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Vehicle routing problem

Given a set of customers, and a fleet of vehicles to make deliveries, 
find a set of routes that services all customers at minimum cost



Travelling Salesman Problem

• Find the tour of minimum cost that visits 
all cities



Why study the VRP?

• It’s hard: it exhibits all the difficulties of comb. opt.
• It’s useful: 
o The logistics task is 9% of economic activity in Australia
o Logistics accounts for 10% of the selling price of goods



Why study the VRP in Robotics?
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Appears as a sub-problem

Task allocation to agents
• Multiple agents with multiple tasks
• Best allocation minimizes cost

Scheduling with setup costs
• Can be modelled as a VRPTW



Vehicle Routing Problem

For each customer, we know
• Quantity required 
• The cost to travel to every other customer

For the vehicle fleet, we know
• The number of vehicles
• The capacity

We must determine which customers each vehicle serves, 
and in what order, to minimise cost



Vehicle Routing Problem

Objective function
• In academic studies, usually a combination:
o First, minimise number of routes
o Then minimise total distance or total time

• In real world
o A combination of time and distance
o Must include vehicle- and staff-dependent costs
o Usually vehicle numbers are fixed
o Includes “preferences” – like pretty routes



Time window constraints

Vehicle routing with Constraints 
• Time Window constraints

– A window during which service can start
– E.g. only accept delivery 7:30am to 11:00am

– Additional input data required
• Duration of each customer visit
• Time between each pair of customers

• (Travel time can be vehicle-dependent or time-dependent)
– Makes the route harder to visualise



Time Window constraints



Pickup and Delivery problems

• Most routing considers delivery to/from a depot (depots)

• Pickup and Delivery problems consider FedEx style problem:

• pickup at location A, deliver to location B

• Load profile:



Other variants

Profitable tour problem
• Not all visits need to be 

completed 
• Known profit for each visit
• Choose a subset that gives 

maximum profit = 
(revenue from visits) –
(routing cost)

Orienteering Problem
• Maximum revenue in 

limited time



VRP meets the real world
Many groups now looking at real-world constraints

Rich Vehicle Routing Problem
• Attempt to model constraints common to many real-life enterprises

– Multiple Time windows
– Multiple Commodities
– Multiple Depots
– Heterogeneous vehicles
– Compatibility constraints 

• Goods for customer A {must | can’t} travel with goods from 
customer B

• Goods for customer A {must | can’t} travel on vehicle C



VRP as an instance

VRP is a Combinatorial Optimization problem
• Others include 
o Scheduling
o Assignment
o Bin Packing
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Solving VRPs



Solution Methods

Exact:
• Integer Programming or Mixed Integer Programming
• Constraint Programming

Heuristic:
• Construct
• Improve

• Local Search
• Meta-heuristics



Exact Methods

VRP:
• MIP: Can only solve problems with 100-150 customers
• CP: Similar size



ILP
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ILP
Advantages
• Can find optimal solution
Disadvantages
• Only works for small problems
• One extra constraint  back to the 

drawing board
• S is huge
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ILP – Column Generation

89 76 99 45 32

1 1 1 1 0 0 …

2 0 1 1 0 1 …

3 0 0 0 0 0 …

4 1 0 1 1 0 …

5 1 0 0 0 0 …

Columns 
represent routes

Rows represent 
customers

Column/route cost ck

Array entry aik = 1 iff 
customer i is 
covered by route k



Column Generation
• Decision var xk: Use column k?
• Column only appears if feasible 

ordering is possible
• Cost of best ordering is ck

• Best order stored separately
• Master problem at right
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Heuristics for the VRP
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Heuristics:

Often variants of 
• Construct
• Improve
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Heuristics for the VRP

Construction by Insertion
• Start with an empty solution
• Repeat

• Choose which customer to insert
• Choose where to insert it

E.g. (Greedy)
• Choose the customer that increases the cost by the least
• Insert it in the position that increases the cost by the least



Solving the VRP the easy way

Insert methods

Order is important:



Regret



Regret



Regret



Regret



Regret



Regret

Regret = C(insert in 2nd-best route) – C(insert in best route)
=  f (2,i) – f (1,i)

K-Regret = ∑k=1,K (f (k,i) – f (1,i) )

