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Abstract

Previous algorithms for unrestricted constraint satisfaction use reduction search, which inferentially removes values
from domains in order to prune the backtrack search tree. This paper introduces partition search, which uses an efficient
join mechanism instead of removing values from domains. Analytical prediction of quantitative performance of partition
search appears to be intractable and evaluation therefore has to be by experimental comparison with reduction search
algorithms that represent the state of the art. Instead of working only with available reduction search algorithms, this
paper introduces enhancements such as semijoin reduction preprocessing using Bloom filtering.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper uses database techniques to solve constraint satisfaction problems that are specified as follows.
We are given a set V ¼ fV 1; . . . ; V i; . . . ; V Ng of N discrete variables such that the domain of possible values of
Vi is a given set Di. We are also given a set R ¼ fS1; . . . ; Sj; . . . ; Sqg of q constraint scopes that are subsets of V.
Constraint scope Sj comprises nj variables; Sj ¼ fV j1

; . . . ; V jnj
g. Moreover, for each constraint scope Sj we are

given a constraint relation Rj. The constraint relation Rj is a set of nj-tuples, each comprising one value for
each of fV j1

; . . . ; V jnj
g. The arity of Rj is nj. Constraint Rj is said to be tight if its cardinality is small in com-

parison with its greatest possible cardinality.
A solution is an N-tuple z ¼ hv1; . . . ; vi; . . . ; vN i that comprises one value for each variable in the given set V

of N variables and belongs to the set
0020-0
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Z ¼ fzjð816j6qjÞðz½Sj� 2 RjÞ ^ ð816i6N iÞðz½V i� 2 DiÞg

where square brackets denote restriction [74]; so z[Sj] is the subset of z comprising values of variables that be-
long to Sj. Enumerating Z is a constraint satisfaction problem. Finding a single member of Z, or reporting
255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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that Z is empty, is a slightly simpler constraint satisfaction problem. If nj > 2 for any j the problem is said to be
non-binary.

These problems are well known to be NP-hard. The present paper does not apply restrictions that ensure
tractability (e.g. [20]) and instead we accept that exponential time complexity will limit the range of practical
problems that can be solved reasonably quickly.

An example of a practical application is as follows. Successive characters in a line of text can be regarded as
variables that can have values ‘A’, ‘B’, . . .. An optical character recognition system is required to assign one
such value to each successive character. However, when the print or writing is sufficiently poor, a recognition
system may not be able to make an unequivocal decision and may instead decide, for example, ‘‘this character
is either ‘Q’ or ‘O’ or ‘G’ ’’. In this case the output of the recognition system is a sequence of sets such as {‘Q’,
‘O’, ‘G’}. Using relational projections of a dictionary as constraint relations, we can use constraint satisfaction
technology to find combinations that may possibly be legitimate words [77].

Available algorithms for unrestricted non-binary constraint satisfaction employ reduction search [15,24,67].
Reduction search algorithms combine domain reduction and/or constraint relation reduction with backtrack
search. Domain reduction means removing from any domain Di any value that cannot possibly be in pV iðZÞ.
Constraint relation reduction means removing from any constraint relation Rj any nj-tuple that cannot possibly
be in pSjðZÞ.

The main business of this paper is the introduction of an alternative approach using join-processing tech-
niques. A basic property of the natural join operation is [74]:
Rr ffl Rs ¼ ftjt is a tuple on Sr [ Ss and t½Sr� 2 Rr and t½Ss� 2 Rsg
whence the set Z of solutions can be written [38,83]
Z ¼ R1 ffl R2 ffl � � � ffl Rq
and Z can be enumerated by:

Z :¼ R1; for j :¼ 2 to q do Z :¼ Zffl Rj end for;

Partition search is a depth-first implementation of this simple routine. Partition search may be of interest
because

• Within a limited range of problems it is very much faster than reduction search.
• It differs radically from reduction search in that it does not remove anything from domains or constraint

relations.
• It is simple.

Because it does not prune the backtrack search tree by removing values or tuples, partition search may
appear to be very foreign from the viewpoint of the constraint satisfaction literature. But partition search
is not at all surprising from the viewpoint of database implementation.

Section 5 of this paper reports experimental comparison between partition and reduction search. In Section
2, domain reduction search is briefly introduced from first principles, to make this paper reasonably self-con-
tained and to provide a clear starting point for developments. Section 2 introduces simple tabular reduction
which is an algorithm that makes reduction search more competitive than when the benchmark non-binary
reduction search algorithm GAC2001 [14] is used.

The substantial literature on reduction search almost universally makes central use of the concept of arc

consistency [24,52] and developments thereof, e.g. [23,63]. This may be helpful with binary constraints but
it is certainly not necessary in the present context. Section 2 achieves unusual simplicity by omitting arc con-
sistency. In Section 3, instead of dual arc consistency [9,67], we equivalently [86] work with primal semijoin
reduction, as in [10,32,50,61].

Within the range of problems where partition search performs most strongly, the performance of reduction
search can be enhanced by constraint relation reduction preprocessing. This preprocessing can greatly improve
the competitiveness of reduction search against partition search. For this reason, Section 3 briefly introduces
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constraint relation reduction from first principles and describes its efficient implementation by application of
Bloom filtering [5,61].

Section 4 introduces partition search, its implementation using hash joins [33,58], and also a different imple-
mentation using decision diagrams [84]. Furthermore, Section 4 explores the relationship between partition
search and dual search. Dual search [9,27,67] instantiates scopes, whereas partition search instantiates sub-
scopes which in some cases consist of only one variable. In this sense, dual search does, and partition search
may, instantiate tuples. A radical difference between dual and partition search is that partition search is not a
reduction search process. Moreover, partition search does not work with pairwise dual constraints. Partition
search has more in common with depth-first multijoins in [68] than with dual search.

2. Domain reduction

2.1. Removal of values from domains

We define Ri to be the set of scopes in R that include the variable Vi; thus Ri = {Sj 2 R|Vi 2 Sj}. Assuming
that every variable belongs to at least one scope, the definition of Z can be rewritten:
Z ¼ fzjð816j6qjÞðz½Sj� 2 Rj ^ ð816k6nj kÞðz½V jk
� 2 Djk

ÞÞg
¼ fzjð816j6qjÞðz½Sj� 2 Rj ^ z½Sj� 2 ðDj1

� Dj2
� � � � � Djnj

ÞÞg

¼ fzjð816j6qjÞðz½Sj� 2 ðRj \ ðDj1
� Dj2

� � � � � Djnj
ÞÞÞg
From Theorem 1, in the Appendix, the set Z remains unchanged if domain Di is replaced by
\Sj2RiðpV iðRj \ ðDj1
� Dj2

� � � � � Djnj
ÞÞÞ
Because Di is one of the domains in this Cartesian product, replacement cannot increase the number of values
in domain Di. However, replacement may reduce the number of values in Di and may thereby enable deletion
of values from further domains. A detailed example of propagation of deletion is shown in [75, Fig. 3]. If, as a
result of domain reduction, that is, deletion of values from domains, any domain becomes empty, then Z is
empty.

2.2. A reduction search algorithm

Instantiation of a variable Vi can be regarded as the removal of all except one of the values that is currently
in Di. A reduction search algorithm [15,40,41,57,76,77,81] instantiates a variable, applies domain reduction,
then perhaps instantiates another variable, again applies domain reduction, and so on. Eventually a set W

of variables have been instantiated to w such that if Vk 2W then Vk has been instantiated to a value w[Vk]
in domain Dk. At the time when W has been instantiated to w the set Z 0 of N-tuples that satisfy the constraints
is:
Z 0 ¼ fzjð816j6qjÞðz½Sj� 2 RjÞ ^ ð816i6N iÞðz½V i� 2 DiÞ ^ z½W � ¼ wg ¼ fz 2 Zjz½W � ¼ wg ¼ rW¼wðZÞ
where r denotes relational selection [74].
After instantiation of W to w, a reduction search algorithm applies domain reduction, as in Section 2.1, but

working with the definition of rW=w(Z) instead of the definition of Z. It is worthwhile to apply domain reduc-
tion at this stage because more domains are now single-valued, and this fact may enable deletion of values that
could not previously be deleted. If domain reduction empties any domain then rW=w(Z) is empty, which
means that w is not part of any solution N-tuple z in Z. In this case there is no point in exploring instantiation
of any further variable while W = w; the search tree is pruned by omitting all such instantiations.

If an application of domain reduction does not empty any domain then the reduction search algorithm will
instantiate a further variable Vi to a value v that is currently in domain Di. Domain reduction operations may
have reduced the cardinality of Di, thus pruning the search tree by reducing the number of different values of
Vi that the search algorithm should try whilst W = w.
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Before instantiating Vi, a search algorithm retains copies of the domains of all uninstantiated variables, typ-
ically by pushing these onto a stack. Contents of domains are restored, typically by popping copies of domains
off the stack, when Vi is re-instantiated to a different value, and also when the search backtracks to re-instan-
tiate a variable in W. Similarly, if tuples are removed from constraint relations, these must be restored when Vi

is re-instantiated and when the search backtracks.
It is well known that the speed of reduction search may depend strongly on the sequence in which variables

are instantiated. Astatic variable ordering is an instantiation sequence that does not change during the search.
The only heuristic used for this in the present paper is that variables are processed in sequence of decreasing
degree, as in [41,76]. The degree of a variable is the number of scopes to which it belongs.

For dynamic variable ordering, which changes the instantiation sequence during the search, we use the min-

imum remaining values heuristic [7,36]. This selects for instantiation a variable Vk such that the cardinality of
Dk is minimal. If more than one uninstantiated domain has the smallest cardinality, we choose the first of these
in the sequence determined by static variable ordering. This implements the dom + deg heuristic of Frost and
Dechter [30]. Another popular heuristic is dom/deg which selects Vk such that |Dk| divided by the degree of Vk

is minimal [13].
Fig. 1 outlines a reduction search algorithm in which procedure choose returns i such that Vi is the next

variable to be instantiated. Procedure choose returns allDomainsAreSingleValued = true if and only if all
domains are single valued. Domain reduction, and possibly also constraint relation reduction, is done by pro-
cedure reduce which returns consistent = false if any domain is empty. If procedure reduce removes tuples from
constraint relations, these are eventually restored by calling procedure restore instead of by popping off a
stack.

