
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 11, NOVEMBER 1985

Parallel Computer Architectures and Problem So1ving
Strategies for the Consistent LabelingPr

JEANETTE TYLER McCALL, JOSEPH G. TRONT, SENIOR MEMBER, IEEE, F. GAIL GRAY, 4IOR MEMBER, IEEE,
ROBERT M. HARALICK, FELLOW, IEEE, AND WILLIAM M. McCORMACI NOV 1 4 1985

Abstract Parallel computer architectures and problem solv-
ing strategies for the consistent labeling problem are studied.
Problem solving factors include: processor intercommunication
methods, passing order, and selection of the initial processor to
receive the problem.
A Pascal program is used to simulate multiprocessor systems.

The simulation is set up so that the parameters affecting the
problem solving factors can be varied. The simulations were re-
stricted to eight-processor systems. Simulation results were ana-
lyzed using the statistical analysis package called SAS.
The results show that interprocessor communications are best

performed using an interrupt system, as opposed to a polling
system. Transfers of work should be directed randomly. It is best
to choose an initial processor with a small maximum distance of
any processor in the architecture from the initial processor. Large
diameter architectures and architectures with very few buses per-
form poorly.

Index Terms -Computer simulation, consistant labeling prob-
lem, parallel architectures, problem solving strategies, processor
intercommunication.

I. INTRODUCTION

IN this paper we will be examining parallel computer archi-
tectures and problem solving strategies for the con-

sistent labeling problem. We will not be studying how the
problem gets loaded into the architecture or how the solutions
are sent back out as these are more networking problems.

First of all, let us define the consistent labeling problem.
Let us assume we have N units (variables) and M labels
(values). Let U be the set of units and L be the set of labels.
Let R be a unit-label constraint relation. R can be rep-
resented as a binary relation on U x L:R E (U X L)2. The
consistent labeling problem [4], [8] is to find all functions
f:U -- L satisfying that for all (u,v) G U x U, (u,f(u),
v,f(v)) E R. Less formally, the consistent labeling problem
involves searching and matching. The object is to give all of
the units (objects) unique labels that satisfy. certain require-
ments that are specified by the relation R.
One important characteristic of the consistent labeling

problem is that it is an NP-complete problem. NP-complete
problems typically take exponential time to solve, but if a
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polynomial solution is found for any _T olIAg RI l ,I

then all NP-complete problems will be able to be solved in
polynomial time. Other NP-complete problems are the trav-
eling salesman problem [1], the scene labeling problem [4],
the graphy clique problem [1], the graph homomorphism
problem [5], and propositional logic problems.

Although most of the work done on solving the consistent
labeling problem has been for single processor systems [8],
the consistent labeling problem is well suited to parallel
solution because it is easily divided into mutually exclusive
subproblems.

To represent our architectures, we have chosen the bi-
partite graph. A graph is bipartite if its nodes can be par-
titioned into two disjoint subsets such that every link in the
graph connects a node in one subset with a node in the other
subset. We let the processors be one subset of nodes and
buses be the other subset. A link between a processor node
and a bus node means that the processor arid bus are con-
nected. The degree of a node is the number of links attached
to that node. Therefore, a processor's degree is the number of
buses attached to that processor and a bus' degree is the
number of processors attached to the bus.

In our work, we have restricted ourselves to regular archi-
tectures because they are more easily implemented in VLSI.
In regular architectures each of the processors has the same
degree and each of the buses has the same degree. This would
allow the production mask to be built using an overlay struc-
ture. By using this restriction we are not considering general
connection networks, and also, we are not considering a few
types of regular networks in which the buses and processors
on the fringe of the network do not have the same degree as
those in the middle [ 101. We have further restricted ourselves
to eight-processor architectures to make the number of archi-
tectures to be examined manageable. Future studies will ex-
amine architectures with a larger number of processors. We
expect that many of the results obtained by studying eight-
processor architectures will be valid for larger architectures.

Let us consider the general operation of a parallel com-
puter. One processor initially receives a large problem to
solve. This initial processor divides the problem up and gives
subproblems to its neighboring processors. From there on,
processors with extra work give subproblems away to their
idle neighbors. Processors with no idle neighbors begin solv-
ing their problem. When all of the processors have work, they
continue working until a processor becomes idle. A neigh-
boring processor with extra work will give work to an idle
processor. By the term extra work we mean that the processor
has a subdividable problem (work that it could give away).

