Arc consistency for general constraint networks: preliminary results

Christian Bessiere
LIRMM-CNRS (UMR, 5506)
161 rue Ada
34392 Montpellier cedex 5, France
Email: bessiere@lirmm.fr

Abstract

Constraint networks are used more and more to
solve combinatorial problems in real-life appli-
cations. Much activity is concentrated on im-
proving the efficiency of finding a solution in a
constraint network (the constraint satisfaction
problem, CSP). Particularly, arc consistency
caught many researchers’ attention, involving
the discovery of a large number of algorithms.
And, for the last two years, it has been shown
that maintaining arc consistency during search
is definitely a worthwhile approach. However,
results on CSPs and on arc consistency are al-
most always limited to binary constraint net-
works. The CSP is no longer an academic prob-
lem, and it is time to deal with non-binary
CSPs, as widely required in real world con-
straint solvers. This paper proposes a general
schema to implement arc consistency on con-
straints of any arity when no specific algorithm
is known. A first instantiation of the schema
is presented here, which deals with constraints
given by a predicate, by a set of forbidden com-
binations of values, or by a set of allowed ones.

1 Introduction
1.1 Overview

Constraint satisfaction problems (CSPs) occur widely in
artificial intelligence. They are used more and more in
real-life applications, such as scene analysis, resource al-
location, crew scheduling, time tabling, frequency allo-
cation, car sequencing, etc. The CSP involves finding a
solution in a constraint network, i.e. finding values for
problem variables subject to constraints.

The general task of solving a CSP being NP-hard,
many researchers have concentrated on improving the
efficiency of finding a solution in a constraint network.
Particularly, arc consistency caught many researchers’
attention, involving the discovery of a large number of

Jean-Charles Régin
ILOG S.A.
9 rue de Verdun
94253 Gentilly Cedex, France
Email: regin@ilog.fr

algorithms [Mackworth, 1977a), [Mohr and Henderson,
1986), [Bessiere, 1994], [Bessiere et al., 1995]. And, re-
cently, the value of these studies on arc consistency in-
creased since it has been shown that maintaining arc
consistency during search is definitely a worthwhile ap-
proach when solving large and hard problems [Sabin and
Freuder, 1994], [Bessiere et al., 1995], [Bessiere and Ré-
gin, 1996], [Grant and Smith, 1996].

However, results about CSP solving and about arc
consistency are almost always limited to binary con-
straint networks, justified by the fact that any non-
binary constraint network can be translated into an
equivalent binary one with additional variables [Rossi et
al., 1990]. But, in practical cases, it is often inconceiv-
able to translate a non-binary constraint into an equiva-
lent set of binary ones with the technique cited above be-
cause of the underlying computational and memory cost.
Sometimes, when a constraint is representable [Monta-
nari, 1974]), it is possible to replace it by a set of binary
constraints without introducing new variables, and with-
out generating the set of allowed tuples of each binary
constraint. For example, if a constraint states that the
three variables x1, z2, and z3 must all take different val-
ues, we can equivalently state that there is an inequal-
ity constraint on each of the pairs of variables {z1,z2},
{x1,23}, and {xs2,x3}. But, as it has been shown in
[Régin, 1994], non-binary constraints lose a part of their
semantics when encoded into a set of binary constraints
in this way. This leads, for example, to less pruning for
arc consistency algorithms handling them.

Hence, if we no longer want to consider the CSP as
an academic problem we must be able to deal with any
kind of constraints, and so, with non-binary constraints,
as widely required in real-world constraint solvers.

1.2 Previous work

In the constraint satisfaction community, the number of
works involving non-binary constraint networks is rather
small. For the particular case of arc consistency, we
know two algorithms capable of achieving it. Mackworth
[Mackworth, 1977b] proposed the algorithm CN, which

is a kind of generalization of AC-3 to non-binary con-
straints. As AC-3, that algorithm has a bad worst-case
time complexity (O(er?d"*1), with e the number of con-
straints in the network, r the maximal arity of the con-
straints, and d the size of the largest domain). Mohr and
Massini [Mohr and Masini, 1988] proposed GAC4. It is
based on the same idea as AC-4 (computing the number
of supports for each value in each domain and removing
those with this number equal to zero). Thus, it gets rid
of the huge worst-case time complexity of CN (GAC4 is
in O(ed")), but has the same drawbacks as AC-4: space
complexity (because of the lists of supported values),
and average time complexity. The respective drawbacks
of CN and GAC4 are even more important than on their bi-
nary versions, so that CN can only be applied on ternary
constraints and very small domains, and GAC4 on very
tight constraints, where the number of allowed tuples of
values is very small.

