
Arc consistency for general constraint networks: preliminary resultsChristian Bessi�ereLIRMM{CNRS (UMR 5506)161 rue Ada34392 Montpellier cedex 5, FranceEmail: bessiere@lirmm.fr Jean-Charles R�eginILOG S.A.9 rue de Verdun94253 Gentilly Cedex, FranceEmail: regin@ilog.frAbstractConstraint networks are used more and more tosolve combinatorial problems in real-life appli-cations. Much activity is concentrated on im-proving the e�ciency of �nding a solution in aconstraint network (the constraint satisfactionproblem, CSP). Particularly, arc consistencycaught many researchers' attention, involvingthe discovery of a large number of algorithms.And, for the last two years, it has been shownthat maintaining arc consistency during searchis de�nitely a worthwhile approach. However,results on CSPs and on arc consistency are al-most always limited to binary constraint net-works. The CSP is no longer an academic prob-lem, and it is time to deal with non-binaryCSPs, as widely required in real world con-straint solvers. This paper proposes a generalschema to implement arc consistency on con-straints of any arity when no speci�c algorithmis known. A �rst instantiation of the schemais presented here, which deals with constraintsgiven by a predicate, by a set of forbidden com-binations of values, or by a set of allowed ones.1 Introduction1.1 OverviewConstraint satisfaction problems (CSPs) occur widely inarti�cial intelligence. They are used more and more inreal-life applications, such as scene analysis, resource al-location, crew scheduling, time tabling, frequency allo-cation, car sequencing, etc. The CSP involves �nding asolution in a constraint network, i.e. �nding values forproblem variables subject to constraints.The general task of solving a CSP being NP-hard,many researchers have concentrated on improving thee�ciency of �nding a solution in a constraint network.Particularly, arc consistency caught many researchers'attention, involving the discovery of a large number of

algorithms [Mackworth, 1977a], [Mohr and Henderson,1986], [Bessi�ere, 1994], [Bessi�ere et al., 1995]. And, re-cently, the value of these studies on arc consistency in-creased since it has been shown that maintaining arcconsistency during search is de�nitely a worthwhile ap-proach when solving large and hard problems [Sabin andFreuder, 1994], [Bessi�ere et al., 1995], [Bessi�ere and R�e-gin, 1996], [Grant and Smith, 1996].However, results about CSP solving and about arcconsistency are almost always limited to binary con-straint networks, justi�ed by the fact that any non-binary constraint network can be translated into anequivalent binary one with additional variables [Rossi etal., 1990]. But, in practical cases, it is often inconceiv-able to translate a non-binary constraint into an equiva-lent set of binary ones with the technique cited above be-cause of the underlying computational and memory cost.Sometimes, when a constraint is representable [Monta-nari, 1974]), it is possible to replace it by a set of binaryconstraints without introducing new variables, and with-out generating the set of allowed tuples of each binaryconstraint. For example, if a constraint states that thethree variables x1, x2, and x3 must all take di�erent val-ues, we can equivalently state that there is an inequal-ity constraint on each of the pairs of variables fx1; x2g,fx1; x3g, and fx2; x3g. But, as it has been shown in[R�egin, 1994], non-binary constraints lose a part of theirsemantics when encoded into a set of binary constraintsin this way. This leads, for example, to less pruning forarc consistency algorithms handling them.Hence, if we no longer want to consider the CSP asan academic problem we must be able to deal with anykind of constraints, and so, with non-binary constraints,as widely required in real-world constraint solvers.1.2 Previous workIn the constraint satisfaction community, the number ofworks involving non-binary constraint networks is rathersmall. For the particular case of arc consistency, weknow two algorithms capable of achieving it. Mackworth[Mackworth, 1977b] proposed the algorithm CN, which