0018-9340/85/1100-0973$01.00 © 1985 IEEE

MURRAY HILL UBRARY

973



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 1I, NOVEMBER 1985

Requirements for such a system are the following.
1) Processors must be capable of subdividing their

problem.
2) Processors with extra work must be capable of transfer-

ring subproblems to their idle neighbors.
3) The basic algorithm in each processor must be the same

and must be such that each processor could solve the entire
problem alone. Note that the algorithm is the same, but the
processors are running asynchronously.
We used a multiprocessor simulation program [7] which

met these requirements to examine the effects of various
problem-solving factors and architectural factors on system
performance. The information generated by the simulator
was analyzed with the Statistical Analysis System (SAS)
package.

Further information on the material covered in this paper
can be obtained in the thesis of [10].

II. PROBLEM SOLVING FACTORS

In a parallel system certain problem-solving factors need to
be considered. Some of these factors include how the prob-
lems should be subdivided, how the need to transfer work
should be recognized, and the algorithm that should be used
to solve the problem.
From previous results [6], [7] we know that a forward

checking algorithm is better than backtracking. It is also
better to have processors with extra work transfer large prob-
lems rather than small ones to their idle neighbors. A depth-
first search is better than a breadth-first search because it
leaves larger problems available for transfer. The previous
simulation results also showed that it is best for processors
with extra work to transfer half of their problem to their idle
neighbor. The following sections provide definitions and ex-
planations for the various problem-solving factors.

A. Processor Intercommunication

Processor intercommunication is the first problem-solving
factor examined in this paper. Processor intercommunication
deals with how the need to transfer work is recognized. We
considered two interrupt systems and one polling system.
The first interrupt system we considered was called the Bus
Method. In the Bus Method, it is the bus that is responsible
for arranging a transfer of work between a processor with
extra work and an idle processor. In the second interrupt
technique, called the Idle Processor Method, it is the idle
processor that is responsible for arranging a transfer of work
by finding a bus that is not busy and a processor with extra
work. In the Polling Method, processors with extra work
regularly poll their neighbors to see if any of them are idle.
The Bus Method would require a "smart bus," whereas
the other two methods could use a "dumb bus" such as a
shared memory.
An additional parameter needed to fairly compare the dif-

ferent types of processor intercommunication is the time it
takes a device (processor or bus) to check around and deter-
mine whether or not a transfer of work needs to take place.
This parameter will be called time to check and will be de-

noted as Tchk. Tchk will provide the simulator with a relative
rather than an absolute measure of time.

B. Passing Order

Passing order deals with how the transfer of work is di-
rected. Work should be passed from the outskirts of the archi-
tecture towards the center, or from the center to the outskirts,
or should all choices of transfer direction be made randomly.
We call the passing order described Central, Noncentral, and
Random, respectively. (By Noncentral we do not imply the
term distributed, but rather we mean "other than the geo-
metric center.")
To see how the different passing orders work with the

different types of processor intercommunicatiolz methods re-
fer to the following examples.
Example I -Polling Method: Let the processors and

buses in Fig. 1 be a part of an architecture. Suppose processor
A has extra work and processors E, B, and C are idle. Also
suppose that BUS 1 is closer to the center of the architecture
than BUS2 and that processor C is closer to the center of the
architecture than processor B. If the passing order were Cen-
tral, processor A would choose BUSI, and BUS1 would
choose processor C.
Example 2 -Idle Processor Method: Let processor A be

idle and processors E, B, and C have extra work. Again,
suppose BUS 1 is closer to the center of the architecture and
that the passing order is Central. Since the passing order is
Central, we want the work to be passed from the outskirts
towards the center. Since BUS2 is less central than BUS1,
BUS2 is chosen, and therefore processor E is chosen.
Example 3 -Bus Method: Suppose processor A is idle

and processors B, C, and E have extra work. Let the passing
order be Random. A is the only idle processor, so both BUS 1
and BUS2 want A. Suppose BUS I recognizes that processor
A is idle before BUS2 makes this same recognition. BUSI
gets processor A and randomly chooses between processors
B and C to determine which of them will send work to pro-
cessor A.