Insert customer with maximum regret



Insertion with Regret



Seeds

Initialise each route with one (or more) customer(s)
• Indicates the general area where a vehicle will be
• May indicate time it will be there

• Depends on time window width

Distance-based seeding
• Find the customer (s1) most distant from the depot
• Find the customer (s2) most distant from s1 

• Find the customer (s3) mist distance from s1, s2

• …
• Continue until all vehicles have a seed



Implementation

• Heart of algorithm is deciding which customer to insert next, and 
where

• Data structure of “Insert Positions” 
o legal positions to insert a customer
o Must calculate cost of insert
o Must ensure feasibility of insert

• After each modification (customer insert)
o Add new insert positions
o Update cost of affected insert positions
o Check legality of all insert positions
o O(1) check important for efficiency
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Local Search



Improvement Methods

Local Search
• Often defined using an “operator”



Improvement Methods

Local Search
• Often defined using an “operator”

• e.g. 1-move



Improvement Methods
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• e.g. 1-move



Improvement Methods

Local Search
• Often defined using an “operator”

• e.g. 1-move



Improvement Methods

Local Search
• Often defined using an “operator”

• e.g. 1-move



Improvement Methods
Local Search
• Often defined using an “operator”

• e.g. 1-move



Improvement Methods
Local Search
• Often defined using an “operator”

• e.g. 1-move
• Solutions that can be reached

using the operator termed the
neighbourhood

• Local Search explores
the neighbourhood of
the current solution



Local Search

Other Neighbourhoods for VRP:
• Swap 1-1



Local Search

Other Neighbourhoods for VRP:
• Swap 1-1



Local Search

Other Neighbourhoods for VRP:
• Swap 2-1



Local Search

Other Neighbourhoods for VRP:
• Swap 2-1



Local Search

Other Neighbourhoods for VRP:
• Swap tails



Local Search

Other Neighbourhoods for VRP:
• Swap tails



Local Search

Other Neighbourhoods for VRP:
• Swap tails



Improvement Methods

2-opt (3-opt, 4-opt…)
• Remove 2 arcs
• Replace with 2 others



Improvement Methods

Or-opt
• Consider chains of length k
• k takes value 1 .. n / 2
• Remove the chain from its current position
• Consider placing in each other possible position

• in forward orientation
• and reverse orientation

• Very effective



Local Search

• Local minima

Objective value

Current solution



Local Search

Escaping local minima
Meta-heuristics

• Heuristic way of combining heuristics
• Designed to escape local minima



Local Search

Escaping local minima
• Define more (larger) neighbourhoods
– 1-move (move 1 visit to another position)
– 1-1 swap (swap visits in 2 routes)
– 2-2 swap (swap 2 visits between 2 routes)
– Tail exchange (swap final portion of routes) 
– 2-opt 
– Or-opt (all sizes 2 .. n/2)
– 3-opt



Local Search
Variable Neighbourhood Search
• Consider multiple neighbourhoods

– 1-move (move 1 visit to another position)
– 1-1 swap (swap visits in 2 routes)
– 2-2 swap (swap 2 visits between 2 routes)
– 2-opt 
– Or-opt 
– Tail exchange (swap final portion of routes
– 3-opt

– Explore one neighbourhood completely
– If no improvement found, advance to next neighbourhood
– When an improvement is found, return to level 1



Local Search

Variable Neighbourhood Search

• For new constraints/new problems, add new neighbourhoods

• E.g. Orienteering problem
o New neighbourhoods: 

– Unassign 1 customer (i.e. do not visit)
– Unassign clusters of customer (e.g. sequences of customers)
– Insert clusters of unassigned customers
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Local Search

Many Meta-heuristics have been tried
• Simulated Annealing
• Tabu Search
• Genetic Algorithms
• Ants
• Bees
• Particle Swarms

• Large Neighbourhood Search



Large Neighbourhood Search

• Originally developed by Paul Shaw (1997)
• This version Ropke & Pisinger (2007)1

• A.k.a “Record-to-record” search

• Destroy part of the solution
– Remove visits from the solution

• Re-create solution
– Use favourite construct method to re-insert customers

• If the solution is better, keep it
• Repeat

1: S Ropke and D Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and
Delivery Problem with Time Windows, Transportation Science 40(4), pp 455-472, 2006