is a kind of generalization of AC-3 to non-binary con-straints. As AC-3, that algorithm has a bad worst-casetime complexity (O(er2dr+1), with e the number of con-straints in the network, r the maximal arity of the con-straints, and d the size of the largest domain). Mohr andMassini [Mohr and Masini, 1988] proposed GAC4. It isbased on the same idea as AC-4 (computing the numberof supports for each value in each domain and removingthose with this number equal to zero). Thus, it gets ridof the huge worst-case time complexity of CN (GAC4 isin O(edr)), but has the same drawbacks as AC-4: spacecomplexity (because of the lists of supported values),and average time complexity. The respective drawbacksof CN and GAC4 are even more important than on their bi-nary versions, so that CN can only be applied on ternaryconstraints and very small domains, and GAC4 on verytight constraints, where the number of allowed tuples ofvalues is very small.Finally, we can point out the work of van Beek andDechter [van Beek and Dechter, 1995], who proposedanother de�nition for arc consistency on non-binary con-straint networks, namely relational arc consistency. Thisde�nition is much stronger than the classical one sincefor each constraint it requires global consistency on theunderlying subnetwork (i.e. the network involving thevariables of the given constraint, and all the \smaller"constraints de�ned on some of these variables).1.3 Our purposeOur general aim is to propose a new schema in orderto perform arc consistency on any real world constraintnetwork with a reasonably low time and space complex-ity. In industrial applications, a constraint can be givenin many di�erent forms: by the set of allowed tuples inextension (generally when the constraint is very tight),by the set of forbidden tuples in extension (when theconstraint is very loose), by a conjunctive constraint, byan arithmetic relation, or by any predicate for which noparticular semantics is known (data base query, user'scontext-dependent constraint, etc.). Thus, a suitable arcconsistency algorithm should be able to e�ciently handleany of these constraints.The particular aim of this paper is to present the �rststeps of our work. First, we will present our generalschema for arc consistency on non-binary constraint net-works. This schema is based on the AC-7 schema givenin [Bessi�ere et al., 1995]. It makes use of the \currentsupport" idea, and of \multidirectionality" (the gener-alization of bidirectionality to non-binary constraints)in order to save as many constraint checks as possible.Second, we will instantiate this schema with some of themost frequently occurring forms of constraint represen-tations.Constraints de�ned by a predicate for which no partic-

ular semantics is known are one of the most importantforms that have to be handled. Indeed, if we exceptthe predicates for which speci�c algorithms are known(arithmetic relations [Van Hentenryck et al., 1992], car-dinality constraints [R�egin, 1996], etc.), the only avail-able algorithms for non-binary constraints are CN andGAC4. GAC4 deals only with constraints given in exten-sion, and then is not capable of handling a predicate,even if, theoretically, it is always possible to build thewhole set of allowed tuples by checking all the combi-nations of values for the variables involved in the con-straint. It would be impracticable, at least because ofspace requirements. Moreover, asking the value of apredicate for a particular combination of values (a con-straint check) can be very costly in practice, when theanswer is contained in a database, or requires heavy com-putation. This de�nitively eliminates CN, with its hugetime complexity, doing and doing again many times thesame constraint checks. Therefore, we will propose aninstantiation of the schema that will e�ciently handlepredicates, minimizing the number of constraint checks.However, this schema is certainly not competitive onpredicates for which a speci�c algorithm is available.Afterwards, we will instantiate the schema for con-straints de�ned by a set of forbidden tuples. This kindof representation is of practical interest when constraintsare very loose.Finally, we will show that the schema can also dealwith constraints given in extension by the list of allowedtuples. It leads to an improvement on GAC4, which wasalready written for that kind of constraint.2 PreliminariesConstraint network. A �nite constraint network Pis de�ned as a set of n variables X = fx1; : : : ; xng, aset of current domains D = fD(x1); : : : ; D(xn)g whereD(xi) is the �nite set of possible values for variable xi,and a set C of constraints between variables. We intro-duce the particular notation D0 = fD0(x1); : : : ; D0(xn)gto represent the set of initial domains of P . Indeed, weconsider that any constraint network P can be associatedwith an initial domain D0 (containing D), on which con-straint de�nitions were stated. A total ordering <d canbe de�ned on D(xi);8xi 2 X , without loss of generality.Constraints. A constraint C on the ordered setof variables X(C) = (xi1 ; : : : ; xir ) is a subset of theCartesian product D0(xi1) � � � � � D0(xir ) that speci-�es the allowed combinations of values for the variablesxi1 � : : : � xir . An element of D0(xi1 ) � � � � � D0(xir )is called a tuple on X(C). Two tuples � and � 0 onX(C) can be ordered by the natural lexicographic order�lo in which � �lo � 0 i� 9k=� [1::k � 1] = � 0[1::k � 1]and � [k] <d � 0[k] (� [1::k] being the pre�x of size kof � , and � [k] the kth value of �). The tuples of