C. Starting Point

The starting point is the processor which initially begins
work on the problem. In an attempt to determine which pro-
cessor provides the best starting point, we divided the set of
processors.into distance vector classes (defined below). For
each architecture, we selected one processor from each
distance class, and these became the tested starting points for
that architecture. The tested starting points are hereafter
referred to as the starting points. The problem is instantiated
in the starting point processor and is then passed from
processor to processor according to the problem passing
strategy.
The following definitions are useful.
1) Diameter: Length of the longest path in the graph.
2) Distance Vector (Signature): An n-dimensional vec-

tor, where n is the diameter of the graph, that describes a
node's proximity to other nodes in the graph. A node with
distance vector (dv 1, dv2, dv3,... , dvn) has dvl nodes it
reaches by a path of length 1, dv2 nodes which it can reach
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architecture might be helpful in getting the problem to spread
out evenly among the processors initially. This would hope-
fully keep the processors busy longer, before they started
running out of work.

IV. SIMULATION EXPERIMENTS
/

Fig. 1. Portion of processor interconnection scheme.

by a path of length 2 but not by a path of length 1, dv3 nodes
which it can reach by a path of length 3 but not by a shorter
path, and so on.

3) Distance Vector Class: A group of processors, within
an architecture, that all have the same distance vector.

III. ARCHITECTURAL FACTORS

Architectural factors are characteristics of an architecture
that can be parameterized (given numerical values). We ex-

amined various factors to evaluate their usefulness in predict-
ing architecture performance. The architectural factors we

examined are listed and defined below.
1) Architecture Class: A group of architectures which all

have the same number of processors, processor degree, num-
ber ofbuses, and bus degree. The notation AC(np, dp, nb, db)
denotes an architecture class with np processors, nb buses,
a processor degree of dp, and a bus degree of db.

2) Other Architectural Factors Examined:
a) Diameter -(defined previously);
b) Average Distance -the average distance between

nodes in the graph;
c) Average Distance Vector (Signature) -an n-

dimensional vector, where n is the diameter of the graph,
that is an average of the distance vectors of all the nodes in
the graph;

d) Number of automorphism classes -the number of
nodes in the graph (architecture) which are structurally dis-
tinct from each other.

Diameter, average distance, and average distance vector
are all measures of the nodes' (processors or buses) proximity
to other nodes in the graph (architecture). The number of
automorphism classes is a measure of the symmetry of the
graph. The fewer the number of automorphism classes the
more symmetric the graph is. Having the nodes in the graph
close to each other would help to spread the problem through-
out all the nodes quickly. It would also make it more likely
for idle processors to be able to get work from a processor
with extra work when the problem is dying out and there are

not many processors with extra work available. A symmetric

A. Problem-Solving Factors

For all of the experiments the analysis of variances and the
regression analyses were done using the General Linear Model
(GLM) procedure of the SAS package. In all cases the null
hypothesis is tested and the PR > F is the probability that the
source does not affect performance. In all cases, including
the Duncan's ranking, we are requiring a PR > F of 0.05 or

lower before we are considering a source significant.
1) Processor Intercommunication:

a) Experiment goals: The goals of this experiment are

1) to determine which processor intercommunication method
is best, and 2) to determine how sensitive polling and inter-
rupt systems are to varying values of the Tchk parameter. Due
to the number of unsettled problem solving factors, the num-
ber of architectures involved in this experiment was reduced
to a minimum. Although the architectures we have selected
give some variety, there are too few architectures to make any

conclusions about the effect of parameters that have a signi-
ficant interaction with architecture type. Therefore, if any

valid conclusions are to be made in this experiment, the re-

sults must show no interaction between processor intercom-
munication method and architecture type, and no interaction
between Tchk and architecture type.

b) Experiment design: In this experiment, processor

intercommunication vwas tested at three levels, corresponding
to the three methods discussed in Section Il-A. Tchk was

tested at two levels (one increment of time and five in-
crements of time -small and large).
Based on the previous experiments [3], we have deter-

mined that it is best to use a forward checking algorithm, use

a depth-first search, and have processors pass 50 percent of
their work. All experiments used these parameters.

