demand[i1]) < J)
for jJ in Vehicles;

Constraint Programming for the VRP |2 | @
~N 7~

Constraint Programming

Advantages:

 Expressive language for formulating constraints
« Each constraint encapsulated

 Constraints interact naturally

 Constraints guide construction

Disadvantages:
 Can be slow
 No fine control of solving
 (unless you use a low-level library like gecode

(>

Constraint Programming | @y

Two ways to use constraint programming
e Rule Checker
* Properly

Rule Checker:
« Use favourite method to create/improve a solution
e Check it with CP

— Very inefficient.

A CP Model for the VRP

Vocabulary | @y

A solution is made up of routes
(one for each vehicle)

« Aroute is made up of a sequence of visits
e Some Visits serve a customer (customer visit)

(Some tricks)

e Each route has a “start visit” and an “end visit”

o Startvisit is first visit on a route — location is depot

e End visit is last visit on a route — location Is depot

 Also have an additional route — the unassigned route
— Where visits live that cannot be assigned

Model ﬁm D

A (rich) venhicle routing problem

e n customers (fixed in this model)

v vehicles (fixed in this model)

m = v+1 one route per vehicle plus “unassigned” route
fixed locations

— where things happen

— one for each customer + one for (each?) depot

c commodities (e.g. weight, volume, pallets)

— Know demand from each customer for each commodity
Know time between each location pair

Know cost between each location pair

— Both obey triangle inequality

Referencing | @
N~

Sets

e« N={1 .. n}-customers

e V={1 .. v}-vehicles/real routes

e« R={1 .. m} -routesinclude ‘unassigned’ route

e S={n+1 .. n+m}-startvisits

e E={Nn+m+1 .. n+2m}-endvisits

V=Nu S u E-allvisits
VS= N U S — visits that have a sensible successor
VE= N U E - visits that have a sensible predecessor

Referencing 3 Do
Customers N7

e Each customer has an index in N = {1..n}
e Customers are ‘named’ in CP by their index

Routes

e Eachroute hasanindex inR = {1..m}

« Unassigned route has index m

e Routes are ‘named’ in CP by their index

Visits

« Customer visit index same as customer index

o Startvisit for route k hasindexn + k ; akastart,
e Endvisit forroute khasindexn + m + k ; akaend,

Data | DATA | &

We know (note uppercase)

e V. The ‘value’ of customer 1

e D;, Demand by customer 1 for commodity k
« E; Earliest time to start service at 1

e L, Latesttime to startservice at i

* Qjx Capacity of vehicle § for commodity k

o T.. Travel time from visit 1 to visit

Cost (w.r.t. objective) of travel from 1 to j

Basic Variables o | @y

Successor variables: s;

e S; givesdirect successor of 1, I.e. the index of the next visit on
the route that visits 1

es; € VEforiinV® s;=0foriinE

Predecessor variables p;

* p; gives the index of the previous visit in the route
e p; € W foriinVE p;=0foriinS

* Redundant - but empirical evidence for its use

e Route variables r;

* I; gives the index of the route (vehicle) that visits
*I; € R

Example

n
O
i

Route 2

Route 1

Ol | N|lola|dM|lw|N|R
oclo|dvMVO|lw| o ||k, |~
Nlw | o|lo|lo|lRr|la|~N|N
Nk [N Rr|R[INMRPRNM|N

Start visits

Other variables 0 |

Accumulation Variables
* d;, Quantity of commodity k after visit 1
e C; Objective cost gettingto i

e For problems with time constraints

e a; Arrivaltimeat i

t;, Starttime at 1 (time service starts)
d; Departuretimeat 1

Actually, only t; is required, but others allow for expressive
constraints

What can we model? | @
N~

e Basic VRP

* VRP with time windows

e Multi-depot

e Heterogeneous fleet

Open VRP (vehicle not required to return to base)
— Requires anywhere location

— Route end visits located at anywhere

— distance 1 = anywhere =0

Compatibility

— Customers on different / same vehicle

— Customers on/not on given vehicle

Pickup and Delivery problems

What can we model? | @y

 Variable load/unload times
— by changing departure time relative to start time
 Dispatch time constraints
— e.g. limited docks
— s; for 1In Sis load-start time
* Depot close time
— Time window on end visits
* Fleet size and mix
— Add lots of vehicles
— Need to introduce a ‘fixed cost’ for a vehicle
— Cjjisincreased by fixed cost forall 1 € S, all J e N