D0(xi1 )� � � � �D0(xir ) not allowed by C are called theforbidden tuples of C. Verifying whether a given tuple� is allowed by C or not is called a constraint check.jX(C)j is the arity of C.A constraint C involving the subset of variablesX(C) = (xi1 ; : : : ; xir ) can be de�ned by the set of al-lowed tuples (resp. the set of forbidden tuples) given inextension when the constraint is tight (resp. is loose),or by an arithmetic relation. More generally, it canbe represented by any Boolean function fC de�ned onD0(xi1 )� � � � �D0(xir ).Solutions. A solution of a constraint network is aninstantiation of the variables such that all the constraintsare satis�ed.Notation. A value a for a variable x is often denotedby (x; a). var(C; i) represents the ith variable of X(C),while index(C; x) is the position of variable x in X(C).Arc consistency. Let P = (X;D; C) be a constraintnetwork, C a constraint in C.A tuple � of X(C) is valid if 8(x; a) 2 �; a 2 D(x);otherwise, it is rejected.A value a 2 D(x) is consistent with C i� x =2 X(C), or9� allowed by C, such that a = � [index(C; x)] and � isvalid. (� is then called a support for (x; a) on C.)C is arc consistent i� 8xi 2 X(C); D(xi) 6= ; and8a 2 D(xi); a is consistent with C.P is arc consistent i� all the constraints of C are arcconsistent.We achieve arc consistency in P by removing everyvalue not consistent with at least one constraint in C.3 A general schema for arc consistencyAs we pointed out in Section 1, our general aim is, on theone hand, to provide a schema su�ciently general to beinstantiated with any kind of constraint. On the otherhand, this schema must be powerful enough to avoid asmany constraint checks as possible when achieving arcconsistency.We did not choose an AC-3 like or an AC-4 like schemafor e�ciency reasons. To be reasonably e�cient, theschema has to be based on AC-6 or AC-7. They are bothbased on the search of a single support for each value,the worst-case time complexity being optimal in bothalgorithms. The di�erence between them is whether ornot they deal with bidirectionality [Bessi�ere et al., 1995].In a non-binary constraint network, any constraint ismultidirectional, as any constraint is bidirectional in abinary constraint network. Multidirectionality, indeed,is the fact that for any constraint C, a tuple � on X(C)is a support for the value � [index(C; x)] (x being a vari-able involved in C) i� 8y 2 X(C), � is a support for� [index(C; y)]. We say that an algorithm \deals with"multidirectionality i� it never checks whether a tuple is

Algorithm 1: function propagationpropagation (in C: constraint; in x: variable;in a: value;in out deletionStream: list): booleanfor each � 2 SC(x; a) do1 for each (z; c) 2 � do remove � from SC(z; c);2 for each (y; b) 2 S(� ) doremove (y; b) from S(� );if b 2 D(y) then3 �  seekInferableSupport(C; y; b);4 if � 6= nil thenadd (y; b) in S(�) ;else5 �  seekNextSupport(C; y; b; lastC(y; b));if � 6= nil then6 add (y; b) in S(�) ;lastC(y; b) � ;7 for k from 1 to jX(C)j doadd � in SC(var(C; k); �[k]) ;else8 remove b from D(y) ;if D(y) = ; then return false ;9 add (y; b) in deletionStream ;return true ;a support for a value when it has already been checkedfor another value, and never looks for a support for avalue on a constraint C when a tuple supporting thisvalue has already been checked.And, dealing with multidirectionality appears to bepromising on non-binary constraints. A tuple � , indeed,allowed by a constraint C, can support jX(C)j values.Thus the possible savings are much more important thanon binary constraints. AC-7 could save d2 constraintchecks thanks to bidirectionality, where d is the domainsize of the variables involved (see [Bessi�ere et al., 1995]),while dr constraint checks can be saved thanks to mul-tidirectionality on an r-ary constraint.The framework we propose is then an AC-7like schema in which search for support (functionseekNextSupport) is instantiated di�erently depend-ing on the type of the constraint involved. Thisschema (named GAC-schema) is able to handle anytype of constraint, as soon as the corresponding func-tion seekNextSupport is available. Before giving theseekNextSupport function associated with the types ofconstraints we will study in this paper (in the nextsection), let us describe the function propagation (seeAlg. 1). The program including it must create and ini-tialize the data structures (SC ; S; and lastC), and callpropagation(C; x; a; deletionStream) for each constraintC involving x, each time a value (x; a) is removed fromD(x), in order to propagate the consequences of thisdeletion.