2.3. Restricted reduction search

During each invocation of procedure reduce, propagation of deletion from domains may be allowed to con-
tinue until convergence, which is the situation where no further value can be deleted without changing
rW=w (Z). However, the cost of evaluating conditions for deletion has to be taken into account. Available the-
ory does not tell us which deletions will prove to be cost effective. Nor does it say that reduction search will
terminate tolerably quickly; prohibitively exponential time will be required in the worst case because too many
domains have too many values at the time of instantiation.
Fig. 1. Reduction Search Algorithm that enumerates Z.
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In our terminology, C-reduction search is domain reduction search such that procedure reduce removes val-
ues from domains until convergence; C-reduction is an abbreviation for convergence reduction. Ullmann [77]
found experimentally that in some cases Z could be enumerated faster by S-reduction search in which domain
reduction is confined to a single iteration (as in preclusion in [36]) instead of continuing until convergence. S-
reduction is an abbreviation for single-iteration reduction. When S-reduction is used, Fig. 1 search algorithm
is modified so that it enters an N-tuple z into Z only if z satisfies an explicit check for satisfaction of all
constraints.

Immediately after instantiation of Vi, procedure reduce in Fig. 1 can be restricted to process only a subset of
the scopes that belong to Ri. For binary constraints, McGregor made S-reduction search faster by processing
only those scopes in Ri that included an uninstantiated variable [57, Fig. 5]. This technique was investigated by
Haralick and Elliott [41] who gave it the name forward checking.

Following Bessière et al. [15], forward checking can be generalized by using a parameter j to limit the
scopes that are processed by procedure reduce. Specifically, a constraint in Ri is processed only if its scope
includes at least one and not more than j uninstantiated variables. If j is reduced then fewer constraints
are processed so the search tree is not pruned so heavily and more nodes of the search tree are visited, but
procedure reduce works faster. In our terminology, Sj-reduction search uses S-reduction with a specified value
of j. Forward checking in [81] is an example of Sn � 1-reduction search with j = n � 1, where n is the arity of
all constraints. Cn-reduction search is C-reduction without restriction on the scopes processed by procedure
reduce. Following [66], Cn-reduction search is sometimes known as MAC, or, for non-binary constraints,
GMAC.
2.4. Tabular implementation of constraint relations

2.4.1. Simple tabular reduction search

When constraint relations are available as explicit tables of nj-tuples, the intersection Rj \ ðDj1
�

Dj2
� � � � � Djnj

Þ can be implemented by using the tabular strategy

for each tuple t ¼ ht1; . . . ; tk; . . . ; tnji in Rj do
for k :¼ 1 to nj do seek tk in Djk

end for

end for
which is used in a version of procedure reduce that is shown in Fig. 2. Following [52], this version works with a
queue of scopes. The queue is implemented as a set so that duplicates are removed automatically. Domains are
also implemented as sets to enable rapid implementation of seek tk in Djk

. To relate the global numbering to
the local (within a scope) numbering of variables we use a function G such that Gj(k) = i, where V jk

is the same
variable as Vi.

If a tuple t in Rj is not in ðDj1
� � � � � Djnj

Þ then this tuple cannot be found again in ðDj1
� � � � � Djnj

Þ
until reduction search has restored values to domains. Until this time, any such tuple t can be removed
temporarily from Rj so procedure reduce in Fig. 2 will process fewer tuples [78]. For this purpose, the table
Rj is stored as a linked list of tuples. We provide a two-dimensional array, called eliminated, of linked lists
of tuples such that eliminated½i; j� will contain tuples removed from list Rj during the execution of proce-
dure reduce immediately after instantiation of Vi. Initially every list in eliminated½i; j� is empty. In this
paper, square brackets are overloaded to signify either restriction or array subscripts, depending on the
context.

Tuples that have been temporarily eliminated from constraint relations must be restored when a variable is
re-instantiated and when the search backtracks. This restoration is done by the call of restore(i) in Fig. 1. The
effect is that for each scope Sj the list eliminated½i; j� is appended to the list Rj and then eliminated½i; j� is re-
initialized to be empty. The append operation is implemented without traversing either of the operand lists
and without moving any tuple in memory. It is therefore quick. This simple method of temporarily eliminating
and subsequently restoring tuples is called incremental restoration because it is redolent of incremental dumping

in database technology.



Fig. 2. Cn-reduction implementation of procedure reduce.

Fig. 3. Sj-reduction implementation of procedure reduce, which does not require a queue.
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We use the term simple tabular reduction search to mean reduction search as in Fig. 1 with procedure reduce

implemented as in Fig. 2 or, for Sj-reduction, as in Fig. 3. Simple tabular reduction search is characterized by
the use of sets C1; . . . ;Cnj , as in [77,78], and also by the use of incremental restoration.

With simple tabular reduction the main overall memory requirement is for storing constraint n-tuples and is
therefore O(nqK), where q is the total number of scopes, K is the maximum cardinality of a constraint relation,
and, for simplicity, all scopes are assumed to have arity n. The memory requirement for the array eliminated of
pointers is O(Nq) which is relatively unimportant when nK� N.



Fig. 4. Outline of reduction strategy in GAC2001.
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2.4.2. Related algorithms

Algorithm GAC2001 [14], which is formulated explicitly as Fig. 2 in [54], is particularly important because
it is optimal when constraints are binary [14,87]. The strategy used in GAC2001 is outlined in Fig. 4. A tuple
that satisfies the condition in Line 4 is said to support the value v in DGjðhÞ. If no support is found in Rj for
value v, then this value is deleted from DGjðhÞ. An array currentSupport records, for each j; h; v, which tuple
(if any) in Rj supports value v in DGjðhÞ. Using this array, the search at Line 3 continues from where it stopped
last time Line 3 was executed for given values of j; h; v, if there has meanwhile been no backtrack nor re-
instantiation.

Within a single iteration of the outer repeat loop in Fig. 2, each tuple in Rj is checked just once at Line 6. In
simple tabular reduction there is not a separate search through tuples in Rj for each h and v, as at Line 3 in
Fig. 4. GAC2001 may check whether ð8k16k6njÞðtk 2 DGjðkÞÞ for the same tuple t many times during a single
execution of the nested loop that starts at Line 1 in Fig. 4. GAC2001 does not remove from Rj a tuple that
does not satisfy this condition.

As in [75, p. 593] and [78, p. 153], simple tabular reduction removes from Rj any tuple that does not satisfy
ð8k16k6njÞðtk 2 DGjðkÞÞ. Subsequently, every tuple visited in the loop starting at Line 5 in Fig. 2 supports one
value in each domain. This loop may do unnecessary work in that it may continue to process tuples of Rj after
achieving ð8k16k6njÞðCk ¼ DkÞ. This could be prevented by checking for satisfaction of this condition; but the
cost of this check would have to be taken into account. GAC2001 does not necessarily process every tuple in
Rj, unless there is a value in some Dk that currently has no support in Rj.

Hidden variable Algorithm HAC [67, Fig. 3] uses the strategy outlined in Fig. 4 and, like simple tabular
reduction, removes from Rj any tuple that does not satisfy ð8k16k6njÞðtk 2 DGjðkÞÞ. This removal is accomplished
at the earliest opportunity so that, at Line 4 in Fig. 4, there is no need to check, for each k, that tk 2 DGjðkÞ.
Tuple t would not currently be in Rj if this condition were not satisfied.

Simple tabular reduction removes tuple t from Rj by unlinking it from a linked list (and then linking it into
a list of eliminated tuples so that it can be restored to Rj in due course). Instead of physically removing t from
Rj, HAC resets a Boolean variable associated with t to signify that t is currently not in Rj. At Line 3 in Fig. 4,
HAC may spend time inspecting Boolean variables associated with tuples that are not currently in Rj. Reasons
for working this way are:

• HAC uses an array currentSupport in the manner of GAC2001, which requires the tuples of Rj to be main-
tained in a fixed sorted order. This sorted order can be preserved if Boolean variables are used as in HAC.
The link/unlink method of simple tabular reduction destroys this sorted order.

• The Boolean variable associated with a tuple is an element of a Boolean array. The subscript of this element
can be regarded as a value of a hidden variable, as explained in [8]. This is of interest from the viewpoint of
conversion of non-binary to binary constraint satisfaction problems [9,54,71].
2.5. Distributive implementation of constraint relations

The tabular strategy is not always the best. When many domains in scope Sj are single-valued, as they are
when j < 3, the distributive strategy [77]

for each tuple t in Dj1
� � � � � Djnj

do seek t in Rj end for



Fig. 5. Fragment using distributive representation of constraint relations.
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may be faster than processing successive tuples in a tabular representation of Rj. The distributive strategy
requires a distributive representation of constraint relation Rj that allows rapid discovery whether or not a
given tuple t ¼ htj1

; . . . ; tjnj
i is in Rj. A simple example of a distributive representation is an nj-dimensional

array of bits, initialized so that Rj½tj1
; . . . ; tjnj

� ¼ 1 iff t 2 Rj. The distributive strategy can also be used when
Rj is intensively defined by a predicate Pj(t) that is true iff t 2 Rj; in this case seek t in Rj is replaced by evaluate

Pj(t).
When Rj is represented by an nj-dimensional array of bits, Lines 5–11 in Figs. 2 and 3 are replaced by Fig. 5.

Distributive implementation [77] does not eliminate tuples from constraint relations, because speed would not
be gained by this. Calls of procedure restore in Fig. 2 are therefore not required.

3. Constraint relation reduction

3.1. Semijoin reduction

With tabular implementation of domain reduction, the search may be speeded up by removal of tuples from
constraint relations. Simple tabular reduction will certainly not remove from a constraint relation Rh any tuple
t ¼ ht1; . . . ; tk; . . . ; tni such that tk 2 DGhðkÞ for all 1 6 k 6 nj. We now introduce just one method that may
remove such a tuple from Rh. This method is based on the fact (Theorem 2 in the Appendix) that the set Z
is not changed as a result of the deletion, from any constraint relation Rh, of any tuple t such that
t 62 pShðRh ffl RjÞ for some Rj such that Sh \ Sj 5 ;. In other words, if Sh \ Sj 5 ;, we can delete from Rh

any tuple t that does not concatenate with at least one tuple in Rj in the natural join Rhffl Rj. This deletion
can be accomplished by the routine in Fig. 6, which implements semijoin reduction [12,53] of constraint rela-
tions. The semijoin operation n is defined [12,53] by
RhnRj ¼ pShðRh ffl RjÞ

so Rh n Rj is the subset of Rh that concatenates with at least one tuple of Rj in the natural join Rhffl Rj.