What can’t we model | @

e Can’t handle dynamic problems

— Fixed domainfors, p, r vars

Can’t introduce new Vvisits post-hoc

— E.g. optional driver break must be allowed at start
Can’t handle multiple visits to same customer

— ‘Larger than truck-load’ problems

— If gty is fixed, can have multiple visits / cust

— Heterogeneous fleet is a pain

Can handle time- or vehicle-dependent travel times/costs with
mods

Can handle Soft Constraints with mods

. . ~
Objective %ni D

Want to minimize
* sum of objective (c;;) over used arcs, plus
 value of unassigned visits

Q.G+

iEE i‘ri:O

minimize

Basic constraints | @

Path (S,E, {s; | 1 € V})
AllDifferent ({p; | 1 € VE})

Accumulate obj. ¢, =C+C; Vi A

| . \/S
Accumulate time a, =d;+T;, VieV

Time windows t, =24 VieV
t. <L VieV
t. >E, VieV
t =0 VieS

Constraints lém.\ D
N~

e Load s = Oy + Qg V1 cV°> keC
Oy < Qyy VieV keC
q, =0 VieV,keC
Qi =0 VieS keC
- Consistency ~ Sp, =| VieV®
P, =1 VieVE©
L=r VieV?®
Mo = Vk e M
I =k Vk e M

Subtour elimination | @

e Most CP libraries have built-ins
— MiniZinc: ‘circuit’
— Comet: ‘circuit’
— ILOG: Path constraint

Propagation — Cycles 0 | @)

‘Path’ constraint
» Propagates subtour elimination
 Also propagates cost

« path (S, E, succ, P, z)
— succ array implies path
— ensures path from nodesin S tonodesin T through nodes in
P

— variable z bounds cost of path

— cost propagated incrementally based on shortest / longest
paths

Large Neighbourhood Search
revisited

Large Neighbourhood Search | 6

Destroy & Re-create
« Destroy part of the solution
— Remove visits from the solution
* Re-create solution
— Use insert method to re-insert customers
— Different insert methods lead to new (better?) solutions
* If the solution is better, keep it
e Repeat

Large Neighbourhood Search | @y

Destroy part of the solution (Select method)

In CP terms, this means:
* Relax some variable assignments

In CP-VRP terms, this means
 Relax some routeOf and successor assignments

Large Neighbourhood Search 3 Do
N~

Re-create solution

« Use insert methods
 Uses full power of CP propagations

A MiniZinc VRP model ﬁm D

111 | Presentationtitle | Presentername

Advanced techniques — Recreate) @
~N A~

Adaptive Decomposition

Decompose problem
e Only consider 2-3 routes
o Smaller problem is much easier to solve

- 7

Advanced technigues — Recreate Py
N~

Adaptive Decomposition
Decompose problem
e Only consider 2-3 routes
o Smaller problem is much easier to solve
Adaptive

e Decompose in different ways
e Use problem features to determine decomposition

Conclusions |§m @
~

e Now you know
o0 How to construct a solution to a VRP by successive insertion
o0 How to improve the solution using
— Variable Neighbourhood Search
— Large Neighbourhood Search

» Argued that CP is “natural” for solving vehicle routing problems
— Real problems often have unique constraints
— Easy to change CP model to include new constraints
— New constraints don’t change core solve method
— Infrastructure for complete (completish) search in subproblems

e LNSis “natural” for CP
— Insertion leverages propagation