SC ; S; and lastC must be initialized in a way such that:� SC(x; a) contains all the allowed tuples � that arethe current support for some value, and such that� [index(C; x)] = a.� S(�) contains all values for which � is the currentsupport.� lastC(y; b) is the last tuple returned byseekNextSupport as a support for (y; b) ifseekNextSupport(C; y; b;�) has already beencalled; nil otherwise. lastC(y; b) is perhaps nolonger a support in C for (y; b) (if it is no longervalid and seekInferableSupport has found a newsupport for (y; b)). It is just here to give the pointwhere seekNextSupport will have to restart thesearch for a support for (y; b) on C at the nextcall. There is an underlying ordering on the tuples,which is proper to seekNextSupport.Property 1 8C 2 C;8allowed tuple � : S(�) 6= ; ,8x 2 X(C); � 2 SC(x; � [index(C; x)]).Property 2 Given any constraint C of arity r, thespace complexity of the data structure of GAC-schema forC is O(r2d).Proof. Each value has at most one support, thenP jS(� )j � rd and there are at most rd tuples in mem-ory. Each value is associated with one lastC , so thelastC data structure requires rd pointers. A tuple con-tains r elements, thus the set of all tuples that supportat least one value can be represented in O(r2d). Thenumber of elements that belong to SC is bounded aboveby r2d by property 1 and becauseP jS(� )j � rd. Sincean element of an SC list corresponds to a pointer toa tuple, the space complexity of the data structures ofGAC-schema for C is O(r2d).Each time a value (x; a) is removed from D(x), wemust propagate this deletion to each constraint C in-volving x. So, for all the values (y; b) that were sup-ported by a tuple containing a in position index(C; x),we must �nd another support (line 2). To take multi-directionality into account, we �rst check (lines 3 and4) if there exists a valid tuple containing (y; b) that isalready the current support for another value (functionseekInferableSupport, Alg. 2). If not, the functionseekNextSupportwill look for another support for (y; b),starting the search from lastC(y; b) (line 5). If a new sup-port � is found for (y; b) on C, (y; b) is recorded as beingcurrently supported by � (line 6), and for each valuecontained in �, we store the fact that � is the currentsupport for some value (line 7); otherwise, (y; b) has tobe removed (lines 8 to 9).4 The main types of constraintrepresentationsIn this section, we will present the instantiation of theschema in order to deal with three types of constraints.