Inorderfortheresults to be applicable for different problem
sizes and architectures, and different starting points within
the architectures, two problem sizes (small and large) and
eleven different architectures were used. Each architecture
was run with each of its starting points. The architectures
were selected from the architecture classes AC(8, 3, 12, 2),
AC(8, 3, 6, 4), AC(8, 3, 4, 6), AC(8, 2, 8, 2), and
AC(8, 7, 28, 2).

Finally, one replication was run for each combination.
This involves running the simulation with different random
number seeds to create statistically equivalent combinatorial
problems. An analysis of variance was used to determine the
significance of the problem-related parameters and to deter-
mine interactions of parameters. The measure of per-

formance was speedup (over a single processor system).
c) Results: The SAS analysis showed that the pro-

cessor intercommunication method and Tchk are significant
at the 0.0001 level. By examining Table I, we see that Polling
is worse than the interrupt systems for each passing order. We

/
/
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TABLE I

Duncan's Grouping by Passing Order, Nunit, and Tchk

I Random

112 112 120 120

I 1 s 1 5

I_A A_ A_ IA

A A A AAIAIAIA
I

I_A __ __ __

Noncentral Central

112 112 120 120 112 112 120 120
lI

11_5 1 s 1 s

1
A A A A A A A A
AIAIlIAIAIAIAIA

|A A B B A A B B

II I_I I_

Examining the Interaction Between Processor Intercom. & Tchk

Duncan Grouping Mean

A 7.4169

A 7.4096

A 7.4011

B A 7.3887

7. 3618

C 7.2185

Tchk Processor Intercom.

5

1

5

1

BUS

BUS

IDLEPR

IDLEPR

POLLING

POLLING5

can also see that the Bus Method is significantly better than
the Idle Processor Method for all passing orders except Ran-
dom. This means that ifRandom proves to be the best passing
order, either of the two interrupt systems are acceptable, but
if either Noncentral or Central is the best passing order, then
the Bus Method is the best processor intercommunication
method.

Table I shows that varying the value of Tchk does not make
a significant difference for the interrupt systems. In interrupt
systems, the only effect a longer time to check has on per-

formance is that it is slightly longer before the idle processors
receive work. But, in polling systems, the processors with
extra work are having to regularly take time away from work-
ing to check for idle neighbors. This regular checking is what
makes polling systems sensitive to the value of Tchk.

2) Passing Order:
a) Experiment design and goals: The goal of this ex-

periment was to determine the best passing order. Passing
order was tested at three levels: Central, Noncentral, and
Random.

Based on the previous experiments discussed by Gray et
al. [3] in Section IV-A1) we have determined that it is best
to use a forward checking algorithm, use a depth-first search,
and have processors pass 50 percent of their work. We have
also determined that the best overall processor inter-
communication method is the Bus Method. All experiments
used these parameters.

In order for the results to be applicable for different problem
sizes, different architectures, and different starting points
within the architectures, 2 problem sizes (small and large)
and 69 different architectures were used. Each architecture
was run with each of its possible starting points. The architec-
tures were from the architecture classes AC(8, 3, 12, 2),
AC(8, 3, 6, 4), and AC(8, 5, 10, 4). The different architec-
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ture classes were chosen to achieve a variety of processor
degrees and bus structures. For the architecture classes
AC(8, 3, 12, 2) and AC(8, 3, 6, 4), all nonisomorphic archi-
tectures were selected. This resulted in 19 architectures for
the architecture class AC(8, 3, 12, 2) and 27 architectures for
the AC(8, 3, 6, 4). For the architecture class AC(8, 5, 10, 4),
only the more symmetric nonisomorphic architectures were
chosen, due to the large number of architectures. The more
symmetric architectures were selected by choosing archi-
tectures with 19 or fewer automorphism classes of nodes
(including processors and buses) since this resulted in a rea-
sonable number (23) of nonisomorphic architectures.