Finally, we can point out the work of van Beek and
Dechter [van Beek and Dechter, 1995], who proposed
another definition for arc consistency on non-binary con-
straint networks, namely relational arc consistency. This
definition is much stronger than the classical one since
for each constraint it requires global consistency on the
underlying subnetwork (i.e. the network involving the
variables of the given constraint, and all the “smaller”
constraints defined on some of these variables).

1.3 Our purpose

Our general aim is to propose a new schema in order
to perform arc consistency on any real world constraint
network with a reasonably low time and space complex-
ity. In industrial applications, a constraint can be given
in many different forms: by the set of allowed tuples in
extension (generally when the constraint is very tight),
by the set of forbidden tuples in extension (when the
constraint is very loose), by a conjunctive constraint, by
an arithmetic relation, or by any predicate for which no
particular semantics is known (data base query, user’s
context-dependent constraint, etc.). Thus, a suitable arc
consistency algorithm should be able to efficiently handle
any of these constraints.

The particular aim of this paper is to present the first
steps of our work. First, we will present our general
schema for arc consistency on non-binary constraint net-
works. This schema is based on the AC-7 schema given
in [Bessiere et al., 1995]. It makes use of the “current
support” idea, and of “multidirectionality” (the gener-
alization of bidirectionality to non-binary constraints)
in order to save as many constraint checks as possible.
Second, we will instantiate this schema with some of the
most frequently occurring forms of constraint represen-
tations.

Constraints defined by a predicate for which no partic-

ular semantics is known are one of the most important
forms that have to be handled. Indeed, if we except
the predicates for which specific algorithms are known
(arithmetic relations [Van Hentenryck et al., 1992], car-
dinality constraints [Régin, 1996], etc.), the only avail-
able algorithms for non-binary constraints are CN and
GAC4. GAC4 deals only with constraints given in exten-
sion, and then is not capable of handling a predicate,
even if; theoretically, it is always possible to build the
whole set of allowed tuples by checking all the combi-
nations of values for the variables involved in the con-
straint. It would be impracticable, at least because of
space requirements. Moreover, asking the value of a
predicate for a particular combination of values (a con-
straint check) can be very costly in practice, when the
answer is contained in a database, or requires heavy com-
putation. This definitively eliminates CN, with its huge
time complexity, doing and doing again many times the
same constraint checks. Therefore, we will propose an
instantiation of the schema that will efficiently handle
predicates, minimizing the number of constraint checks.
However, this schema is certainly not competitive on
predicates for which a specific algorithm is available.

Afterwards, we will instantiate the schema for con-
straints defined by a set of forbidden tuples. This kind
of representation is of practical interest when constraints
are very loose.

Finally, we will show that the schema can also deal
with constraints given in extension by the list of allowed
tuples. It leads to an improvement on GAC4, which was
already written for that kind of constraint.

2 Preliminaries

Constraint network. A finite constraint network P
is defined as a set of n wvariables X = {x1,...,2,}, a
set of current domains D = {D(x1),...,D(zy,)} where
D(x;) is the finite set of possible values for variable x;,
and a set C of constraints between variables. We intro-
duce the particular notation Dy = {Dy(z1),...,Do(zn)}
to represent the set of initial domains of P. Indeed, we
consider that any constraint network P can be associated
with an initial domain Dy (containing D), on which con-
straint definitions were stated. A total ordering <4 can
be defined on D(z;),Vz; € X, without loss of generality.
Constraints. A constraint C' on the ordered set
of variables X(C) = (x4,,...,%;.) is a subset of the
Cartesian product Dg(z;,) X --- X Do(z;,) that speci-
fies the allowed combinations of values for the variables
Ty X ... X ;. An element of Do(x;,) X -+ X Do(x;,)
is called a tuple on X(C). Two tuples 7 and 7' on
X (C) can be ordered by the natural lexicographic order
<o in which 7 <, 7" iff k/7[1.k - 1] = 7'[1.k — 1]
and 7[k] <4 7'[k] (r[l..k] being the prefix of size k
of 7, and 7[k] the k" value of 7). The tuples of