Large Neighbourhood Search
Destroy part of the solution (Select method)

• Remove some visits
• Move them to the “unassigned” lists



Large Neighbourhood Search
Destroy part of the solution (Select method)
Examples
• Remove a sequence of visits



Large Neighbourhood Search
Destroy part of the solution (Select method)
Examples
• Choose longest (worst) arc in solution

– Remove visits at each end
– Remove nearby visits

• Actually, choose rth worst
• r = n * (uniform(0,1))y

• y ~ 6
– 0.56 = 0.016
– 0.96 = 0.531



Large Neighbourhood Search
Destroy part of the solution (Select method)
Examples
• Dump visits from k routes (k = 1, 2, 3)

– Prefer routes that are close, 
– Better yet, overlapping



Large Neighbourhood Search
Destroy part of the solution (Select method)
Examples
• Choose first visit randomly
• Then, remove “related” visits

– Based on distance, time compatibility, load
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Large Neighbourhood Search
Destroy part of the solution (Select method)
Examples
• Dump visits from the smallest route 

– Good if saving vehicles
– Sometimes fewer vehicles = reduced travel



Large Neighbourhood Search
Destroy part of the solution (Select method)

• Parameter: Max to dump 
– As a % of n?
– As a fixed number e.g. 100 for large problems

• Actual number is uniform rand (5, max) 



Large Neighbourhood Search

Re-create solution
– Systematic search

– Smaller problem, easier to solve
– Can be very effective

– E.g.: CP Backtracking search
– Constraint: objective must be less than current
– (Implicitly) Look at all reconstructions

– Backtrack as soon as a better sol is found
– Backtrack anyway after too many failures 



Large Neighbourhood Search

Re-create solution
• Use your favourite insert method

• Better still, use a portfolio
– Ropke: Select amongst

– Minimum Insert Cost
– Regret 
– 3-regret
– 4-regret



Large Neighbourhood Search



Large Neighbourhood Search

• If the solution is better, keep it



Large Neighbourhood Search

• If the solution is better, keep it

70/58



Large Neighbourhood Search

• If the solution is better, keep it
• Can use Hill-climbing
• Can use Simulated Annealing
• Can use Threshold Annealing
• …



Large Neighbourhood Search
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Large Neighbourhood Search



Large Neighbourhood Search



Large Neighbourhood Search

Adaptive
– Ropke adapts choice based on prior performance

– “Good” methods are chosen more often

75/58



Large Neighbourhood Search

Adapting Select method

76/58



Large Neighbourhood Search

Ropke & Pisinger (with additions) can solve a variety of problems
• VRP
• VRP + Time Windows
• Pickup and Delivery
• Multiple Depots
• Multiple Commodities
• Heterogeneous Fleet
• Compatibility Constraints



Solution Methods

Summary so far:

• Introduced several successive insertion construction methods
o Various ways to choose the next visit to insert
o Various ways to choose where to insert

• Described two successful metaheuristics
o Variable Neighbourhood Search
o Large Neighbourhood Search
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Solution Methods

What’s wrong with that?

• New constraint  new code
– Often right in the core

• New constraints interact
– e.g. Multiple time windows mess up duration calculation

• Code is hard to understand, hard to maintain



Solution Methods

An alternative: 
Constraint Programming



Constraint Programming

CP offers a language for representing problems
• Decision variables
• Constraints on variables

Also offers techniques for solving the problems
• Systematic search
• Heuristic Search



CP101



CP101



CP101

Eg Mutual Exclusion constraint in VRP
• (If any visit from the set D is assigned, then no others can be)

• Uses ‘isAssigned’ var
• Domain [0,1]

• Attach propagator to the ‘isAssigned’ variable for each of the visits
• Propagator wakes when ‘isAssigned’ is bound to 1 for any visit
• Propagates by binding isAssigned to ‘0’ for remaining visits.