Finally, one replication was run for each combination.
This involves running the simulation with different random
number seeds to create statistically equivalent problems. An
analysis of variance was used to determine the significance of
the problem related parameters. The measure of performance
was speedup (over a single processor system).
One complication arose when we first tried to run the

experiment. The memory requirement was larger than the
user is allowed. This problem was caused by the large num-
ber of architectures and the way SAS solves analysis of vari-
ance problems. Instead of an overall analysis, we divided the
data by architecture class and analyzed the result for each
architecture class separately.

b) Results: Passing order made a significant difference
for both the architecture class AC(8, 3, 6, 4) and the architec-
ture class AC(8, 5, 10, 4). The buses in the architecture class
AC(8, 3, 12, 2) have only two processors attached to them.
When they have one processor that is idle and one processor
with extra work they have no choice in transfer direction.
Therefore, the result that passing order is not significant for
the architecture class AC(8, 3, 12, 2) makes sense.

For both architecture classes AC(8, 3, 6, 4) and AC(8, 5,
10,4), the passing order Random was significantly better
than the other two passing orders. Refer to Table II. Since
Random is the best passing order, the two interrupt systems
do not perform significantly different from each other.

3) Starting Point: This experiment was the last to be
completed. As such, it refers to some of the results of Section
IV-B (Architectural Factors). You may wish to wait to read
this section until after reading the Architectural Factors re-
sults, but it is not necessary for an understanding of the
material covered in this section.

a) Experiment Goals and Design: The goal of this ex-
periment is to optimally select which processor, within an
architecture, initially begins work on the problem. For each
architecture, we have divided the processors into Distance
Vector Classes. Processors which have the same distance
vector are said to be in the same distance vector class. For any
given architecture, we have decided to select one processor
from each distance vector class and have those processors be
the starting points, i.e., the processors at which we will try
starting the problem. The parameters that we will be using are
the distance vector of a processor and a parameter which we
will call MaxDis (the maximum distance of any node from
the processor).

Based on previous experiments discussed by Gray et al.
[3] and in Sections IV-A1) and 2), we have determined that

Nuni t

Tchk

Bus

IdlePr

Polling

B
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TABLE II TABLE III

Duncan Grouping for AC(8,3,6,4) AC(8,3,12,2) Comparison of Architectural Factors

Duncan Grouping

A

B

B

Mean

7. 6330

7.6112

7. 6077

Passing Order

Random

Central

Noncentral

Duncan Grouping for AC(8,5,10,4)

R-Square Value of Problem Size - Architecture : 0.840299

Starting Pt. R-Square Amount Above Percentage
Factor Value PS-A R-Square Predicted

Dist. Vec. 0.932732 0.092433 100.0000

MaxDis 0.902204 0.061905 66.9728
l_

Duncan Grouping Mean Passing Order AC(8,3,16,4) Comparison of Architectural Factors

A

B

B

7.6625

7.6392

7. 6369

Random

Noncentral

Central

it is best to use a forward checking algorithm, to use a depth-
first search, to have processors pass 50 percent of their work,
and to randomly make all choices on how to direct transfers
of work. The Bus Method of processor intercommunication
was chosen so that we could use data generated for the
passing order experiment. All experiments used these
parameters.

In order for the results to be applicable to different archi-
tectures and problem sizes, 2 problem sizes (small and large)
and 76 different architectures were used. The architectures
were selected from the architecture classes AC(8, 3, 12, 2),
AC(8, 3, 6, 4), and AC(8, 4, 16, 2). The different architec-
ture classes were chosen to achieve a variety of processor
degrees and bus structures. For the architecture classes
AC(8, 3, 12, 2) and AC(8, 3, 6, 4), all nonisomorphic archi-
tectures were selected. This resulted in 19 architectures for
the architecture class AC(8, 3, 12, 2) and 27 architectures for
the AC(8, 3, 6, 4). For the architecture class AC(8, 4, 16, 2),
only the more symmetric nonisomorphic architectures were

chosen, due to the large number of architectures. The more

symmetric architectures were selected by choosing architec-
tures with 8 or fewer automorphism classes of nodes (includ-
ing processors and buses) since this resulted in a reasonable
number (30) of nonisomorphic architectures.

Finally, one replication was run for each combination.
This involves running the simulation with different random
number seeds to create statistically equivalent problems. An
analysis of variance was used to determine the significance of
the problem-related parameters. The measure of performance
was speedup (over a single processor system).

b) Results: The SAS analysis showed that both Dis-
tance Vector and MaxDis are significant for the architecture
classes AC(8, 3, 12, 2) and AC(8, 4, 16, 2). Neither starting
point (in the previous experiment), distance vector, or Max-
Dis was significant for the architecture class AC(8, 3, 6, 4).