Dy(z;,) % -+ x Do(z;,) not allowed by C are called the
forbidden tuples of C. Verifying whether a given tuple
7 is allowed by C or not is called a constraint check.
| X (C)] is the arity of C.

A constraint C involving the subset of variables
X(C) = (x4y,...,x;.) can be defined by the set of al-
lowed tuples (resp. the set of forbidden tuples) given in
extension when the constraint is tight (resp. is loose),
or by an arithmetic relation. More generally, it can
be represented by any Boolean function fo defined on
Do(@i,) x -+ x Do ().

Solutions. A solution of a constraint network is an
instantiation of the variables such that all the constraints
are satisfied.

Notation. A value a for a variable z is often denoted
by (x,a). var(C,i) represents the it* variable of X (C),
while index(C, z) is the position of variable x in X (C).
Arc consistency. Let P = (X,D,(C) be a constraint
network, C' a constraint in C.

A tuple 7 of X(C) is walid if V(z,a) € 7,0 € D(z);
otherwise, it is rejected.

A value a € D(z) is consistent with C iff x ¢ X (C), or
37 allowed by C, such that a = r[index(C,)] and 7 is
valid. (7 is then called a support for (z,a) on C.)

C is arc consistent iff Vo; € X(C),D(z;) # 0 and
Ya € D(z;),a is consistent with C.

P is arc consistent iff all the constraints of C are arc
consistent.

We achieve arc consistency in P by removing every
value not consistent with at least one constraint in C.

3 A general schema for arc consistency

As we pointed out in Section 1, our general aim is, on the
one hand, to provide a schema sufficiently general to be
instantiated with any kind of constraint. On the other
hand, this schema must be powerful enough to avoid as
many constraint checks as possible when achieving arc
consistency.

We did not choose an AC-3 like or an AC-4 like schema
for efficiency reasons. To be reasonably efficient, the
schema has to be based on AC-6 or AC-7. They are both
based on the search of a single support for each value,
the worst-case time complexity being optimal in both
algorithms. The difference between them is whether or
not they deal with bidirectionality [Bessiere et al., 1995].

In a non-binary constraint network, any constraint is
multidirectional, as any constraint is bidirectional in a
binary constraint network. Multidirectionality, indeed,
is the fact that for any constraint C, a tuple 7 on X (C)
is a support for the value 7[index(C, z)] (« being a vari-
able involved in C) iff Vy € X(C), 7 is a support for
T[index(C,y)]. We say that an algorithm “deals with”
multidirectionality iff it never checks whether a tuple is

Algorithm 1: function propagation

propagation (in C: constraint; in z: variable;
in a: value;
in out deletionStream: list): boolean

for each 7 € Sc(z,a) do
1 for each (z,c¢) € 7 do remove 7 from S¢(z,¢);
2 for each (y,b) € S(7) do
remove (y,b) from S(7);
if b € D(y) then

3 o seekInferableSupport(C,y,b);
4 if o0 # nil then
| add (y,b) in S(o) ;
else
5 o < seekNextSupport (C,y,b, lastc(y,b));
if o0 # nil then
6 add (y,b) in S(o) ;
lastc(y,b) < o ;
7 for k from 1 to |X(C)| do
| add o in Sc(var(C,k),olk]) ;
else
8 remove b from D(y) ;
if D(y) = 0 then return false ;
9 | add (y,b) in deletionStream ;

return true ;

a support for a value when it has already been checked
for another value, and never looks for a support for a
value on a constraint C' when a tuple supporting this
value has already been checked.