CP101

• Typical execution:
• Establish choice point (store all current domains)
• Choose variable to instantiate
• Choose value to assign, and assign it
• Propagations fire until a fixed point is achieved, or an 

inconsistency is proved (empty domain)
• If inconsistent, 

• Backtrack (restore to choicepoint)
• Remove offending value from the variable’s domain

• Repeat until all variables are bound (assigned)
• For complete search, store sol, then act like inconsistent



CP101

‘Choose a variable to assign, choose value to assign’
• Very good fit for constructive route creation
• After each insert, propagators fire
• New variable domains give look-ahead to feasible future 

insertions
• Constraints guide insertion process

Step-to-new-solution does not work as well
• Local move operators can only use CP as a rule checker

• Do not leverage full power of CP



Expressive Language (e.g. Minizinc)
string: Name;

% Customers
int: NumCusts;
set of int: Customers = 

1..NumCusts;

% Locations
int: NumLocs = NumCusts + 1;
set of int: Locations = 

1..NumLocs;

% Vehicles
int: NumVehicles;
int: NumRoutes = NumVehicles;
set of int: Vehicles = 

1..NumVehicles;

% Location data
array[Locations] of float: locX;
array[Locations] of float: locY;
array [Locations, Locations] of 
int: dist;

% Decision variables
var int: obj;
array[Visits] of var Visits: 

routeOf;
array[Visits] of var Visits: 

succ;
array[Visits] of var [0,1]: 

isAssigned;

constraint alldifferent (succ);
constraint circuit (succ);

constraint
obj = sum (i in Visits)      

(dist[Loc[i],Loc[succ[i]]]);

constraint
sum (i in Visits,j = routeOf[i])

(demand[i]) < j) 
for j in Vehicles;



Constraint Programming for the VRP

Constraint Programming
Advantages:
• Expressive language for formulating constraints
• Each constraint encapsulated
• Constraints interact naturally
• Constraints guide construction

Disadvantages:
• Can be slow
• No fine control of solving 

• (unless you use a low-level library like gecode )



Constraint Programming

Two ways to use constraint programming
• Rule Checker
• Properly

Rule Checker:
• Use favourite method to create/improve a solution
• Check it with CP

– Very inefficient. 



A CP Model for the VRP



Vocabulary

• A solution is made up of routes 
(one for each vehicle)

• A route is made up of a sequence of visits
• Some visits serve a customer (customer visit)

(Some tricks)
• Each route has a “start visit” and an “end visit”
• Start visit is first visit on a route – location is depot
• End visit is last visit on a route – location is depot 
• Also have an additional route – the unassigned route

– Where visits live that cannot be assigned



Model

A (rich) vehicle routing problem
• n customers (fixed in this model)
• v vehicles (fixed in this model)
• m = v+1 one route per vehicle plus  “unassigned” route
• fixed locations 

– where things happen
– one for each customer + one for (each?) depot

• c commodities (e.g. weight, volume, pallets)
– Know demand from each customer for each commodity

• Know time between each location pair 
• Know cost between each location pair

– Both obey triangle inequality



Referencing

Sets
• N = {1 .. n} – customers
• V = {1 .. v} – vehicles/real routes 
• R = {1 .. m}  - routes include ‘unassigned’ route
• S = {n+1 .. n+m} – start visits
• E = {n+m+1 .. n+2m} – end visits
• V = N  S  E – all visits 
• VS= N  S – visits that have a sensible successor
• VE= N  E – visits that have a sensible predecessor



Referencing
Customers
• Each customer has an index in N = {1..n} 
• Customers are ‘named’ in CP by their index
Routes
• Each route has an index in R = {1..m}
• Unassigned route has index m
• Routes are ‘named’ in CP by their index
Visits
• Customer visit index same as customer index
• Start visit for route k has index n + k ; aka startk
• End visit for route k has index n + m + k ; aka endk



Data

We know (note uppercase)
• Vi The ‘value’ of customer i
• Dik Demand by customer i for commodity k
• Ei Earliest time to start service at i
• Li Latest time to start service at i
• Qjk Capacity of vehicle j for commodity k
• Tij Travel time from visit i to visit j
• Cij Cost (w.r.t. objective) of travel from i to j 



Basic Variables

Successor variables: si
• si gives direct successor of i, i.e. the index of the next visit on 

the route that visits i
• si  VE for i in VS    si= 0 for i in E
Predecessor variables pi
• pi gives the index of the previous visit in the route
• pi  VS for i in VE   pi= 0 for i in S
• Redundant – but empirical evidence for its use
• Route variables ri
• ri gives the index of the route (vehicle) that visits i
• ri  R
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Example