Fig. 6 routine may process some ðh; jÞ pairs unnecessarily. To see why, let us denote Sh \ Sj by Shj and sup-
pose that Shj is non-empty and is a subset of Sh \ Sk and also of Sk \ Sj. After the semijoin reduction
operation
Rk :¼ ft 2 Rkjt½Sj \ Sk� 2 pSj\Sk ðRjÞg
a tuple t survives in Rk only if t½Shj� 2 pShjðRjÞ, because Shj � Sj \ Sk. Similarly, after the subsequent operation
Rh :¼ fu 2 Rhju½Sh \ Sk� 2 pSh\Sk ðRkÞg

a tuple u survives in Rh only if u½Shj� 2 pShjðRkÞ. The previous operation has ensured that pShjðRkÞ � pShjðRjÞ, so
a tuple u survives in Rh only if u½Shj� 2 pShjðRjÞ. Therefore it is unnecessary to delete tuples from Rh by using
Fig. 6. A simple semijoin reduction routine for constraint relation reduction.
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Rh :¼ fu 2 Rhju½Shj� 2 pShjðRjÞg directly because these tuples will be deleted from Rh if we first reduce Rk and
then Rh. In this case we say that the pair ðSh; SjÞ is redundant [25,44].

3.2. Acceleration of semijoin reduction by Bloom filtering

Fig. 7 shows Zhang and Mackworth’s semijoin reduction procedure ZM which uses a queue [52] and does
not process redundant pairs [86]. Line 9 of procedure ZM could be implemented by searching linearly through
the tuples in pSh\SjðRjÞ seeking one that matches t[Sh \ Sj]. This linear search would be repeated for each tuple
t in Rh. To avoid this nested loop we could use a multidimensional array, b, of bits. Let b[u[Sh \ Sj]] be the bit
whose subscripts are successive values in the tuple u[Sh \ Sj]. Using this notation, in which outer square brack-
ets denote array subscripts and inner square brackets denote restriction, Lines 8–12 of procedure ZM can be
replaced by the fragment shown in Fig. 8, which scans through Rh and Rj just once. Assuming for simplicity
that all scopes have arity n, there are n � 1 values in the largest overlap between any two scopes and therefore
array b requires a maximum of dn�1 bits, where d is the maximum cardinality of any domain.

Babb [5] avoids excessive memory requirements by replacing the single array b by an array, B, of m arrays,
each comprising df bits, where f is a control parameter. Let hu½Sh \ Sj�if1 be the tuple comprising the first f
values in u[Sh \ Sj]. Let hu½Sh \ Sj�if2 be the tuple comprising the next f values in u[Sh \ Sj], and so on. Finally,
let hu½Sh \ Sj�ifm be the tuple comprising the last f (or fewer) values in u[Sh \ Sj]. The routine that replaces Lines
8–12 of procedure ZM is now as shown in Fig. 9, in which the first subscript of array B selects one of the m

arrays of bits. Because two scopes may overlap in at most n � 1 variables the largest possible value of m is
(n � 1)/f rounded up to the nearest integer.

The contents of array B constitute a Bloom filter. In accordance with Bloom filter theory [59,62] there is a
risk that a tuple which should be deleted from Rh will actually not be deleted, but this risk can be made small
by appropriate choice of f. All our experiments with procedure ZM have used Babb’s Bloom filter, which
greatly improves the cost-effectiveness of semijoin reduction by avoiding the nested loop in Fig. 7.
Fig. 7. Semijoin reduction procedure ZM.

Fig. 8. Using an array of bits to avoid a nested loop.



Fig. 9. Implementation of Lines 8–12 of procedure ZM using Babb’s Bloom filter.
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3.3. Related work

Algorithm PW-AC [67] avoids the nested loop in Fig. 7 by adapting the idea of piecewise functionality [82].
This idea is applicable because if x is a tuple on Sh \ Sj then a tuple in rðSh\SjÞ¼xðRhÞ concatenates in Rhffl Rj

only with tuples in rðSh\SjÞ¼xðRjÞ. For each overlapping pair Sh; Sj and for each possible tuple x on Sh \ Sj,
Algorithm PW-AC maintains a counter that always contains the cardinality jrðSh\SjÞ¼xðRhÞj. If this cardinality
is zero then every tuple in rðSh\SjÞ¼xðRjÞ can be deleted from Rj. If, as a result of this deletion, for some tuple y

the cardinality jrðSj\SkÞ¼yðRjÞj becomes zero then every tuple in rðSj\SkÞ¼yðRkÞ can be deleted from Rk. Thus dele-
tion is propagated as described in [67].

Section 5.4.1 reports experiments with PW-AC in which all tuples in rðSj\SkÞ¼yðRkÞ have been found simply
by linear search through all tuples in Rk, because this allows us to work without limits on |Sj \ Sk| and on d. In
a nested loop implementation of a semijoin, the search through all tuples in Rk would be repeated for each
tuple in Rj.

For the pair Sj; Sk, the amount of memory required for Bloom filter array B is not fixed. Ideally, B should
be made so small that further reduction in its size would appreciably reduce the speed of the constraint relation
reduction process, because of increased probability of failure to delete some tuples [61]. If the number of bits in
array B were greater than djSj\Sk j we could instead use array b as in Fig. 8 which requires this number of bits.
This number, which can be regarded as the maximum size of array B, is of bits packed into words. For the pair
Sj; Sk, algorithm PW-AC requires this same number djSj\Sk j of counters. Moreover, in Fig. 9 the same array B is
re-used for every semijoin. In PW-AC, separate counters are required for all non-redundant overlapping pairs
of scopes. When algorithm PW-AC is interleaved with backtrack search, if the counters are not re-initialised at
each invocation of PW-AC then a save/restore mechanism must be provided for the counters. Because Bloom
filter array B is re-initialised for every semijoin, it does not require save/restore during backtrack. We can
safely conclude that the memory requirement for PW-AC is very much greater than that for the Bloom filter
implementation of semijoin reduction procedure ZM.

4. Partition search

4.1. Partition resequencing

To evaluate the set Z of solutions, the routine

Y :¼ R1; for j :¼ 2 to q do Y :¼ Yffl Rj end for; Z :¼ Y;

works breadth-first; the result of a join is obtained completely before another join is commenced. For con-
straint satisfaction it is more appropriate instead to proceed depth-first, as in [68]. One reason is that the com-
putation may be required to stop as soon as any solution N-tuple is found. Another reason is that in a
constraint satisfaction problem, many variables may belong to more than one scope. This means that many
tuples in an intermediate composite relation Y may not be part of any N-tuple in Z. By working depth-first we
avoid provision of memory for tuples that are not part of any N-tuple in Z.



Fig. 10. Simplified outline of a maximal overlap resequencing routine.
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The present paper assumes that all of the constraint relations R1; . . . ;Rq are held in main memory. In data-
base systems where R1; . . . ;Rq are all in secondary memory instead of main memory, it is worthwhile to spend
more time determining a (hopefully) optimal execution sequence for multiple joins. Dynamic programming is
widely employed for this purpose, unless the number of joins is so large that a simple greedy algorithm is more
practical [33,46]. Greedy and combinatorial algorithms commonly use estimates of numbers of tuples in results
of proposed joins, assuming statistical independence of values of variables [6,55].

In constraint satisfaction, where many variables may belong to more than one scope, the independence
assumption is particularly unsatisfactory [22]. Avoidance or mitigation of the independence assumption has
a computational cost [43]; obviously the cost of join sequence optimization must not be so high that the
sum of optimization time plus search time is unduly large when working with all constraint relations in main
memory. In this paper we use a simple greedy algorithm that does not attempt to estimate cardinalities of
result relations.

In the left-deep routine shown at the beginning of this section, the number of tuples in an intermediate com-
posite relation Y can be expected to grow rapidly as j increases. To mitigate this growth, we join constraint
relations in a sequence Rrenumbered

1 ;Rrenumbered
2 ; . . . chosen using a heuristic that is intended to make the scope

of Y be as small as possible at each step. As in [64, p. 151], the idea is that by applying as many constraints
to as few variables as possible, the number of tuples in each successive Y will be restricted. Constraint relations
are renumbered to save time during the subsequent depth-first search.

Fig. 10 shows an introductory outline of a greedy routine that chooses a join execution sequence. This rou-
tine is similar to the maximum cardinality algorithm [73] which breaks ties arbitrarily. For partition search it is
worthwhile to use heuristic scores in choosing between scopes that have the same |Sunion [ Sj|. For each scope
Sh ¼ fV h1

; . . . ; V hk ; . . . ; V hng we compute a score ah ¼ ð
Pn

k¼1qhk
Þ=jRhj, where qi is the number of scopes to

which variable Vi belongs. If |Sunion [ Sj| = |Sunion [ Sh| then if aj > ah the resequencing algorithm chooses
Sj in preference to Sh. Partition search uses the partition resequencing algorithm that is outlined in Fig. 11. This
algorithm renumbers variables as well as scopes; search efficiency is improved by processing the renumbered
variables in the straightforward sequence V 1; V 2; . . . ; V N , thus avoiding indirection that would otherwise be
required. We work henceforward with renumbered variables and scopes without the superscriptrenumbered.

Let Rd be the set of scopes that have been selected at the time of termination of the repeat loop in Fig. 11,
just before commencement of the final while loop. Let qd be the number of scopes in Rd. Each scope Sj in Rd

can be regarded as the union of two disjoint (i.e. non-overlapping) subsets Sa
j and Sb

j . Sb
j is the subset of Sj that

was not in Sunion immediately before Sj was selected by the partition resequencing algorithm. Sa
j is the subset of

Sj that was, at this time, included in Sunion. It is easy to see that, as a result of partition resequencing, Rd has all
of the following properties:

Partition properties

1. For all Sj 2 Rd the variables in Sb
j are contiguous. This means that if g < k, V g 2 Sb

j and V k 2 Sb
j then

g < h < k implies V h 2 Sb
j .
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2. The subsets Sb
j are disjoint. Thus if Sh and Sk are any two scopes in Rd such that h 5 k, then Sb

h \ Sb
k is

empty.
3. Sb

1 [ Sb
2 [ . . . [ Sb

qd
¼ V ¼ fV 1; . . . ; V Ng. Thus the set of subsets fSb

1; S
b
2; . . . ; Sb

qd
g is a partition on the set V of

variables. (Hence the name partition resequencing).
4. In this partition on V the successive subsets are in the sequence Sb

1; S
b
2; . . . ; Sb

qd
. In other words, if V h 2 Sb

j

and V i 2 Sb
k then j < k implies h < i.

5. Sa
1 is empty and Sb

1 ¼ S1.
6. For all j such that 2 6 j 6 qd, Sa

j 	 S1 [ S2 [ . . . [ Sj�1.