Algorithm 2: function seekInferableSupportseekInferableSupport (in C: constraint; in y: variable;in b: value): tuplewhile SC(y; b) 6= ; do�  first(SC(y; b)) ;if 9k=�[k] =2 D(var(C; k)) then remove � from SC(y; b) ;else return � /* � is a support */ ;return nil ;Constraints given by a predicate for which we do notknow speci�c algorithms is the most important type. In-deed, there does not exist any tool to process a predi-cate in reasonable time and space. Afterwards, we willpresent a type of constraint which can be viewed as aspecial case of predicate constraints: constraints givenby the set of forbidden tuples. Finally, we will give theseekNextSupport function capable of processing con-straints given by the set of allowed tuples.4.1 PredicatesWhen a constraint C is de�ned by a predicate for whichno particular semantics is known, it is necessary to de�nean ordering on the tuples that will be followed whenlooking for a support for a value (y; b) on C. Thanks tothe function nextTuple (Alg. 3), the lexicographic order�lo de�ned in Section 2 is used to examine the validtuples on X(C). Given any tuple � on X(C), and anyindex k � jX(C)j, nextTuple(C; y; b; �; k) will returnthe smallest valid tuple � greater than � w.r.t. �lo, suchthat the value of y in � is b, and such that the pre�xesof size k of � and � are not equal. The second parameterreturned by nextTuple is the smallest index k0 on which� and � have di�erent values.When the function seekNextSupport (see Alg. 4) iscalled to search for a new support for (y; b) on C, weknow from seekInferableSupport that there does notexist any tuple already checked that supports (y; b) onC. However, we have to take care to avoid checking atuple � which has already been unsuccessfully checkedfor another value of another variable of X(C). We namecandidate a valid tuple which has never been checkedand thus, which could be a support for (y; b), as op-Algorithm 3: function nextTuplenextTuple (in C: constraint; in y: variable; in b: value;in � : tuple; in k: index): (tuple, index)/* returns (�; k0) where:� � is the smallest valid tuple such that �[index(C; y)] = b,� �lo � and �[1::k] 6= � [1::k]� k0 is such that �[1::k0�1] = � [1::k0�1] and �[k0] 6= � [k0]otherwise returns (nil,{) */Note that k0 will always be less than or equal to k.



Algorithm 4: function seekNextSupportseekNextSupport (in C: constraint; in y: variable;in b: value; in � : tuple): tuple1 if � 6= nil then(�; dummy) nextTuple(C; y; b; �; jX(C)j);elsefor i from 1 to jX(C)j do�[i] first(var(C; i)) ;2 �[index(C; y)] b ;3 �  seekCandidateTuple(C; y; b; �; 1) ;found false;4 while (� 6= nil) and (not found) do5 if fC(�) then found true ;else(�; k) nextTuple(C; y; b; �; jX(C)j);6 �  seekCandidateTuple(C; y; b; �; k) ;return �;posed to the valid tuples that have already been checkednot to be allowed by C (when we look for support foranother value). Dealing with multidirectionality impliesonly checking the candidates. This can be done thanksto the function seekCandidateTuple (see Alg. 5).seekCandidateTuple(C; y; b; �; k) returns the small-est (w.r.t.�lo) candidate greater than or equal to �,where � is valid and �[1::k � 1] has been veri�ed to bea possible pre�x for a candidate. For each index fromk to jX(C)j, seekCandidateTuple veri�es whether � isgreater than lastC(var(C; k); �[k]), (denoted by �) (lines2 to 4). If � is smaller than �, the search for a candidatehas to jump forward: either to the smallest valid tuplefollowing � with a pre�x di�erent from �[1::k] (if � and� were diverging before k) (line 6), or directly to thevalid tuple following � (if � and � were diverging afterk) (line 8). When we jump forward to the next validtuple greater than � or �, some values before index kmay have changed. Then, the value k goes back to thesmallest index where the value of � has changed (lines 7and 9) to keep the property of line 1. When k reachesjX(C)j+ 1, � is a candidate and is returned.The function seekNextSupport(C; y; b; �) returns thesmallest tuple greater than � which is checked to be al-lowed by C. From line 1 to line 2, seekNextSupport as-signs to � the smallest valid tuple following � (dependingon whether � is nil or not). Afterwards, � is assignedto the smallest candidate (line 3). The search for a sup-port for (y; b) on C is done in lines 4 to 6: we check �and jump to the next candidate until fC(�) returns true(line 5).A sketch of proof.We will simply show here that seekCandidateTuple cannotmiss any candidates when jumping forward in lines 6 and 8.line 6: suppose there is a candidate �0 between � and thetuple returned by nextTuple(C; y; b; �; k). This means