Since the parameter MaxDis can be determined directly
from the parameter distance vector, and since it only contains
a subset of the information contained in Distance Vector, we

do not expect MaxDis to be able to predict all that distance
vector can predict. To determine the percentage of the varia-
tion between observations predicted by distance vector that
can be predicted by MaxDis we examined the R-Square
values of the two models. The R-Square value is a measure

of the amount of the variation between observations that can

be accounted for by the model. We did not directly compare
the two models' R-Square values because in both of the
models problem size and architecture account for most of the
variation. Instead, we subtracted the R-Square associated
with problem size and architecture from the R-Square value
of the two models and compared the resulting values.
The results for the architecture classes AC(8, 3, 12, 2) and

AC(8, 4, 16, 2) are shown in Table III. For the architecture
class AC(8, 3, 16, 2), MaxDis accounted for 67 percent of the
variation accounted for by distance vector. In the architecture
AC(8, 4, 16, 2), MaxDis accounted for 74 percent. Although
MaxDis does not account for as much variation as distance
vector, the relationship between MaxDis and performance is
more easily seen. For each architecture examined, choosing
a processor with a small MaxDis always resulted in a starting
processor in the best performance category. For this reason,

we chose MaxDis to be the parameter used in selecting start-
ing points.

B. Architectural Factors

1) Factors Within an Architecture Class:
a) Experiment goals and design: The goal of this ex-

periment is to determine which architectural parameters can

be used to predict performance within an architecture class.
The architectural factors examined are diameter, average

distance, the number of automorphism classes, and average

distance vector.
Based on previous experiments discussed by Gray et al.

[3], and in Sections IV-Al) and 2), we have determined that
it is best to use a forward checking algorithm, to use a depth-

R-Square Value of Problem Size - Architecture : 0.948035

Starting Pt. R-Square Amount Above I Percentage
Factor Value PS-A R-Square Predicted

Dist. Vec. 0.964489 0.016454 100.0000

MaxDis 0.960335 0.012300 74.7539
._ l__ l__
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first search, to have processors pass 50 percent of their work,
and to have all choices on how to direct transfers of work be
made randomly. The Bus Method of processor intercom-
munication was used so that we could use experiments
(simulation runs) that were generated for the passing order
experiment. So all experiments used these parameters.

In order for the results to be applicable for different archi-
tectures and problem sizes, 2 problem sizes (small and large)
and 69 different architectures were used. The architectures
were selected from the architecture classes AC(8,3, 12, 2),
AC(8, 3, 6, 4), and AC(8, 4, 16, 2). Since the same architec-
tures were used for both this experiment and the starting
point experiment, we ask the reader to refer to Section IV-
A3)-a) for further details on the architecture selection.

Results from the starting point experiment were not com-

pleted by the time of this experiment, so the best starting
point, determined by simulation runs, for each architecture
was used.

Finally, one replication was run for each combination.
This involves running the simulation with different random
number seeds to create statistically equivalent problems. An
analysis of variance was used to determine the significance of
the problem-related parameters. The measure of performance
was speedup (over a single processor system).
We decided that instead of immediately using the SAS

package for testing each of the architectural factors, we

would rank the architectures and list beside the architectures
their corresponding diameter, average distance, etc. This was
done to see if there were some factors that could be elimi-
nated, as possible predictors of performance, by inspection.

b) Results: The only architectural factor eliminated by
using the architecture rankings was the number of auto-
morphism classes, which clearly had no value in predicting
performance.
The SAS analysis was run for the rest of the architectural

factors. The results showed that architecture and all of
the architectural factors examined were significant for the
architecture classes AC(8, 3, 12, 2) and AC(8, 4, 16, 2). All
were not statistically significant for architecture class
AC(8, 3,6,4).