And, dealing with multidirectionality appears to be
promising on non-binary constraints. A tuple 7, indeed,
allowed by a constraint C, can support | X (C)| values.
Thus the possible savings are much more important than
on binary constraints. AC-7 could save d* constraint
checks thanks to bidirectionality, where d is the domain
size of the variables involved (see [Bessiere et al., 1995]),
while d" constraint checks can be saved thanks to mul-
tidirectionality on an r-ary constraint.

The framework we propose is then an AC-7
like schema in which search for support (function
seekNextSupport) is instantiated differently depend-
ing on the type of the constraint involved. This
schema (named GAC-schema) is able to handle any
type of constraint, as soon as the corresponding func-
tion seekNextSupport is available. Before giving the
seekNextSupport function associated with the types of
constraints we will study in this paper (in the next
section), let us describe the function propagation (see
Alg. 1). The program including it must create and ini-
tialize the data structures (Sc¢, S, and lastc), and call
propagation(C, z, a, deletionStream) for each constraint
C involving z, each time a value (z,a) is removed from
D(z), in order to propagate the consequences of this
deletion.

Sc, S, and lastc must be initialized in a way such that:

e Sc(z,a) contains all the allowed tuples 7 that are
the current support for some value, and such that
T[index(C, z)] = a.

e S(7) contains all values for which 7 is the current
support.

e lastc(y,b) is the last tuple
seekNextSupport as a support for (y,b) if
seekNextSupport(C,y,b,—) has already been
called; nil otherwise. lastc(y,b) is perhaps no
longer a support in C for (y,b) (if it is no longer
valid and seekInferableSupport has found a new
support for (y,b)). It is just here to give the point
where seekNextSupport will have to restart the
search for a support for (y,b) on C at the next
call. There is an underlying ordering on the tuples,
which is proper to seekNextSupport.

Property 1 VC € C,Vallowed tuple T :
Ve e X(C), T € Sc(z, tlindex(C, z))]).

Property 2 Given any constraint C of arity r, the
space complezity of the data structure of GAC-schema for
C is O(r?d).

Proof. Each value has at most one support, then
> 1S(7)| < rd and there are at most rd tuples in mem-
ory. Each value is associated with one lastc, so the
lastc data structure requires rd pointers. A tuple con-
tains r elements, thus the set of all tuples that support
at least one value can be represented in O(r?d). The
number of elements that belong to Sc is bounded above
by r?d by property 1 and because Y |S(7)| < rd. Since
an element of an S¢ list corresponds to a pointer to
a tuple, the space complexity of the data structures of
GAC-schema for C' is O(r%d). [

returned by

S(r) 2 0 &

Each time a value (z,a) is removed from D(z), we
must propagate this deletion to each constraint C' in-
volving x. So, for all the values (y,b) that were sup-
ported by a tuple containing a in position index(C, z),
we must find another support (line 2). To take multi-
directionality into account, we first check (lines 3 and
4) if there exists a valid tuple containing (y,b) that is
already the current support for another value (function
seekInferableSupport, Alg. 2). If not, the function
seekNextSupport will look for another support for (y, b),
starting the search from lastc(y, b) (line 5). If a new sup-
port ¢ is found for (y,b) on C, (y,b) is recorded as being
currently supported by o (line 6), and for each value
contained in o, we store the fact that o is the current
support for some value (line 7); otherwise, (y,b) has to
be removed (lines 8 to 9).

4 The main types of constraint
representations

In this section, we will present the instantiation of the
schema in order to deal with three types of constraints.

Algorithm 2: function seekInferableSupport

seekInferableSupport (in C: constraint; in y: variable;
in b: value): tuple
while S¢(y,b) # 0 do
o « first(Sc(y,b)) ;
if 3k/o[k] ¢ D(var(C,k)) then remove o from Sc(y,b) ;

else return o /* o is a support */ ;

return nil ;

Constraints given by a predicate for which we do not
know specific algorithms is the most important type. In-
deed, there does not exist any tool to process a predi-
cate in reasonable time and space. Afterwards, we will
present a type of constraint which can be viewed as a
special case of predicate constraints: constraints given
by the set of forbidden tuples. Finally, we will give the
seekNextSupport function capable of processing con-
straints given by the set of allowed tuples.