Algorithm 5: function seekCandidateTupleseekCandidateTuple (in C: constraint; in y: variable;in b: value;in �: tuple; in k: index): tuplewhile (� 6= nil) and (k � jX(C)j) do1 /* � is candidate till index k � 1 */;if lastC(var(C; k); �[k]) 6= nil then2 � lastC(var(C; k); �[k]) ;split 1 ;3 while �[split] = �[split] dosplit split+ 1 ;4 if �[split] < �[split] then5 if split < k then6 (�; k0) nextTuple(C; y; b; �; k) ;7 k  k0 � 1 ;else8 (�; k0) nextTuple(C; y; b; �; jX(C)j) ;9 k  min(k; k0 � 1) ;k k + 1 ;return � ;that �0[1::k] = �[1::k]; otherwise �0 would be the tuplereturned by nextTuple. So, �0 is smaller than � becauseof lines 4 and 5. �0[k] being equal to �[k], �0 cannot bea candidate because � = lastC(var(C; k); �[k]) (see thede�nition of lastC).line 8: suppose there is a candidate �0 between � and �.Then, �0[1::k] is equal to �[1::k] since �[1::k] = �[1::k](lines 3 to 5). Once again that is impossible because� = lastC(var(C; k); �[k]). Finally, �0 cannot be equalto � since � is no longer a valid tuple. (OtherwiseseekInferableSupport would have found it to support(y; b).)4.2 Constraints given in extensionNegative constraintsIn this case, the constraint C is given in extension by theset of forbidden tuples, denoted by T (C). Even withoutloss of generality, we can assume that the constraint isvery loose. (Otherwise, the space in memory neededprohibits us from using that representation.) Then T (C)contains few elements with regard to the set of tupleson jX(C)j. So, if we use the previous method with thepredicate fC(�) such that fC(�), � 62 T (C), then onlya few constraint checks will be needed to �nd a newsupport or to prove there is none, because almost allvalid tuples are candidates.Such a predicate fC(�) can be e�ciently implementedby using a method like hashing [Sedgewick, 1990]. Hash-ing, indeed, permits us to �nd whether an element be-longs to a set S with an O(jSj) space complexity and anaverage time complexity close to a constant.Positive constraintsIn this case, the set of allowed tuples, denoted by T (C),is explicitly given. Thus, for one constraint, the space



Algorithm 6: function seekNextSupportseekNextSupport (in C: constraint; in y: variable;in b: value; in dummy): tuplewhile elt(y; b) 6= nil do�  Tuple(elt(y; b));if isValid(�) then return � ;elt(y; b) next(elt(y; b)) ;return nil ;complexity will depend on the size of T (C) similarly toGAC4. So, at �rst glance, it seems that the space com-plexity of GAC4 cannot be improved. But, in practice,we may have a problem in which some of the constraintsappear many times involving di�erent variables. For in-stance, in con�guration problems, a con�gurator has tochoose the most appropriate components among a cata-log of prede�ned components and arrange them accord-ing to constraints that can be assembly rules, perfor-mance, etc. Most of the constraints involved with thesame kind of components are repeated and are given bytheir common set of allowed tuples.For a constraint C, the representation of the datastructures of GAC4 corresponds to a particular repre-sentation of T (C). So, if two constraints are given byT (C), then GAC4 needs two distinct data structures,each with a O(jT (C)j) space complexity. Hence, for prepeated constraints the space complexity of GAC4 willbe O(p � jT (C)j). The algorithm we presented only re-quires an explicit representation of S and SC lists, andlastC pointers, for each constraint. This leads to aO(r2d) space complexity per constraint, r being the ar-ity of the constraint involved (see Property 