Since the architectural factors can be determined directly
from the architectures, and since they only contain a subset
of the information that knowing the architecture itself would
provide, we do not expect the architectural factors to predict
all that Architecture can predict. The advantage in using the
parameters is that they are numeric values, and if we can find
a relationship between their values and performance, we will
no longer need to examine all architectures in an architecture
class. To determine the percentage of the variation between
observations predicted by architecture that can be predicted
by the architectural factors, we examined the R-Square val-
ues of the models. The R-Square value is a measure of the
amount of variation between models that is accounted for by
the model. We did not directly compare the architecture and
the architectural factors models' R-Square values because in
both of the models problem size accounts for most of the
variation. Instead, we subtracted the R-Square associated
with problem size from both of the architecture and architec-

TABLE IV

AC(8,3,12,2) Comparison of Architectural Factors

R-Square Value of Problem Size Alone : 0.906124

Architectural
Factor

Architecture

Diameter

Average Dist.

DA

Avg.Dist.Vec.

R-Square
Value

0.944403

0.927315

0.923818

0.925324

0. 937541

Amount Above
iNunit R-Square

0.038279

0.021190

0.017694

0.019200

0.031417

Percentage
Predicted

100.0000

55.3567

46.2238

50.1581

82.0737

AC(8,4,16,2) Comparison of Architectural Factors

tural factors models' R-Squares and compared the resulting
values.
The results for the architecture classes AC(8, 3, 12, 2) and

AC(8, 4, 16, 2) are shown in Table IV. For the architecture
class AC(8, 3, 12, 2), average distance vector accounted for
the 82 percent of the variation accounted for by architecture.
Diameter predicted 55 percent of what ,architecture pre-
dicted. For the architecture class AC(8, 4, 16, 2), average

distance vector accounted for 51 percent of the variation
accounted for by architecture, and diameter accounted
for 42 percent. In both cases, average distance vector ac-

counted for more variation than any of the other architectural
factors. Diameter was second overall in accounting for varia-
tion. Since the relationship between diameter and per-
formance was much clearer than the relationship between
average distance vector and performance, diameter was

chosen to be the parameter used in selecting the best archi-
tectures within an architecture class. Small diameter archi-
tectures perform significantly better than large diameter
architectures.

2) Architecture Class:
a) Experiment goals and design: The goal of this ex-

periment is to determine the effect of the architecture class
parameters on performance. We will also be examining
the effect of diameter on performance to see if it is also a

good predictor of performance between architecture classes.
Ideally, we would be able to establish a formula for pre-
dicting performance based on these parameters.

R-Square Value of Problem Size Alone : 0.929642

Architectural R-Square Amount Above Percentage
Factor Value Nunit R-Square Predicted

Architecture 0.948128 0.018486 I 100.0000
lI

Diameter I 0.937338 I 0.007696 41.6315

Average Dist. I 0.936802 0.007160 38.7320

DA 0.937537 0.007895 42.7080

Avg.Dist.Vec. 0.939208 I 0.009566 51.7473
l__ l__ l__
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Based on previous experiments discussed by Gray et al.
[3] and in Sections IV-A1) and 2), we have determined that
it is best to use a forward checking algorithm, use a depth-
first search, and have processors pass 50 percent of their
work. We are using the idle processor intercommunication
method because it is one of the two best intercommunication
methods. All experiments used these parameters. In
Section IV-B1) we determined that diameter is a good pre-
dictor of architecture performance within an architecture
class. In this experiment we selected a few of the best (small-
est diameter) architectures from each eight-processor archi-
tecture class.

In order for the results to be applicable to different problem
sizes, two problem sizes (small and large) were used. Results
from the starting point experiment were not completed by the
time of this experiment, so the best starting point, determined
by simulation runs, for each architecture was used.

Finally, one replication was run for each combination.
This involves running the simulation with different random
number seeds to create statistically equivalent problems. A
regression analysis was used to determine the significance of
the problem-related parameters. The measure of performance
was speedup (over a single processor system).

b) Results: The overall analysis showed that problem
size and a number of second- and third-order interactions
were significant. Table V shows a Duncan ranking by archi-
tecture class. There we see that only three architecture classes
performed significantly worse than the best performing archi-
tecture class. These are the AC(8, 2, 2, 8), the AC(8, 1, 1, 8),
and the AC(8, 2, 8, 2). Both of the architecture classes
AC(8, 2, 2, 8) and AC(8, 1, 1, 8) have very few buses and
bottlenecks are easily formed, especially in trying to initially
spread out the problem. The architecture class AC(8, 2, 8, 2)
contains only the circle architecture. The circle architecture
has a very large diameter. This makes spreading out the
problem take longer, and also causes poorer communication
between processors throughout problem solving. So, the only
architecture classes that performed significantly worse than
the best one are the ones with the fewest buses and the one
with the largest diameter.
The parameter number of buses was significant because

the two- and one-bus architectures performed significantly
worse than architectures with more buses (The performances
of many other architectures were averaged in with the circle
architecture, which caused eight-bus architectures as a whole
to perform better than one- and two-bus architectures.