4.1 Predicates

When a constraint C' is defined by a predicate for which
no particular semantics is known, it is necessary to define
an ordering on the tuples that will be followed when
looking for a support for a value (y,b) on C. Thanks to
the function nextTuple (Alg. 3), the lexicographic order
<, defined in Section 2 is used to examine the valid
tuples on X (C). Given any tuple 7 on X(C), and any
index k < |X(C)|, nextTuple(C,y,b, 7, k) will return
the smallest valid tuple o greater than 7 w.r.t. <;,, such
that the value of y in o is b, and such that the prefixes
of size k of o and 7 are not equal. The second parameter
returned by nextTuple is the smallest index k' on which
o and 7 have different values.

When the function seekNextSupport (see Alg. 4) is
called to search for a new support for (y,b) on C, we
know from seekInferableSupport that there does not
exist any tuple already checked that supports (y,b) on
C. However, we have to take care to avoid checking a
tuple 7 which has already been unsuccessfully checked
for another value of another variable of X (C). We name
candidate a valid tuple which has never been checked
and thus, which could be a support for (y,b), as op-

Algorithm 3: function nextTuple

nextTuple (in C: constraint; in y: variable; in b: value;
in 7: tuple; in k: index): (tuple, index)
/* returns (o, k') where:

e o is the smallest valid tuple such that o[index(C, y)] = b,
T <0 0 and o[l..k] # 7[1..k]

e k' issuch that o[l1..k' —1] = 7[1..k' —1] and o[k'] # T[K']

otherwise returns (nil—) */

Note that k' will always be less than or equal to k.

Algorithm 4: function seekNextSupport

Algorithm 5: function seekCandidateTuple

seekNextSupport (in C: constraint; in y: variable;
in b: value; in 7: tuple): tuple
1 if 7 # nil then
| (o, dummy) < nextTuple(C,y,b, 7, |X(C)|);
else
for i from 1 to | X(C)| do
| oli] « first(var(C,i)) ;
2 | ofindex(C,y)] < b ;
3 o < seekCandidateTuple(C,y,b,0,1) ;

found <+ false;
4 while (¢ # nil) and (not found) do

5 if fc(o) then found < true ;
else
(0,k) < nextTuple(C,y,b, 0, |X(C)|);
6 o < seekCandidateTuple(C 7y,b o,k);
return o;

posed to the valid tuples that have already been checked
not to be allowed by C' (when we look for support for
another value). Dealing with multidirectionality implies
only checking the candidates. This can be done thanks
to the function seekCandidateTuple (see Alg. 5).

seekCandidateTuple(C,y,b, 0, k) returns the small-
est (w.r.t.<;,) candidate greater than or equal to o,
where o is valid and o[l..k — 1] has been verified to be
a possible prefix for a candidate. For each index from
k to | X (C)|, seekCandidateTuple verifies whether o is
greater than lastc(var(C, k), o[k]), (denoted by A) (lines
2 to 4). If o is smaller than A, the search for a candidate
has to jump forward: either to the smallest valid tuple
following o with a prefix different from o[1..k] (if o and
A were diverging before k) (line 6), or directly to the
valid tuple following A (if o and A were diverging after
k) (line 8). When we jump forward to the next valid
tuple greater than o or A, some values before index k
may have changed. Then, the value k goes back to the
smallest index where the value of o has changed (lines 7
and 9) to keep the property of line 1. When k reaches
|X(C)| +1, o is a candidate and is returned.

The function seekNextSupport(C,y,b, T) returns the
smallest tuple greater than 7 which is checked to be al-
lowed by C'. From line 1 to line 2, seekNextSupport as-
signs to o the smallest valid tuple following 7 (depending
on whether 7 is nil or not). Afterwards, o is assigned
to the smallest candidate (line 3). The search for a sup-
port for (y,b) on C' is done in lines 4 to 6: we check o
and jump to the next candidate until fo (o) returns true
(line 5).