2). If therepresentation of T (C) can be shared by p repeatedconstraints, then the global space complexity will beO(jT (C)j + p:r2d), and a factor p will be gained withregard to GAC4.Such an algorithm can be de�ned by representing thecommon set T (C) as GAC4 does for one constraint and byusing for each repeated constraint and each value (y; b) apointer that indicates the last element reached in T (C).We will denote it by elt(y; b). The algorithm does nolonger compute the tuples and test them; it only looksfor a support directly in T (C). The new algorithm isgiven by the function seekNextSupport (Alg. 6) whichreplaces the previous one. The function next(elt(y; b))gives the next tuple in T (C) containing b for variable y.5 Space and time analysisLet C be a constraint of arity r with a tightness t (pro-portion of forbidden tuples), and assume that all do-mains have a size d. Then, if a pointer is represented by4 bytes, a good estimation of the memory required is:

� 16 � r � jftuples on X(C) allowed by Cgj =16rdr(1� t) Bytes for GAC4� 24r2d Bytes for the GAC-schema (C being apredicate1)The table below gives some results about the spacerequirements of GAC4 and the GAC-schema. The sizes aregiven in Megabytes. Only the con�gurations associatedwith bold numbers can be used in practice. (\�" meansthat more than 256 Mb are needed.) Bear in mindthat these space requirements are given for only oneconstraint.t 0.001 0.02 0.2 0.5 0.8 0.98 0.999r = 8, d = 10GAC-s 0.015 for any tightnessGAC4 - - - - - 256 12.8r = 5, d = 20GAC-s 0.012 for any tightnessGAC4 256 251 205 128 51 5.1 0.26r = 4, d = 50GAC-s 0.019 for any tightnessGAC4 - - - 200 80 8 0.4Finally, to be exhaustive on complexities, we reportthe worst-case time complexities of the di�erent versionsof the GAC-schema presented in this paper. For a pred-icate of arity r, the GAC-schema has a time complexitybounded above by O(dr). This is a gain of r2d over theO(r2dr+1) of CN. For a negative constraint C, this com-plexity trivially becomes O(dr � jT (C)j) (see subsection4.2). For a positive constraint C, the worst-case timecomplexity of the GAC-schema is O(jT (C)j). This is thesame as the one of GAC4.6 A cryptogram as an exampleIn this section we brie
y present a very small exam-ple, which is easy to understand, and which is su�-cient to show some of the advantages of dealing withnon-binary predicates. (This example is implemented inILOG SOLVER 4.0, in which the GAC-schema has beeninserted. ) For a complete presentation of the examplesee [ILOG, 1997].In the cryptogram of Fig. 1, the problem is to �nd aone to one mapping from letters fA;B;D;E;G;L;N;O;R; Tg to f0::9g in such a way that the addition ob-tained by replacing each letter by its associated value isconsistent. It was already possible to solve this prob-lem with the previous version of ILOG SOLVER, byencoding it (for instance) as the following constraintnetwork: A variable for each letter; A domain con-taining the numbers 0..9 for each variable; And twonon-binary constraints for which e�cient algorithms are1For constraints given in extension we should add the sizeof the constraint representation (see subsection 4.2).



R O B E R T
G E A LR+ D
D O N A L DFigure 1: The cryptogramknown, 100000D + 10000O + 1000N + 100A + 10L +D + 100000G+ 10000E + 1000R + 100A + 10L + D =100000R + 10000O + 1000B + 100E + 10R + T , andall-di�erent(A;B;D;E;G;L;N;O;R; T ). However, withthis representation, some of the knowledge we have onthe problem was impossible to state, while it could havebeen helpful in solving the problem e�ciently. We knowfor example, that in the right most column D + D isnecessarily equal to T or 10 + T since ther is no sumkept back. We know that on the left most column R isequal to D +G or D +G+ 1 since there is no letter onthe left of R. More generally, for the third column forexample, we can state that (N + R = B) _ (N + R =10 + B) _ (N + R + 1 = B) _ (N + R + 1 = 10 + B).All these constraints (six in the cryptogram of Fig. 1),are predicates, but no already known speci�c algorithmcan handle them (they are not arithmetic