Table 1 shows an example of partition resequencing with N = 10, n = 5 and q = 6, where q is the number of
scopes. A scope is represented by a row of 10 characters; a hyphen signifies that the variable does not belong to
the scope. In this example Rd ¼ fS1; S2; S3; S4g and the partition is fSb

1 ¼ fV 0; V 1; V 2; V 3; V 4g; Sb
2 ¼

fV 5; V 6g; Sb
3 ¼ fV 7g; Sb

4 ¼ fV 8; V 9gg.
In Section 2.4 we introduced a function Gj(k) such that a variable V jk

within scope Sj is the same thing as the
variable Vi such that i = Gj(k). Before resequencing, the local numbering V j1

; . . . ; V jk
; . . . ; V jm

; . . . ; V jn
of vari-

ables within a scope Sj is such that k < m implies Gj(k) < Gj(m). This sequence is usually destroyed by rese-
quencing, which changes the global numbering of variables. For partition search it is essential that this
sequence be restored. We achieve this by permuting the sequence of values in tuples in constraint relations.
For all constraints this permutation, which is one of the overheads of partition search, ensures that Sj is again
an ordered set fV j1

; . . . ; V jk
; . . . ; V jm

; . . . ; V jn
g such that k < m implies Gj(k) < Gj(m).

4.2. Basic algorithm for partition search

Partition search is a depth first search algorithm that instantiates S1; S
b
2; . . . ; Sb

j ; . . . ; Sb
qd

, always in that
straightforward sequence. Instantiation of Sb

j means instantiation of all variables therein; more than one var-
iable may be instantiated at the same time. The instantiation sequence for variables is such that when Vi has
been instantiated there is no h < i such that Vh has not been instantiated. When all of the variables in
Fig. 11. A partition resequencing routine.



Table 1
Six scopes (a) before and (b) after partition resequencing

9 8 7 6 5 4 3 2 1 0

(a)

1 – A A A – – – A – A
2 – – B B – B B B – –
3 – – – – C C C C C –
4 – D D – D – – – D D
5 E – – E E – – – E E
6 F – F F F – – F – –

(b)

1 – – – – – F F F F F
2 – – – A A – A A – A
3 – – D D D – D – D –
4 B B – – – – B B – B
5 C C C – – – – – C C
6 – – E – E E – E E –

4 3 1 8 0 9 7 6 5 2

The 10 variables are numbered 0, 1, . . ., 9 from right to left as indicated in the top row. In (b) the bottom row shows how the variables were
numbered prior to resequencing.
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W i ¼ fV 1; . . . ; V ig have been instantiated such that V1 has the value v1; V 2 has the value v2; . . . ; V i has the
value vi, we define wi ¼ fv1; . . . ; vig. Additionally, we define We(j) = Wi such that Vi is the last variable in
the ordered set Sj. (In e(j) the ‘e’ stands for ‘end’.) Note that with partition resequencing we have by construc-
tion Sa

j ¼ Sj \ W eðj�1Þ.
Partition search instantiates S1; S

b
2; . . . ; Sb

j so that, at every stage, we(j) is a tuple in R1ffl R2ffl � � � ffl Rj. To
achieve this, partition search instantiates S1 to an tuple in R1, thereby instantiating Sa

2 because Sa
2 	 S1. Par-

tition search instantiates Sb
2 to a tuple in pSb

2
ðR2 ffl weð1ÞÞ so as to ensure that we(2) 2 R2ffl R1. Subsequently,

partition search instantiates Sb
3 to a tuple in pSb

3
ðR3 ffl weð2ÞÞ so as to ensure that we(3) 2 (R3ffl we(2)). Clearly,

(R3ffl we(2)) 	 (R1ffl R2ffl R3).
Omitting practical details, Fig. 12 outlines a partition search algorithm that works with sets P 1; . . . ;

P j; . . . ; P qd
defined by
P j ¼
R1 if j ¼ 1

pSb
j
ðRj ffl weðj�1ÞÞ otherwise

(

P j ¼ fP j1; P j2; . . . ; P jjP jjg is the set of all tuples to which Sb

j could be instantiated so that we(j) 2 Rjffl we(j�1) and
therefore we(j) 2 R1ffl R2ffl � � � ffl Rj.

Scopes that are not in Rd are used for consistency checking. If there is a constraint Rx such that Sx 	We(j)

and we(j)[Sx] 62 Rx, then we(j) cannot be part of a solution N-tuple, and in this case procedure consistent returns
false. For each Sj 2 Rd, the (possibly empty) set, Hj, of scopes used for checking consistency is defined by
Hj ¼ fSx 2 ðR� RdÞjSb
j \ Sx is non-empty and Sx 	 W eðjÞg
Theorem 3, in the Appendix, asserts correctness of partition search, viewed as a sequential process. It is
worth mentioning that partition search is not restricted to purely serial implementation. Database query pro-
cessors may speed up single and multiple joins by using a number processors working in parallel [19,42,45]. To
speed up depth-first search for constraint satisfaction, McCall et al. [56] subdivide the search into a number of
disjoint concurrent searches. A single-processor implementation of partition search enumerates
rðW eðj�1Þ¼weðj�1ÞÞ^ðSb

j¼P jhÞðZÞ between the time of instantiating Sb
j to Pjh and the time of instantiating Sb

j to

Pj(h+1). Using the ideas of [56], a multiprocessor implementation of partition search may employ |Pj| parallel
processors each separately enumerating rðW eðj�1Þ¼weðj�1ÞÞ^ðSb

j¼P jhÞðZÞ for a different value of h, 1 6 h 6 |Pj|. This

concurrency is applicable whatever the detailed implementation of partition search.



Fig. 12. Partition search algorithm. The body of the algorithm follows after end consistent. Array element next[j] identifies the next tuple
in fP j1; P j2; . . . ; P jjP j jg.

3652 J.R. Ullmann / Information Sciences 177 (2007) 3639–3678
We now formulate conditions for best performance of partition search, again regardless of its detailed
implementation. We define a spurious match to be a match weðj�1Þ½Sa

j � ¼ t½Sa
j � with a tuple t 2 Rj such that there

is no z in Z for which tffl we(j�1) = z[We(j)]. Thus a spurious match is one that leads to an instantiation of Sb
j

such that we(j) is not part of a solution. Spurious matches are less likely, and therefore partition search is faster,
if

K is decreased so there are fewer tuples in constraint relations and therefore less chance that a tuple in a
constraint relation will match spuriously.
jSa

j j is increased so that a spurious match is less likely because more variables are matched. Thus spurious
matches are less likely with higher arity and with more overlap between scopes.
d is increased so that a spurious match is less likely because domains are larger.
4.3. Hash join implementation of partition search

4.3.1. Hash buckets

In the definition of Pj, the join Rjffl we(j�1) concatenates we(j�1) with each tuple t 2 Rj such that
t[Sj \We(j�1)] = we(j�1)[Sj \We(j�1)]. We have noted previously that partition resequencing ensures
Sa

j ¼ Sj \ W eðj�1Þ. Thus partition search concatenates we(j�1) with tuples of Rj that match we(j�1) in Sa
j . This

is achieved by instantiating Sb
j to t½Sb

j �, where t is a tuple in Rj such that t½Sa
j � ¼ weðj�1Þ½Sa

j �. For use in this
instantiation, partition search could examine successive tuples in Rj seeking a tuple t such that t½Sa

j � ¼
weðj�1Þ½Sa

j �.
Instead it is very much more efficient to use a hash join [33,37,58,69] that examines only a few tuples of Rj

instead of checking many of them. For all j > 1, a pre-search process partitions constraint relation Rj into hash
buckets organized so that any two tuples which are in the same hash bucket have the same value of a hash
function. This hash function must be such that every tuple t 2 Rj such that t½Sa

j � ¼ weðj�1Þ½Sa
j � has the same hash

function value and therefore belongs to the same bucket. Every tuple t in Rj that concatenates with we(j�1) in
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Rjffl we(j�1) is in this bucket. To enumerate Rjffl we(j�1) it is only necessary to search this single bucket instead
of searching through many tuples in Rj.

For all j > 1 we define Sl
j to be the first mj variables in the ordered set Sa

j , where
mj ¼
minðlj; jSa

j jÞ for 1 < j 6 qd

lj for qd < j 6 q

(

and lj is a control parameter. Defining d to be the maximum number of values in a domain, our hash function
of a tuple t ¼ ht1; . . . ; tk; . . . ; tmj ; . . . ; tnji is
hashðt½Sl
j �Þ ¼

Xk¼mj

k¼1

tkd
k�1
We have Sa
j 	 weðj�1Þ and Sl

j � Sa
j , so at the time of instantiation of Sb

j , Sl
j has already been instantiated to

weðj�1Þ½Sl
j �. At this time, every tuple t 2 Rj such that t½Sa

j � ¼ weðj�1Þ½Sa
j � has t½Sl

j � ¼ weðj�1Þ½Sl
j � and is therefore lo-

cated in the single hash bucket that is identified by hashðweðj�1Þ½Sl
j �Þ.

For Rj the number of hash buckets is dmj , which is the number of distinct hash function values. To prevent
this number from being too large, we have mj ¼ minðlj; jSa

j jÞ. We normally choose lj so that dlj < jRjj.
The tuples of all constraint relations are stored in a single two-dimensional array r, where they remain with-

out change during the search. For j = 1 the array elements r½1; 1�; r½1; 2�; . . . ; r½1; jR1j� are the tuples of R1 in
any sequence. For j > 1 the array elements r½j; 1�; r½j; 2�; . . . ; r½j; jRjj� are the tuples of Rj sorted into hash buck-
ets so that all tuples which have hash value 0 are located in the first bucket, all tuples that have hash value 1
are located in the second bucket, and so on. If, for example, three tuples have hash value 0, six have hash value
1, five have hash value 2, none have hash value 3 and two have hash value 4, then the first bucket comprises
r½j; 1�; . . . ; r½j; 3�, the second bucket comprises r½j; 4�; . . . ; r½j; 9�, the third bucket comprises r½j; 10�; . . . ; r½j; 14�,
the fourth bucket is empty, the fifth comprises r½j; 15�; r½j; 16�, and so on.

After sorting the tuples of constraint relations into buckets, we construct an index that is a two dimensional
array of records. This is initialized so that index½j; i�:first ¼ h such that r½j; h� is the first tuple in the sequence
r½j; 1�; r½j; 2�; . . . ; r½j; jRjj� that has hash value i. Moreover, index½j; i�:last ¼ k such that r½j; k� is the last element
in the sequence r½j; 1�; r½j; 2�; . . . ; r½j; jRjj� that has hash value i. We also arrange that index½j; i�:first ¼ 0 iff there
is no tuple t in Rj that has hash value i. For the example in the previous paragraph, index½j; 2�:first ¼ 10 and
index½j; 2�:last ¼ 14.

When |Rj| is the same for all j we omit the subscript of lj. Similarly, when |Sj| is the same for all j we omit the
subscript of nj. In partition search, the memory requirement for array r is O(nqK), where K is the maximum
|Rj|. The index contains O(qdl) records, so when dl < K the overall memory requirement for partition search is
O(nqK).