A sketch of proof.
We will simply show here that seekCandidateTuple cannot
miss any candidates when jumping forward in lines 6 and 8.

line 6: suppose there is a candidate o’ between o and the
tuple returned by nextTuple(C,y,b,o,k). This means

seekCandidateTuple (in C: constraint; in y: variable;
in b: value;
in o: tuple; in k: index): tuple

while (o # nil) and (k < |X(C)|) do
1 /* o is candidate till index k — 1 */;
if lastc(var(C, k), o[k]) # nil then
2 A« lastc(var(C, k), olk]) ;
split <+ 1 ;
3 while o[split] = A[split] do

| split < split + 1 ;

4 if o[split] < A[split] then
5 if split < k then
6 (0,k') + nextTuple(C,y,b,0,k) ;
7 kK —1;
else

8 (0,k") < nextTuple(C,y,b, \, | X(C)]) ;
9 k «— min(k, k' — 1) ;

L k< k+1;

return o ;

that o'[1..k] = o[1..k]; otherwise o’ would be the tuple
returned by nextTuple. So, o’ is smaller than A because
of lines 4 and 5. o'[k] being equal to o[k], o' cannot be
a candidate because A = lastc(var(C, k), o[k]) (see the
definition of lastc).

line 8: suppose there is a candidate o’ between o and).
Then, o'[1..k] is equal to o[l..k] since o[l..k] = A[1..K]
(lines 3 to 5). Omnce again that is impossible because
A = lastc(var(C, k), o[k]). Finally, o’ cannot be equal
to A since A is no longer a valid tuple. (Otherwise
seekInferableSupport would have found it to support

(y,0).) "
4.2 Constraints given in extension

Negative constraints

In this case, the constraint C' is given in extension by the
set of forbidden tuples, denoted by T'(C). Even without
loss of generality, we can assume that the constraint is
very loose. (Otherwise, the space in memory needed
prohibits us from using that representation.) Then T'(C)
contains few elements with regard to the set of tuples
on | X(C)|. So, if we use the previous method with the
predicate fc(o) such that fo(o) < o € T(C), then only
a few constraint checks will be needed to find a new
support or to prove there is none, because almost all
valid tuples are candidates.

Such a predicate fo (o) can be efficiently implemented
by using a method like hashing [Sedgewick, 1990]. Hash-
ing, indeed, permits us to find whether an element be-
longs to a set S with an O(]S|) space complexity and an
average time complexity close to a constant.

Positive constraints

In this case, the set of allowed tuples, denoted by T(C),
is explicitly given. Thus, for one constraint, the space

Algorithm 6: function seekNextSupport

seekNextSupport (in C: constraint; in y: variable;
in b: value; in dummy): tuple
while elt(y,b) # nil do

o < Tuple(elt(y,b));
if isValid(o) then return o ;

elt(y,b) < next(elt(y,b)) ;

return nil ;

complexity will depend on the size of T'(C) similarly to
GAC4. So, at first glance, it seems that the space com-
plexity of GAC4 cannot be improved. But, in practice,
we may have a problem in which some of the constraints
appear many times involving different variables. For in-
stance, in configuration problems, a configurator has to
choose the most appropriate components among a cata-
log of predefined components and arrange them accord-
ing to constraints that can be assembly rules, perfor-
mance, etc. Most of the constraints involved with the
same kind of components are repeated and are given by
their common set of allowed tuples.

For a constraint C, the representation of the data
structures of GAC4 corresponds to a particular repre-
sentation of T'(C'). So, if two constraints are given by
T(C), then GAC4 needs two distinct data structures,
each with a O(|T(C)|) space complexity. Hence, for p
repeated constraints the space complexity of GAC4 will
be O(p - |T(C)|). The algorithm we presented only re-
quires an explicit representation of S and S¢ lists, and
lastc pointers, for each constraint. This leads to a
O(r?d) space complexity per constraint, r being the ar-
ity of the constraint involved (see Property 2). If the
representation of T(C') can be shared by p repeated
constraints, then the global space complexity will be
O(|T(C)| + p.r?d), and a factor p will be gained with
regard to GAC4.

Such an algorithm can be defined by representing the
common set T'(C') as GAC4 does for one constraint and by
using for each repeated constraint and each value (y, b) a
pointer that indicates the last element reached in T'(C).
We will denote it by elt(y,b). The algorithm does no
longer compute the tuples and test them; it only looks
for a support directly in T(C). The new algorithm is
given by the function seekNextSupport (Alg. 6) which
replaces the previous one. The function next(elt(y,b))
gives the next tuple in T'(C') containing b for variable y.