relations, butdisjunctions of several arithmetic relations).without DVO with DVO#bt seconds #bt secondswithout GAC-s 4612 0.72 138 0.05with GAC-s 61 0.1 1 0.00The table above presents the number of backtracks(#bt) and cpu-time performances of solving the cryp-togram with ILOG SOLVER 4.0 (maintaining arc con-sistency) on a Pentium Pro 200, with or without theGAC-schema and the 6 additional constraints, and withand without the use of the minimal domain dynamicvariable ordering (DVO).Of course it is a very small illustration that is givenhere with that sample problem. In this problem, indeed,the additional constraints are only added to improve thesearch. They are not necessary to encode the problem:the �rst representation was already ensuring that thesolutions of the constraint network were the solutions ofthe cryptogram.7 ConclusionWhile arc consistency had been widely studied by theCSP community, there did not exist any algorithm thate�ciently achieves arc consistency on non-binary con-straints. Thus, we presented GAC-schema, which is builtto take into account the last improvements available onbinary constraints (AC-7 like schema). We saw that itis even more important than on binary constraints touse such improvements (e.g. multidirectionality). With

specialized instantiations, this schema is capable of e�-ciently dealing with predicates, positive constraints, ornegative constraints. The perspectives of this work areto propose other instantiations of the schema in order toimprove arc consistency processing on some other typesof constraint representations frequently occurring in in-dustrial problems.References[Bessi�ere and R�egin, 1996] C. Bessi�ere and J.C. R�egin. MACand combined heuristics: two reasons to forsake FC (andCBJ?) on hard problems. In Proceedings CP'96, pages 61{75, Cambridge MA, 1996.[Bessi�ere et al., 1995] C. Bessi�ere, E.C. Freuder, and J.C.R�egin. Using inference to reduce arc consistency computa-tion. In Proceedings IJCAI'95, pages 592{598, Montr�eal,Canada, 1995.[Bessi�ere, 1994] C. Bessi�ere. Arc-consistency and arc-consistency again. Arti�cial Intelligence, 65:179{190, 1994.[Grant and Smith, 1996] S.A. Grant and B.M. Smith. Thephase transition behavior of maintaining arc consistency.In Proceedings ECAI'96, pages 175{179, Budapest, Hun-gary, 1996.[ILOG, 1997] ILOG. User's manual. ILOG SOLVER, 4.0edition, 1997.[Mackworth, 1977a] A.K. Mackworth. Consistency in net-works of relations. Arti�cial Intelligence, 8:99{118, 1977.[Mackworth, 1977b] A.K. Mackworth. On reading sketchmaps. In Proceedings IJCAI'77, pages 598{606, CambridgeMA, 1977.[Mohr and Henderson, 1986] R. Mohr and T.C. Henderson.Arc and path consistency revisited. Arti�cial Intelligence,28:225{233, 1986.[Mohr and Masini, 1988] R. Mohr and G. Masini. Good olddiscrete relaxation. In Proceedings ECAI'88, pages 651{656, Munchen, FRG, 1988.[Montanari, 1974] U. Montanari. Networks of constraints:Fundamental properties and applications to picture pro-cessing. Information Science, 7:95{132, 1974.[R�egin, 1994] J.C. R�egin. A �ltering algorithm for con-straints of di�erence in CSPs. In Proceedings AAAI'94,pages 362{367, Seattle WA, 1994.[R�egin, 1996] J.C. R�egin. Generalized arc consistency forglobal cardinality constraint. In Proceedings AAAI'96,pages 209{215, Portland OR, 1996.[Rossi et al., 1990] F. Rossi, C. Petrie, and V. Dhar. On theequivalence of constraint satisfaction problems. In Proceed-ings ECAI'90, pages 550{556, Stockholm, Sweden, 1990.[Sabin and Freuder, 1994] D. Sabin and E.C. Freuder. Con-tradicting conventional wisdom in constraint satisfaction.In Proceedings PPCP'94, Seattle WA, 1994.[Sedgewick, 1990] R. Sedgewick. Algorithms in C. Addison-Wesley Publishing Company, 1990.[van Beek and Dechter, 1995] P. van Beek and R. Dechter.On the minimality and global consistency of row-convexconstraint networks. Journal of the ACM, 42(3):543{561,1995.



[Van Hentenryck et al., 1992] P. Van Hentenryck, Y. Dev-ille, and C.M. Teng. A generic arc-consistency algorithmand its specializations. Arti�cial Intelligence, 57:291{321,1992.