4.3.2. A hash join partition search algorithm

Fig. 13 shows a hash join implementation of partition search. While j = 1, successive iterations of the outer
repeat loop assign to t successive tuples of R1 in Line 5; in Line 13 S1 is instantiated to the tuple t, since Sb

j ¼ Sj

when j = 1.
At Line 14 a call of consistent(j) with empty Hj would return true. At Line 18, bucketNumber is a hash value

calculated from the first mj variables of weðj�1Þ½Sa
j �; this is used in the initialization of next[j] and final[j]. If

next[j] = 0 then there is no tuple in Rj that matches we(j�1) in the overlap Sj \We(j�1) so Pj is empty and it will
be impossible to instantiate Sb

j . In this case j is decremented in Line 21.
The repeat loop in Lines 7, 8 and 9 finds the next tuple t 2 Rj that matches we(j�1) in the overlap Sj \We(j�1).

It is important that this repeat loop searches only the one bucket that contains tuples t such that
t½Sl

j � ¼ weðj�1Þ½Sl
j �. If a tuple t within this bucket is such that t½Sa

j � Sl
j � ¼ weðj�1Þ½Sa

j � Sl
j � then we have

t½Sl
j � ¼ weðj�1Þ½Sl

j � and also t½Sa
j � Sl

j � ¼ weðj�1Þ½Sa
j � Sl

j � so t½Sa
j � ¼ weðj�1Þ½Sa

j �. In this case t 2 Rj n we(j�1) and
therefore t½Sb

j � 2 P j.
The function consistent(j) that is called in Fig. 13 is shown in Fig. 14. We have Sx 2 Hj only if Sx 2We(j), so

Sl
x has been instantiated when Sb

j has been instantiated. Therefore only a single bucket of Rx need be searched
by the loop at Lines 8–13. If index[x,bucketNumber].first is zero then this bucket is empty, so there is no tuple t



Fig. 13. Hash join implementation of partition search.

Fig. 14. Function consistent called by the partition search algorithm in Fig 13.
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such that t½Sl
x � ¼ weðjÞ½Sl

x �. In this case we(j) is not consistent with Rx because we(j)[Sx] 62 Rx and the function
therefore returns false at Line 7.

The tabular procedure reduce (at Line 5 in Fig. 2) scans all tuples in Rj, whereas for each Sx 2 Hj the func-
tion consistent(j) in Fig. 14 scans only one bucket which is a small subset of Rx. This bucket contains tuples t
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such that t½Sl
x � ¼ weðjÞ½Sl

x �. If a tuple t within this bucket is such that t½ðSx � Sl
x Þ� ¼ weðjÞ½ðSx � Sl

x Þ� then we have
t = we(j)[Sx] and we(j)[Sx] 2 Rx. Whilst scanning a bucket, the function consistent(j) only examines values in
ðSx � Sl

x Þ, whereas procedure reduce (Fig. 2) examines all values in a tuple until a mismatch is found. A toy
example of the working of partition search, using the scopes from Table 1b, is shown in Table 2.

4.4. Decision diagram implementation of partition search

4.4.1. Decision diagrams

Partition search is a general strategy that can be implemented in different ways. Instead of using hash joins,
we can implement partition search by using decision diagrams, as follows.
Table 2
Partition search example with d = 8 and l = 1

(a)

r[1,1] – – – – – 3 5 7 2 6
r[1,2] – – – – – 0 3 7 4 6
r[1,3] – – – – – 0 1 1 3 7
r[2,1] – – – 6 4 – 5 7 – 6
r[2,2] – – – 3 1 – 1 1 – 7
r[2,3] – – – 7 6 – 1 1 – 7
r[3,1] – – 2 6 4 – 5 – 2 –
r[3,2] – – 4 7 6 – 1 – 3 –
r[3,3] – – 0 3 1 – 1 – 3 –
r[4,1] 7 7 – – – – 6 6 – 2
r[4,2] 5 2 – – – – 5 7 – 6
r[4,3] 4 2 – – – – 1 1 – 7
r[5,1] 3 7 1 – – – – – 1 3
r[5,2] 5 2 2 – – – – – 2 6
r[5,3] 4 2 4 – – – – – 3 7
r[6,1] – – 2 – 4 3 – 7 2 –
r[6,2] – – 4 – 6 0 – 1 3 –
r[6,3] – – 5 – 2 2 – 1 5 –

(b) 2 3 4 5 6

0 0 0 0 0 0
1 0 0 0 0 0
2 0 1 1 0 1
3 0 2 0 1 2
4 0 0 0 0 0
5 0 0 0 0 3
6 1 0 2 2 0
7 2 0 3 3 0

(c)

j we(j) Comment

1 – – – – – 3 5 7 2 6 S1 instantiated
2 – – – 6 4 3 5 7 2 6 Using the only matching tuple in R2

3 – – 2 6 4 3 5 7 2 6 Using the only matching tuple in R3

4 5 2 2 6 4 3 5 7 2 6 Included in Z. Backtrack to j = 1
1 – – – – – 0 3 7 4 6 No matching tuple in R2

1 – – – – – 0 1 1 3 7 S1 re–instantiated
2 – – – 3 1 0 1 1 3 7 Using first matching tuple in R2

3 – – 0 3 1 0 1 1 3 7 No matching tuple in R5, so backtrack
2 – – – 7 6 0 1 1 3 7 Using second matching tuple in R2

3 – – 4 7 6 0 1 1 3 7 Using the only matching tuple in R3

4 4 2 4 7 6 0 1 1 3 7 Included in Z. Backtrack to j = 0

(a) Constraint relations. (b) Index: the entry in column j and row i is index[j,i].first. (c) Working of Fig. 13 algorithm.
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An arc in a directed graph points from a parent node to a child node. A node is terminal if it has no chil-
dren. A decision diagram (DD) is a directed acyclic graph in which each non-terminal node, N, is associated
with some variable Vi and every child of N is associated with a different value of Vi. In the present work, a
DD has a single root node, which is a non-terminal node that has no parent. A DD is designed so that, if we
start at the root node, proceed thence to the child associated with value a, proceed thence to the child asso-
ciated with value b, and so on, until we reach the terminal node selected by value p of its parent, then infor-
mation associated with this terminal node is relevant to the tuple ha; b; . . . ; pi [84].

If the sequence of variables along every path from a root node to a terminal node conforms to a single given
sequence, then the DD is ordered [18,84]. In the implementation of partition search, we use ordered DDs to
represent constraint relations. The ordering sequence is determined by partition resequencing. In the DD that
represents Rj, the information associated with a terminal node is a single bit which is 1 if and only if the tuple
that directed us from the root to this terminal node belongs to Rj.

A tuple t ¼ ht1; t2; . . . ; tni can be converted to a tuple of bits by concatentating a bit-pattern representing t1

with a bit-pattern representing t2� � � with a bit-pattern representing tn, as described in [72, Section 3.1]. After
this conversion, a constraint relation can be represented by a binary DD (BDD). A BDD is a DD in which no
node has more than two children [18]. An advantage of using BDDs is that they have been well studied and
have many applications [18,29,39]. Section 5.3.2 reports experiments with BDDs and also with multivalued
DDs. In a multivalued DD (MDD) a non-terminal node may have more than two children [84, chapter 9].

4.4.2. Construction of tries from constraint relations
MDD and BDD implementation of partition search will be introduced in Section 4.4.4. This implementa-

tion is most easily understood in terms of tries, which are DDs that are restricted so that no non-terminal node
has more than one parent [2,3]. Starting from a constraint relation Rj given as a table of tuples, the simple
routine shown in Fig. 15 constructs a multivalued trie. A node is represented by a record that has two fields:
varNo and child. Here varNo is the local variable number of the variable whose value will select one of the
node’s children. The field child is an array such that child[v] is a pointer to the child that will be selected by
value v of the variable whose local number is varNo. Array element root[j] points to the root node of the trie
that represents Rj.

Procedure buildTrie (Fig. 15) builds a trie in which there are exactly two terminal nodes: these are the ‘1’
sink node and the ‘0’ sink node. zeroPtr is a pointer to the ‘0’ sink node; onePtr is a pointer to the ‘1’ sink node.
Fig. 15. A procedure that constructs a trie representing constraint relation Rj which is given as a collection of tuples. new(newPtr) creates
a new node and makes newPtr point to it.
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For each tuple in Rj there is a path from the root node to the ‘1’ sink node. Conversely, each path from the
root node to the ‘1’ sink node corresponds to a tuple in Rj, so the trie is a full trie [21].

Fig. 16 shows an example of a trie that represents a constraint relation comprising fifteen 4-tuples with
d = 3. Nodes are represented by circles. The number within a circle is the local (within-scope) number of
the variable whose value selects a child of that node. The number beside an arc is the value that selects the
child to which the arc is directed. As is usual in trie literature (e.g. [2,3]) arcs to the 0 sink node are not shown;
the 0 sink node itself is not shown. All arcs at the bottom of Fig. 16 go to the 1 sink node, which is not shown.

For example, successive values 1,1,0,2 take us from the root node at the top of Fig. 16 to the 1 sink node;
this 4-tuple is in the constraint relation that the trie represents. Starting again at the root node, successive val-
ues 1 then 0 take us to the 0 sink node; there is no 4-tuple in this constraint relation that has 1, 0 as its first two
values.

4.4.3. Trie implementation of partition search

Fig. 17 shows an implementation of partition search, using the following arrays:

V is such that V[i] is the current value of the variable Vi.
vNext is such that the search will next try to instantiate Vi to vNext[i].
ult is such that ult[i] is the number of scopes that include the variable Vi.
which is a two-dimensional array of records that have two fields: scopeNo and varNo. For the gth scope that
includes the variable whose global variable number is i, the record which[i,g] contains the scope number and
the local (within the gth scope) variable number of this variable. Array which is initialized so that, for all
1 6 i 6 N, which½i; 1�:scopeNo ¼ j such that V i 2 Sb

j .
at is a currency-indicator array. at½j; k� points to a node in the trie that represents Rj. During the search,
at½j; k� points to the current node that is associated with local (within scope j) variable k.

To illustrate the working of the routine shown in Fig. 17, suppose (as an initial example) that n = 4 and
Fig. 16 trie represents R1. Suppose also that the consistency checking procedure doCheck, which is shown
in Fig. 18, always returns consistent = true when i < 4.