5 Space and time analysis

Let C be a constraint of arity = with a tightness ¢ (pro-
portion of forbidden tuples), and assume that all do-
mains have a size d. Then, if a pointer is represented by
4 bytes, a good estimation of the memory required is:

e 16 - r - [{tuples on X(C) allowed by C}| =
16rd"(1 — t) Bytes for GAC4

e 24r?d Bytes for the GAC-schema (C being a
predicate!)

The table below gives some results about the space
requirements of GAC4 and the GAC-schema. The sizes are
given in Megabytes. Only the configurations associated
with bold numbers can be used in practice. (“—” means
that more than 256 Mb are needed.) Bear in mind
that these space requirements are given for only one
constraint.

[¢ [0.001 J0.02]027] 05]0.87]0.9870.999 |

r=8,d=10

GAC-s 0.015 for any tightness

GAC4 - | - 1 -1 -1 -125]7]128
r=>5,d=20

GAC-s 0.012 for any tightness

GAC4 | 256 | 251 [205 [128 [51 | 5.1 [0.26
r=4,d=750

GAC-s 0.019 for any tightness

GAC4 - | -1 -TJ200]8 7] 8 | 0.4

Finally, to be exhaustive on complexities, we report
the worst-case time complexities of the different versions
of the GAC-schema presented in this paper. For a pred-
icate of arity r, the GAC-schema has a time complexity
bounded above by O(d"). This is a gain of r2d over the
O(r?d™*1) of CN. For a negative constraint C, this com-
plexity trivially becomes O(d" - |T(C)|) (see subsection
4.2). For a positive constraint C, the worst-case time
complexity of the GAC-schema is O(|T'(C)|). This is the
same as the one of GAC4.

6 A cryptogram as an example

In this section we briefly present a very small exam-
ple, which is easy to understand, and which is suffi-
cient to show some of the advantages of dealing with
non-binary predicates. (This example is implemented in
ILOG SOLVER 4.0, in which the GAC-schema has been
inserted.) For a complete presentation of the example
see [ILOG, 1997].

In the cryptogram of Fig. 1, the problem is to find a
one to one mapping from letters {A, B,D,E,G,L, N, O,
R,T} to {0..9} in such a way that the addition ob-
tained by replacing each letter by its associated value is
consistent. It was already possible to solve this prob-
lem with the previous version of ILOG SOLVER, by
encoding it (for instance) as the following constraint
network: A variable for each letter; A domain con-
taining the numbers 0..9 for each variable; And two
non-binary constraints for which efficient algorithms are

'For constraints given in extension we should add the size
of the constraint representation (see subsection 4.2).

DONALD
+ GERALD

ROBERT

Figure 1: The cryptogram

known, 100000D + 100000 + 1000N + 100A + 10L +
D + 100000G + 10000E + 1000R + 100A + 10L+ D =
100000R + 100000 + 1000B + 100E + 10R + T', and
all-different(A, B,D,E,G,L,N,O, R,T). However, with
this representation, some of the knowledge we have on
the problem was impossible to state, while it could have
been helpful in solving the problem efficiently. We know
for example, that in the right most column D + D is
necessarily equal to 7" or 10 + T since ther is no sum
kept back. We know that on the left most column R is
equal to D 4+ G or D 4+ G + 1 since there is no letter on
the left of R. More generally, for the third column for
example, we can state that (N + R = B)V (N + R =
100+B)V(N+R+1=B)V(N+R+1=10+ B).
All these constraints (six in the cryptogram of Fig. 1),
are predicates, but no already known specific algorithm
can handle them (they are not arithmetic relations, but
disjunctions of several arithmetic relations).

without DVO with DVO
#bt | seconds | #bt | seconds
without GAC-s | 4612 0.72 138 0.05
with GAC-s 61 0.1 1 0.00

The table above presents the number of backtracks
(#bt) and cpu-time performances of solving the cryp-
togram with ILOG SOLVER 4.0 (maintaining arc con-
sistency) on a Pentium Pro 200, with or without the
GAC-schema and the 6 additional constraints, and with
and without the use of the minimal domain dynamic
variable ordering (DVO).