c) Conclusions: Although we have a regression equa-
tion generated by SAS, we do not feel that the relationship
between the architecture class and diameter parameters and
performance is clear enough to establish a formula. The re-
sults do show that architecture classes with large (minimum)
diameters and with very few buses should be avoided.

V. CONCLUSIONS

In this paper, we examined the effects of various problem
solving factors and architectural factors on the parallel solu-
tion of the consistent labeling problem. We only examined

TABLE V
COMPARISON BY ARCHITECTUAL CLASS

Duncan Grouping

A

A

A

A

A

A

A

A

A

A

A

A

A

B A

B A

B A

B A

B A

B C

D C

D

Mean

7. 6842

7.6813

7. 6802

7. 6759

7. 6757

7.6752

7.6735

7. 6685

7. 6634

7.6631

7. 6599

7. 6590

7. 6564

7.6471

7.6461

7.6423

7. 6327

7.6291

7.5766

7. 5471

7. 4842

Architecture Class

AC( 8, 3, 8, 3)

AC( 8, 3, 3, 8)

AC( 8, 4,16, 2)

AC( 8, 6,16, 3)

AC( 8, 2, 4, 4)

AC( 8, 5,20, 2)

AC( 8, 4, 8, 4)

AC( 8, 7, 8, 7)

AC( 8, 7,28, 2)

AC( 8, 4, 4, 8)

AC( 8, 5, 8, 5)

AC( 8, 7,14, 4)

AC( 8, 6,24, 2)

AC( 8, 6,12, 4)

AC( 8, 6, 8, 6)

AC( 8, 3, 6, 4)

AC( 8, 5,10, 4)

AC( 8, 3,12, 2)

AC( 8, 2, 2, 8)

AC( 8, 1, 1, 8)

AC( 8, 2, 8, 2)

regular architectures because of the importance of the archi-
tectures being regular if they are to be implemented in VLSI.
We restricted ourselves to eight-processor architectures to
make the number of architectures to be examined in this first
set of experiments manageable.
The problem solving factors we examined are processor

intercommunication method, passing order, and starting
processor.

Architectural factors examined as potential performance
indicators were:

1) the diameter of the architecture;
2) the average distance between processors in the archi-

tecture;
3) the average distance vector;
4) the number of automorphism classes;
5) the number of processors;
6) the number of buses;
7) the processor degree; and
8) the bus degree.

A. Summary

We have found that using an interrupt system is better than
using a polling system. We have also found that it is better,
in interrupt systems, to have all choices, on the idle pro-
cessor, bus, and processor with extra work to be involved in
the transfer of work, be made randomly. When these choices

979



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 11, NOVEMBER 1985

are made randomly, the two interrupt systems that we exam-
ined do not perform significantly differently from each other.
The results also showed that it usually does not matter to

which processor the problem is initially sent. In the cases
where it did make a significant difference, choosing a pro-
cessor that had the smallest MaxDis (the maximum distance
of any processor in the architecture from the processor) al-
ways resulted in a starting processor in the best performance
category.
We found that within an architecture class, the diameter of

an architecture is a good predictor of how the architecture
will perform. Larger diameter architectures performed worse
than smaller diameter architectures.

In comparing different architecture classes, we found that
(when using the best problem-solving factors and the best
architectures from the architecture classes) very few architec-
ture classes perform significantly worse than the architecture
class with the best performance. The architecture classes
which performed worse either had very few buses (one or
two) or a very large diameter (8). These architecture classes
contained the common bus architecture, the circle architec-
ture, and a variation on the common bus which had two buses
(each attached to all of the processors).

B. Future Work

There are two main areas of future work. One is veryifying
the results for large architectures by simulation and statistical
analysis of larger architectures. The other is the completion
of the flexible hardware system and using it to obtain better
estimates of some of the time values used in the simulation
program and to verify simulation results.
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