The loop at Lines 6–9 finds the next value v to be used in the instantiation of V[i] at Line 11. In our initial
example, v = 0 selects the leftmost child of the root node in Fig. 16 and we have V[1] :¼ 0 at Line 11. After i

has been incremented at Line 15, we have j :¼ 1 and k :¼ 2 at Line 16. Line 17 makes at½1; 2� point to the left-
most child of the root node. After returning to Line 4, now with i = 2, the loop at Lines 6–9 selects v = 2,
because at½1; 2� " :child½0� ¼ zeroPtr and at½1; 2� " :child½1� ¼ zeroPtr. After returning again to Line 4, now with
i = 3 and with at½1; 3� ¼ at½1; 2� " :child½2�, the value v = 2 is again selected. During the next iteration, now
with i = 4, v = 1 is selected because at½1; 4� " :child½1� 6¼ zeroPtr. Line 11 completes the instantiation of S1

to the first tuple h1; 2; 2; 1i in R1. At this time Line 11 also assigns vNext[4] :¼ 2.
A result of this assignment to vNext[4] is that when the search next returns to Line 4 with i = 4, the

value v = 2 is selected by the loop at Lines 6–9, because at½1; 4� " :child½2� 6¼ zeroPtr. Line 11 completes the
Fig. 16. An example of a trie representing a constraint relation that has n = 4.



Fig. 17. Trie implementation of partition search.

Fig. 18. Consistency checking procedure that is called in Line 12 of Fig. 17.
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instantiation of S1 to the second tuple h1; 2; 2; 2i in R1. Subsequently, when the search next returns to Line 4
with i = 4, we have v = d at Line 5, which signifies that there are, at this stage, no further values to which V[4]
should be instantiated. The search backtracks to j = 1 and now chooses the middle child of the root node in
Fig. 16. Continuing in this way, the search eventually instantiates S1 to each in turn of the tuples in R1.

Throughout the search, the instantiation of V[i] is determined by the trie that represents Rj such that
V i 2 Sb

j . Here we have, by initialization, which½i; 1�:scopeNo ¼ j. Immediately after instantiation of V[i], pro-
cedure doCheck checks consistency by using the trie that represents Rh for each h such that
which½i; g�:scopeNo ¼ h and 2 6 g 6 ult[i]. If there is no such Rh then procedure doCheck returns consis-
tent = true at Line 3 in Fig. 18.
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We now give a second example, which is emphatically not a continuation of our first example. In this sec-
ond example, the trie in Fig. 16 no longer represents R1. Instead, this trie represents R6, such that S6 2 Rd.
Suppose that within scope S6 the local (within S6) variables V 1; . . . ; V 4 are the same as global variables V5,
V8, V9 and V10, respectively. Suppose, moreover, that Sb

6 ¼ fV 9; V 10g. Initialization at Line 2 in Fig. 17 ensures
that, at the time of instantiation of V5, at[6,1] points to the root node of Fig. 16 trie. Suppose for example that
V5 is instantiated to 1. In this case Lines 7, 8 and 9 in Fig. 18 yield at½6; 2� :¼ at½6; 1� " :child½1�, which points to
the middle child of the root node in Fig. 16.

Suppose that procedure doCheck returns consistent = true after instantiation of V 5; V 6 and V7. If V8 is instan-
tiated to V8 = 0, then at½6; 2� " :child½0� ¼ zeroPtr, as can be seen at the middle child of the root node in Fig. 16.
In this case procedure doCheck returns consistent = false, so i is not incremented at Line 15 of Fig. 17; instead
the loop at Lines 6–9 of Fig. 17 selects the next value to which V8 can be instantiated. Suppose that this value is
2. Immediately after instantiation V[8] :¼ 2, procedure doCheck assigns at½6; 3� :¼ at½6; 2� " :child½2�.

Continuing this example, suppose that procedure doCheck returns consistent = true after the instantiation
V[8] :¼ 2. At line 15 in Fig. 17, i is incremented to i = 9. In this example the global variable V9 is the first in Sb

6,
so at Line 16 we have which[9,1].scopeNo = 6. Furthermore, which[9,1].varNo = 3 because global variable V9 is
the same as local variable V3 within scope 6. When the search returns to Line 4, Fig. 17, we have v:¼0 at Line
5, because of the previous assignment vNext[i]:¼0 at Line 15. At Line 7, at½6; 3� has the value that was previ-
ously assigned to it at Line 9 of procedure doCheck, as mentioned above. Thus at½6; 3� points to the right hand
child of the middle child of the root node in Fig. 16. The only possibility now is the instantiation V[9] :¼ 2,
because at[6,3]".child[0] = zeroPtr and at[6,3]".child[1] = zeroPtr.

Assuming that procedure doCheck returns consistent = true after instantiation of V9, we have j :¼ 6 and
k :¼ 4 at Line 15 of Fig. 17. In this case jPrevious = j, so we have at½6; 4� :¼ at½6; 3� " :child½2� at Line 17.
The search continues similarly.

To see how this routine implements partition search, consider Sj 2 Rd with j > 1. Let k 0 be such that the
local variable V k0 in Sj is the first variable in Sb

j . The key idea is that when i = Gj(k
0
) at Line 5 of Fig. 17, pro-

cedure doCheck has previously ensured that at½j; k0� points to the root node of a subtrie of the Rj trie. This
subtrie represents the set Pj of tuples that was defined in Section 4.2. If, after instantiation of Ve(j�1), procedure
doCheck never returns consistent = false until Ve(j) has been instantiated, then Fig. 17 routine instantiates Sb

j to
each in turn of the tuples in the set Pj, as in Fig. 12.

Because procedure doCheck is called after instantiation of each variable, Fig. 17 routine is not exactly an
implementation of partition search as formulated in Fig. 12. Fig. 17 routine could be amended so as to call
procedure doCheck only after instantiation of the whole of each Sb

j , thus becoming an exact implementation
of partition search; but this would entail complications which would probably not enhance speed.

4.4.4. Reduction of decision diagrams

When arity is high and constraint relations have many tuples, trie representation makes heavy demands on
memory. Memory requirements can be reduced substantially by removing duplicate and redundant nodes as
explained by Bryant [18]. Bryant’s reduction algorithm [17, Fig. 4] can readily be extended to the non-binary
case where a node may have more than two children; we will not give details because the extension is so
straight-forward that it does not require explanation. Henceforward we will use BDD to mean a fully reduced
ordered binary decision diagram (OBDD) as defined in [18]. Henceforward an MDD is a fully reduced ordered
multivalued decision diagram [84, p. 215]. The MDD shown in Fig. 19, which has 10 non-terminal nodes, rep-
resents the same constraint relation as the Mtrie shown in Fig. 16, which has 17 non-terminal nodes.

The search routine shown in Fig. 17 can easily be amended so as to work with BDDs or MDDs instead of
tries. Amendment, which is required because redundant nodes have been deleted from BDDs and MDDs, is
completed by replacing

• Line 17 in Fig. 17 by the fragment shown in Fig. 20a and
• Line 9 in Fig. 18 by the fragment shown in Fig. 20b.

Array xt is of the same type as array at. An element of array xt may point to a redundant node that has
temporarily been re-instated. For example, suppose that the MDD in Fig. 19 represents constraint relation R1.



Fig. 19. An MDD representing the constraint relation that is represented by Fig. 16. The ‘1’ sink node is shown at the bottom of the
diagram. The ‘0’ sink node and arcs pointing to it are not shown.

Fig. 20. Fragments used in amendment of Figs. 17 and 18.
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Consider the situation where, immediately after execution of Line 16 in Fig. 17, we have j ¼ 1; v ¼
1; i ¼ 3; and k ¼ 3. Suppose that at[1,2] points to the middle child of the root node in Fig. 19. In this case,
at½1; 2� " :varNo ¼ 2 and at½1; 2� " :child½1� " :varNo ¼ 4. Fragment (a) in Fig. 20 makes all the children of
extra node xt½1; 3� " to be at½1; 2� " :child½1�. This extra node is redundant because all of its children are the
same. Just before the end of fragment (a), xt½1; 3� is assigned to at½1; 3� for indispensable use at Line 7 in
the next iteration of the repeat loop in Fig. 17. Fragment (b) can be understood similarly.

4.5. Relationship between dual and partition search

Every constraint satisfaction problem has a dual in which the variables are S1; . . . ; Sq and there is a binary
constraint between variables Sh and Sj such that Sh \ Sj is not empty. For a binary constraint between Sh and
Sj, the constraint relation is Rhffl Rj [86]. Dual representation was originally introduced in database theory
[53] and has been used to transform non-binary into binary constraint satisfaction problems [9,27,24,44,67].
Dual search is a search for one or more solutions of the original problem, working with dual variables and
dual constraints instead of original variables and original constraints. Sections 5.6 and 5.7 report experiments
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with Cn dual search implemented as in Fig. 1 except that incremental restoration is used instead of push/pop
save/restore.

If there is a dual constraint between Sh and Sj then Rj can be replaced by Rj n Rh, as in Section 3.1. During
dual search, instantiation of Sh to a tuple vh replaces the operation Rj n Rh by Rj n vh. As a result of deletion
of tuples from Rj, there may be tuples in other dual domains that do not concatentate with any tuple in Rj and
can therefore be deleted. Deletion of tuples may propagate.

To simplify the following paragraphs, suppose that dual search instantiates dual variables in the static
sequence S1; S2; . . . ; Sq, and that redundant pairs have not been removed. Suppose also that Sj is instantiated
to a tuple vj at a time when, for all 1 6 h < j,Sh has previously been instantiated to vh. The set of solutions
consistent with these instantiations of S1; . . . ; Sj is
Z 0 ¼ v1 ffl v2 ffl � � � ffl vj�1 ffl vj ffl Rjþ1 ffl � � � ffl Rq
Z 0 is empty if vhffl vj is empty for any h such that h < j and Sh \ Sj 5 ;. At the time of instantiation of Sj, the
previous operation Rj :¼ Rj n vh has deleted from Rj every tuple vj such that vjffl vh is empty. Dual search does
not instantiate Sj to any tuple that has been deleted from Rj. Thus dual search avoids instantiations of Sj that
would yield empty Z 0 and so be a waste of time. Dual search avoids futile instantiations by using binary dual
constraints to delete tuples from dual domains.

Partition search does not use binary constraints between dual variables and does not delete tuples from dual
domains. Whereas dual search deletes from Rj every tuple to which Sj should not be instantiated, partition
search uses instead a data structure (e.g. hash or DD) to identify every tuple t 2 Rj to which Sj should be
instantiated when We(j�1) has been instantiated to we(j�1). At this time, Sa

j has already been instantiated; par-
tition search completes the instantiation of Sj by instantiating Sb

j . Scope Sj should be instantiated to a tuple t in
Rj only if t concatenates with we(j�1) in the join we(j�1)ffl t. The partition search data structure provides rapid
access to tuples in the set
ft 2 Rjjweðj�1Þ ffl t 6¼ ;g ¼ ft 2 Rjjt½W eðj�1Þ \ Sj� ¼ weðj�1Þ½W eðj�1Þ \ Sj�g ¼ ft 2 Rjjt½Sa
j � ¼ weðj�1Þ½Sa

j �g
remembering that Sa
j ¼ W eðj�1Þ \ Sj. This (hash or DD) data structure is set up before commencement of par-

tition search and remains unchanged thereafter. Before commencement of dual search there is no analogous
construction of a data structure.