Of course it is a very small illustration that is given
here with that sample problem. In this problem, indeed,
the additional constraints are only added to improve the
search. They are not necessary to encode the problem:
the first representation was already ensuring that the
solutions of the constraint network were the solutions of
the cryptogram.

7 Conclusion

While arc consistency had been widely studied by the
CSP community, there did not exist any algorithm that
efficiently achieves arc consistency on non-binary con-
straints. Thus, we presented GAC-schema, which is built
to take into account the last improvements available on
binary constraints (AC-7 like schema). We saw that it
is even more important than on binary constraints to
use such improvements (e.g. multidirectionality). With

specialized instantiations, this schema is capable of effi-
ciently dealing with predicates, positive constraints, or
negative constraints. The perspectives of this work are
to propose other instantiations of the schema in order to
improve arc consistency processing on some other types
of constraint representations frequently occurring in in-
dustrial problems.

References

[Bessiere and Régin, 1996] C. Bessiere and J.C. Régin. MAC
and combined heuristics: two reasons to forsake FC (and
CBJ?) on hard problems. In Proceedings CP’96, pages 61—
75, Cambridge MA, 1996.

[Bessiere et al., 1995] C. Bessiere, E.C. Freuder, and J.C.
Régin. Using inference to reduce arc consistency computa-
tion. In Proceedings IJCAI’95, pages 592-598, Montréal,
Canada, 1995.

[Bessiere, 1994] C. Bessiere. Arc-consistency and arc-
consistency again. Artificial Intelligence, 65:179-190, 1994.

[Grant and Smith, 1996] S.A. Grant and B.M. Smith. The
phase transition behavior of maintaining arc consistency.
In Proceedings ECAI’96, pages 175-179, Budapest, Hun-
gary, 1996.

[ILOG, 1997] ILOG. User’s manual. ILOG SOLVER, 4.0
edition, 1997.

[Mackworth, 1977a] A.K. Mackworth. Consistency in net-
works of relations. Artificial Intelligence, 8:99-118, 1977.

[Mackworth, 1977b] A.K. Mackworth. On reading sketch
maps. In Proceedings IJCAI’77, pages 598-606, Cambridge
MA, 1977.

[Mohr and Henderson, 1986] R. Mohr and T.C. Henderson.
Arc and path consistency revisited. Artificial Intelligence,
28:225-233, 1986.

[Mohr and Masini, 1988] R. Mohr and G. Masini. Good old
discrete relaxation. In Proceedings ECAI’88, pages 651—
656, Munchen, FRG, 1988.

[Montanari, 1974] U. Montanari. Networks of constraints:
Fundamental properties and applications to picture pro-
cessing. Information Science, 7:95-132, 1974.

[Régin, 1994] J.C. Régin. A filtering algorithm for con-
straints of difference in CSPs. In Proceedings AAAI’9,
pages 362-367, Seattle WA, 1994.

[Régin, 1996] J.C. Régin. Generalized arc consistency for
global cardinality constraint. In Proceedings AAAI’96,
pages 209-215, Portland OR, 1996.

[Rossi et al., 1990] F. Rossi, C. Petrie, and V. Dhar. On the
equivalence of constraint satisfaction problems. In Proceed-
ings ECAI’90, pages 550556, Stockholm, Sweden, 1990.

[Sabin and Freuder, 1994] D. Sabin and E.C. Freuder. Con-
tradicting conventional wisdom in constraint satisfaction.
In Proceedings PPCP’9/, Seattle WA, 1994.

[Sedgewick, 1990] R. Sedgewick. Algorithms in C. Addison-
Wesley Publishing Company, 1990.

[van Beek and Dechter, 1995] P. van Beek and R. Dechter.
On the minimality and global consistency of row-convex
constraint networks. Journal of the ACM, 42(3):543-561,
1995.

[Van Hentenryck et al., 1992] P. Van Hentenryck, Y. Dev-
ille, and C.M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291-321,
1992.