2

9

4

3

5

1

8

6

Route 1

Route 2

Start visits

End 
visits

i si pi ri

1 4 2 2

2 1 7 2

3 8 5 1

4 9 1 2

5 3 6 1

6 5 0 1

7 2 0 2

8 0 3 1

9 0 4 2



Other variables

Accumulation Variables
• qik Quantity of commodity k after visit i
• ci Objective cost getting to i

• For problems with time constraints
• ai Arrival time at i
• ti Start time at i (time service starts)
• di Departure time at i

• Actually, only ti is required, but others allow for expressive 
constraints



What can we model?

• Basic VRP
• VRP with time windows
• Multi-depot 
• Heterogeneous fleet
• Open VRP (vehicle not required to return to base)

– Requires anywhere location
– Route end visits located at anywhere
– distance i anywhere = 0

• Compatibility
– Customers on different / same vehicle
– Customers on/not on given vehicle  

• Pickup and Delivery problems



What can we model?

• Variable load/unload times
– by changing departure time relative to start time

• Dispatch time constraints
– e.g. limited docks
– si for i in S is load-start time

• Depot close time
– Time window on end visits

• Fleet size and mix
– Add lots of vehicles
– Need to introduce a ‘fixed cost’ for a vehicle
– Cij is increased by fixed cost for all i  S, all j  N



What can’t we model

• Can’t handle dynamic problems
– Fixed domain for s, p, r vars

• Can’t introduce new visits post-hoc
– E.g. optional driver break must be allowed at start

• Can’t handle multiple visits to same customer
– ‘Larger than truck-load’ problems
– If qty is fixed, can have multiple visits / cust
– Heterogeneous fleet is a pain

• Can handle time- or vehicle-dependent travel times/costs with 
mods

• Can handle Soft Constraints with mods



Objective

Want to minimize 
• sum of objective (cij) over used arcs, plus
• value of unassigned visits

minimize  
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Basic constraints
Path ( S, E, { si | i  V } )
AllDifferent ( { pi | i  VE } )
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Constraints
• Load 

• Consistency
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Subtour elimination

• Most CP libraries have built-ins
– MiniZinc: ‘circuit’
– Comet: ‘circuit’
– ILOG: Path constraint



Propagation – Cycles

‘Path’ constraint
• Propagates subtour elimination
• Also propagates cost

• path (S, E, succ, P, z)
– succ array implies path
– ensures path from nodes in S to nodes in T through nodes in 
P

– variable z bounds cost of path
– cost propagated incrementally based on shortest / longest 

paths 



Large Neighbourhood Search 
revisited



Large Neighbourhood Search

Destroy & Re-create
• Destroy part of the solution

– Remove visits from the solution
• Re-create solution

– Use insert method to re-insert customers
– Different insert methods lead to new (better?) solutions

• If the solution is better, keep it
• Repeat



Large Neighbourhood Search
Destroy part of the solution (Select method)

In CP terms, this means:
• Relax some variable assignments

In CP-VRP terms, this means
• Relax some routeOf and successor assignments



Large Neighbourhood Search
Re-create solution

• Use insert methods
• Uses full power of CP propagations



A MiniZinc VRP model
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Advanced techniques – Recreate

Adaptive Decomposition 

Decompose problem
• Only consider 2-3 routes
• Smaller problem is much easier to solve



Advanced techniques – Recreate

Adaptive Decomposition

Decompose problem
• Only consider 2-3 routes
• Smaller problem is much easier to solve

Adaptive
• Decompose in different ways
• Use problem features to determine decomposition



Conclusions

• Now you know
o How to construct a solution to a VRP by successive insertion
o How to improve the solution using 

– Variable Neighbourhood Search
– Large Neighbourhood Search

• Argued that CP is “natural” for solving vehicle routing problems
– Real problems often have unique constraints
– Easy to change CP model to include new constraints
– New constraints don’t change core solve method
– Infrastructure for complete (completish) search in subproblems

• LNS is “natural” for CP
– Insertion leverages propagation