For each possible instantiation, x ¼ weðj�1Þ½Sa
j �, of Sa

j , the partition search data structure provides rapid
access to tuples in rSa

j¼xðRjÞ ¼ ft 2 Rjjt½Sa
j � ¼ xg. This data structure depends only on the tuples within Rj,

regardless of which tuples are, or are not, in other constraint relations. In dual search, deletion of a tuple from
a constraint relation depends on absence of specific tuples from other constraint relations.

Partition resequencing is intended to make Sa
j as large as possible, so as to make rSa

j¼xðRjÞ as small as pos-
sible. This is expected to make partition search faster by lessening the number of distinct instantiations of Sb

j .
Partition search requires partition resequencing, but dual search does not. Dynamic variable ordering can be
used with dual search but not with partition search. The partition search data structure works only with a
static (i.e. unchanging) instantiation sequence.

Another difference is that semijoin reduction can be applied before commencement of search; but partition
search cannot be used for preprocessing because Pj is defined in terms of we(j�1).

Dual search must restore tuples to constraint relations when the absence of these tuples has lost logical jus-
tification. Save/restore operations are particularly burdensome when the dual domains R1; . . . ;Rq have high
cardinality. Because partition search does not delete anything from anywhere it involves no save/restore oper-
ations. The application of hash joins or DDs in partition search is practical because constraint relations
remain unchanged throughout the search. The membership of constraint relations does not remain unchanged
throughout dual search.

Compared with dual search, partition search may make more instantiations, but do less work associated
with each instantiation. To explore this we now consider dual S1 reduction search, as in [8], without dynamic
variable ordering and without eliminating redundant dual constraints. In other words, we consider the original
version of forward checking [57, Fig. 5] applied to tuple instantiation and dual constraints. We apply partition
resequencing, which can be expected to speed up dual search for the same reasons that it speeds up partition
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search. After this static reordering and renumbering of dual variables, our dual search again instantiates
scopes in the static sequence S1; S2; . . . ; Sq.

The following paragraphs relate only to hash-join partition search because this instantiates Sb
1; S

b
2; . . . ; Sb

qd
.

The DD implementation of partition search in Section 4.4.3 instantiates one variable at a time, which would
complicate comparison with dual search.

After dual S1 search has instantiated a scope Sh to a tuple u 2 Rh, the forward checking routine is:

for each j > h such that Sh \ Sj is non empty do Rj:¼Rj n u end for;

The semijoin reduction Rj :¼ Rj n u can be written explicitly
Rj :¼ ft 2 Rjjt½Sj \ Sh� ¼ u½Sj \ Sh�g

and at the time of instantiation of Sj this can be written
Rj :¼ ft 2 Rjjt½Sj \ Sh� ¼ weðj�1Þ½Sj \ Sh�g
At this time, forward checking has previously been performed for all h < j, thereby reducing Rj to
Rj ¼ ft 2 Ro
j jð8hðh<jÞ^ðSh\Sj 6¼;ÞÞðt½Sj \ Sh� ¼ weðj�1Þ½Sj \ Sh�Þg
where Ro
j is the set Rj given initially as part of the problem formulation. After partition resequencing we have
[ðh<jÞ^ðSh\Sj 6¼;ÞðSj \ ShÞ ¼ Sa
j

whence, at the time of instantiation of Sj,
Rj ¼ ft 2 Ro
j jt½Sa

j � ¼ weðj�1Þ½Sa
j �g ¼ Ro

jnweðj�1Þ
Dual search instantiates Sj to a tuple in this reduced set Rj. When hash-join partition search instantiates Sb
j it

thereby completes the instantiation of Sj to a tuple in Ro
jnweðj�1Þ which is the same as for dual search.

After instantiating Sb
j , hash-join partition search calls procedure consistent which vetoes this instantiation if

there is any Sx 2 Hj such that Rx n we(j) is empty. In S1 dual search, procedure reduce vetoes the instantiation
of Sj if there is any k (not restricted to Sk 2 Hj and Sk 	We(j)) such that k > j, Sk \ Sj 5 ; and Rk n we(j) is
empty. Hence we see that the set of search-space nodes visited by S1 dual search is a subset of the set of search-
space nodes visited by hash-join partition search.

On the other hand, dual search does much more work at each node in the search space. Hash-join partition
search implements Rj n we(j�1) using a single hash join, whereas dual search achieves this by means of a sep-
arate semijoin operation for each h such that h < j and Sh \ Sj 5 ;. Each semijoin operation involves serial
search seeking deletable tuples.

4.6. Relationship between partition search and variable elimination

We now introduce a development of partition search that makes the search backtrack-free, which here
means that the first qd iterations of the repeat loop in Fig. 12 find a solution if one exists. This development
is not immediately practical; its immediate purpose is to elucidate the relationship between partition search
and variable-elimination algorithms [47,48].

Partition search at Line 15 in Fig. 21 works in the usual sequence 1; 2; . . . ; qd . A preliminary process at
Lines 5–14 works in the reverse sequence. In [24, Fig. 8.2] the analogous preliminary process puts constraint
relations into buckets, with one bucket corresponding to each variable. Fig. 21 works with sets bH1; . . . ;bHj; . . . ; bHqd

, which can be regarded as buckets. Line 3 initializes bHj to include every constraint relation Rx

such that Sx is in Hj as defined in Section 4.2.
To see why partition search at Line 15 in Fig. 21 is backtrack-free, assume inductively that We(j�1) has been

instantiated and that we(j�1) = z[We(j�1)] for some solution z 2 Z. This assumption implies weðj�1Þ 2 bR1

ffl � � � ffl bRj�1, whence weðj�1Þ½bSh� 2 bRh for all 1 6 h < j. Line 11 ensures that pbS a
j

ðbRjÞ 2 bHh for some

h 2 {1, . . ., j � 1}. A subsequent join at Line 6 ensures that bRh is the join of pbS a
j

ðbRjÞ with other relations inbHh. Thus weðj�1Þ 2 bR1 ffl � � � ffl bRj�1 implies weðj�1Þ 2 pbS a
j

ðbRjÞ ffl (join of other relations). Hence, because bS a
j



Fig. 21. Backtrack-free partition search. All variables in Sb
j are eliminated by the projection operation in Line 11.
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is the scope of pbS a
j

ðbRjÞ, we have weðj�1Þ½bSa
j � 2 pbS a

j

ðbRjÞ. Line 7 has ensured that bRj is non-empty, so there is a

tuple u 2 bRj such that u½bS a
j � ¼ weðj�1Þ½bSa

j �. Partition search at Line 15 instantiates bRj to u only if

u½bSa
j � ¼ weðj�1Þ½bS a

j �. The construction of bRj is such that u[Sx] 2 Rx for all Rx 2 bHj. Therefore the extension
we(j) = uffl we(j�1) is such that we(j) = z[We(j)] for some solution z 2 Z; c.f. [26, Theorem 2.12].

When constraint scopes are random, bRj may be so large that this approach is not practical without devel-
opment. If limits are imposed on the size of relations then the search is not guaranteed to be backtrack-free,
but performance may nevertheless be enhanced [28].

5. Experiments

5.1. Generation of random problems

Frost and Dechter [31] explain that testing algorithms on randomly generated problems has the advan-
tage of facilitating systematic experimentation over large statistical populations but has the possible disad-
vantage of not reflecting the real challenges of practical applications. The present paper works mainly with
random problems because these enable exploration of trends of algorithm performance when problem
parameters are changed. Randomly generated problems can actually be more difficult than related practical
applications. For example, determination of subgraph isomorphism [57] is a binary constraint satisfaction
problem that is soluble only on a very small scale with purely random unlabeled graphs. Molecule-matching
applications [4,16] use additional information that enables completion of search within reasonable time
limits.

A random problem is trivial as a benchmark for search algorithms if Z can be shown to be empty without
the need for any search [1,34,85]. A random problem is also unsatisfactory if it has so many solutions that one
of these may be found very quickly, making the benchmark too easy. Between these extremes there is a cross-
over point where the parameters N, n, etc., are such that the probability of a problem having a solution is 0.5.
From the viewpoint of algorithm design, it is natural to attack the hardest problems, which occur near cross-
over points [65,70]. Confining attention to crossover points may, however, be unwise. This is because, in the
worst case of an NP-hard problem, algorithms can only be expected to work within a reasonable time on prob-
lems that may be too small to be of practical interest. Practical applications that happen to be at crossover
points may never have serviceable algorithms. On the other hand, it is very easy to find constraint satisfaction
problems that are far away from crossover points and are at the same time far beyond the capabilities of
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available algorithms. With such problems it may be possible to make greater practical progress than will ever
be possible near crossover points.

We use a generator that randomly chooses a set R of q scopes such that any two scopes in R differ in at least
one variable. Moreover, as for example in [57,67,76], our generator ensures that R cannot be partitioned into a
disjoint set of subsets such that the constraint satisfaction problem could be decomposed into smaller prob-
lems, one per subset, thereby reducing overall complexity. To prevent another simple short cut, our generator
also ensures that every variable belongs to at least two scopes.

Each experimental trial starts afresh with new random scopes and new random constraint relations. Con-
straint relations are generated using a hybrid of methods used previously [15,80]. This involves both of the
following procedures:

n-random. For each scope in R generate a given number, J, of distinct pseudo-random n-tuples of integers in
the range 0; 1; . . . ; d� 1. Let RJ

j be the set of n-tuples thus generated on scope Sj. Note that J is the cardi-
nality of RJ

j after removal of duplicates.
N-random. Generate a set Y that consists of a given number, H, of distinct pseudo-random N-tuples of inte-
gers in the range 0; 1; . . . ; d� 1. The set Y of N-tuples is a relation on V ¼ fV 1; . . . ; V i; . . . ; V Ng. Let RH

j be
the relational projection pSjðY Þ.

For each Sj 2 R, our generator generates constraint relations Rj ¼ RH
j [ RJ

j . The projection operation removes
duplicates and therefore the total number of n-tuples in Rj is generally less than K = H + J.

Section 5.4.2 will provide experimental evidence that increasing the ratio H/K makes enumeration of Z

harder. Working with H > 1 ensures that Z cannot be proved to be empty without performing any search.
Working with H > 1 and J > 1 we can model a wider range of practical applications than would be possible
with H = 0.

When working with H > 1 we always enumerate Z completely. If, instead, the search terminated after find-
ing a single solution then the search could be faster for larger H because there would be more solutions. Enu-
meration of the whole of Z, as in [85], is appropriate for various possible applications [77,79,80].

5.2. Elective and implied instantiation

All our experiments with reduction search use both dynamic and static variable ordering. For S-reduction
and C-reduction we use different versions of the dynamic ordering procedure choose (in Fig. 1). The
difference can be introduced in terms of the distinction [51] between elective and implied instantiation of
a variable. Elective instantiation means instantiation by the search algorithm, as at Line 13 in Fig. 1.
Implied instantiation means instantiation by domain reduction that removes all except one value from a
domain.

For C-reduction search we use a version of procedure choose that returns allSingleValued = true when all
domains are indeed single valued. When allSingleValued = false this version always returns i such that the car-
dinality of Di is greater than one. Here a single-valued domain is regarded as instantiated, regardless of
whether this instantiation is elective or implied. Using this version of procedure choose, reduction search
may include an N-tuple in Z when many fewer than N variables have been instantiated electively. This may
be very much faster than waiting until all of the N variables have been instantiated electively.

With S-reduction we use a version of procedure choose that returns allSingleValued = true only when all
variables have been electively instantiated. This version may return i such that Vi has been implied-instantiated
so Di is already single-valued. The reason for this is that procedure reduce, when called after elective instan-
tiation of an implied-instantiated variable, may remove values from further domains, thus speeding up the
search.

When n = 3, N = 50, q = 80, d = 5, J = 48 and H = 0, distributive S2-reduction search is slowed down by a
factor of 43.25 if the C version of procedure choose is used instead of the S version. When n = 3, N = 128,
q = 240, d = 2, J = 6 and H = 0, distributive C1-reduction search is slowed down by a factor of 1.926 if
the S version is used instead of the C version. These results are the average over 50 trials, near crossover
points, of the time to find one solution or report that there is none, without preprocessing.
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5.3. Comparisons without preprocessing

5.3.1. Reduction search and hash-join partition search

Table 3 shows results of experiments done with H = 0 and with other parameters chosen so that the prob-
ability of existence of a solution is near to 0.5. Table 3a shows the average time in seconds, over 50 trials, to
find one solution or report that Z is empty, with no preprocessing. The leftmost column contains row numbers
that identify rows in Table 3b. For each row number in Table 3b there are three rows that have that number in
Table 3a: for all of these the row in Table 3b shows the values of N, q, etc., that were used. The column headed
P(sol) shows the probability that a solution exists. The second column in Table 3a shows the arity of the con-
straints and the third shows q = nq/N, which is the average degree of the variables. The fourth column indi-
cates which implementation was used:

D signifies distributive reduction search, as in Section 2.5,
T signifies simple tabular reduction search,
B signifies GAC2001 [14] with currentSupport not re-initialized at the beginning of every invocation of the
domain reduction procedure. Instead, currentSupport is subject to incremental save/restore.

The rightmost six columns show results obtained with S1, Sn � 1 and Cn reduction. The column headed av in
Table 3b shows average times for partition search. Columns headed sd show the (estimated) standard
Table 3
Results of 50 trials near crossover points

Row n q DTB S1 Sn � 1 Cn

av sd av sd av sd

(a)

1 3 30 D 0.106 0.007 0.60 0.04 3.36 0.25
1 3 30 T 9.39 0.70 6.56 0.48 5.56 0.41
1 3 30 B 9.52 0.69 9.98 0.74 9.89 0.73
2 3 4.8 D 5.52 0.91 1.24 0.18 1.64 0.24
2 3 4.8 T 22.44 3.70 2.02 0.30 1.06 0.15
2 3 4.8 B 33.28 5.60 3.37 0.50 1.69 0.25

3 4 28 D 0.27 0.02 3.91 0.34 15.7 1.3
3 4 28 T 75.1 6.3 23.4 1.8 26.9 2.2
3 4 28 B 101.4 8.19 91.60 8.15 94.28 8.39
4 4 3.7 D 93.9 20.2 2.10 0.23 3.62 0.40
4 4 3.7 T 309.1 72.6 1.57 0.17 1.41 0.15
4 4 3.7 B 503.5 117 4.16 0.46 2.93 0.33

5 5 28 D 0.31 0.02 7.31 0.68 17.6 1.6
5 5 28 T 182.2 16.4 31.2 2.6 31.8 2.7
5 5 28 B 251.5 21.6 237.8 22.4 237.6 22.3
6 5 3.5 D 123.0 36.7 0.51 0.05 0.75 0.08
6 5 3.5 T 341.1 9.7 0.32 0.03 0.30 0.03
6 5 3.5 B 517.4 159.0 0.86 0.09 0.70 0.07

(b)

Row n N q d J P(sol) av sd l

1 3 10 100 10 792 0.46 0.263 0.018 3
2 3 50 80 5 48 0.54 211.5 54.9 3
3 4 10 70 8 3035 0.54 0.457 0.033 4
4 4 50 46 4 59 0.46 5.39 1.69 3
5 5 10 56 6 5610 0.50 0.469 0.024 5
6 5 50 35 3 52 0.50 0.586 0.082 4

(a) Experimental timings for reduction search; the fastest time is shown in bold print. (b) Parameter values and timings for partition
search.
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deviation of the average, not of the variate. Here, and throughout Section 5.3.1, partition search means par-
tition search implemented using hash joins as in Section 4.3. Experiments with other implementations of par-
tition search will be reported in Section 5.3.2.

As in [15], there is a trade-off between visiting more nodes of the search tree but spending less time on prun-
ing operations at each node, or instead spending more time on pruning operations so that fewer nodes are
visited. When q is high, distributively implemented S1-reduction search is the fastest in Table 3. In each case
where q is low, either n or d is so low that the conditions listed at the end of Section 4.2 are not satisfied, and
therefore partition search is not competitive.

Because it is not practical to explore the entire space defined by parameters N, n, d, q and K, we select com-
binations of parameter values to provide examples of performance of algorithms. Table 3 has provided exam-
ples where partition search is not competitive. In Table 4, the first row provides an example showing that
partition search can be competitive when n = 4. In the second row partition search is more strongly compet-
itive because d is greater than in the first row. This increase in d yields better compliance with conditions listed
at the end of Section 4.2. The third row has been chosen to show that partition search can be competitive when
d = 3; the fourth row has a greater value of n. The time taken by reduction search indicates non-triviality even
though P(sol) = 0 in all four examples in Table 4.

Throughout Tables 3 and 4, GAC2001 is slower than simple tabular reduction. To illustrate one reason for
this, let us say that when the first variable is instantiated, the depth of search is 0; when the next variable is
instantiated, the depth of search is 1, and so on. For Cn reduction in Row 5 of Table 3, Fig. 22a shows, on a
log scale, the number of calls of the domain reduction procedure at each depth. This histogram is the same for
GAC2001 and simple tabular reduction search. Fig. 22a also shows the average |Rj| versus depth for simple
tabular reduction. Fig. 22b shows the number of evaluations of ð8k16k6njÞðtk 2 DGjðkÞÞ at each depth for
GAC2001 and for simple tabular reduction search (STR). The greatest number of calls of the domain reduc-
tion procedure occurs at depth 5, where for simple tabular reduction search the average |Rj| = 32.99 and for
GAC2001 the average |Rj| = 5610. At depth 5 in Fig. 22b the average numbers of evaluations of ð8k16k6njÞ
Table 4
Times in seconds in 50 trials with N = 50 and H = 0

Simple tabular reduction GAC2001 Partition search

Sn � 1 Cn Sn � 1 Cn

av sd av sd av sd av sd av sd

1.925 0.207 2.285 0.244 6.584 0.719 4.510 0.482 0.467 0.097
2.293 0.300 3.469 0.414 12.72 1.643 7.662 0.926 0.093 0.029
0.233 0.023 0.291 0.028 0.918 0.096 0.603 0.059 0.067 0.012
3.753 0.317 5.437 0.481 31.11 4.452 27.63 3.047 0.084 0.008

Row 1: d = 6, n = 4, q = 46, J = 125. Row 2: d = 12, n = 4, q = 46, J = 400. Row 3: d = 3, n = 6, q = 30, J = 80. Row 4: d = 3, n = 10,
q = 18, J = 600.
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Fig. 22. For Row 5 of Table 3: (a) number of calls and average |Rj| versus depth; (b) number of tuple checks versus depth.
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ðtk 2 DGjðkÞÞ for GAC2001 and simple tabular reduction are 1.901538192 · 108 and 8.0019250 · 106, respec-
tively. For GAC2001 at depth 5 in Fig. 22b, the average number of tuples checked (in Line 4 of Fig. 4) for
v = th is 9.216534822 · 108.

5.3.2. Decision diagram implementation of partition search

Table 5 shows results of experiments with partition search implemented using multivalued tries (Mtries),
MDDs, binary tries (Btries) and BDDs as in Section 4.4. As in Table 3a, the leftmost column in Table 5 con-
tains a row number. A row number in the range 1–6 selects the row in Table 3b that contains values of N, q,
etc., that were used. A row number in the range 7–12 selects the row in Table 6 that contains values of n, q,
etc., that were used. Results for hash-implemented partition search are included in Table 3b and in Table 6
because there is not sufficient space in Table 5. The second column of Table 5 indicates which results are
shown in further columns. Entries in the second column are:

Tt means total time, in seconds, over 50 trials, to find one solution or report that Z is empty, with no pre-
processing. In all our experiments with partition search, total time includes set-up time which is explained
below.
Nv means the number of search-tree nodes visited during the search; this is the same as the number of invo-
cations of the consistency-checking procedure during the search.
Nc means the total (over all constraint relations) of the number of nodes in the decision diagrams or tries.
St% is set-up time as a percentage of total time. Set-up time is the time taken by preliminary computation
before the search, starting with constraint relations which are given as explicit lists of tuples. Set-up time
includes time for partition resequencing and for permuting the sequence of values in each tuple in each con-
straint relation. For trie implementation, set-up time includes time taken to construct a trie for each constraint
relation. For DD implementation, set-up time includes time taken to construct tries and reduce them to DDs.
For binary tries and BDDs, set-up time also includes time for conversion to binary representation. For hash-
join implementation, set-up time includes time taken to sort tuples into buckets and construct the index.

The Nv results confirm that Mtries and MDDs have the same search space. Btries and BDDs also have the
same search space. In every row Mtries are faster than MDDs, Btries and BDDs. Moreover, MDDs are faster
than BDDs, in concurrence with Wegener’s observation [84, p. 216] that MDDs are useful when it is natural to
work with multivalued variables. Note that when Nc for BDDs exceeds Nc for Mtries, BDDs may
nevertheless have a smaller overall memory requirement because each BDD node has provision for only
two children.

In Row 2 of Table 5, Nv is large and St% is therefore small. Row 7 provides an example of the opposite
extreme, in which Nv is small and St% is large. Nv is smaller in Row 12 than in Row 11, but St% is higher in
Row 12 because nearly four times as many constraint relations are processed before commencement of search.
Tt is smaller for MDDs than for Btries in Row 8, where St% is small; but MDDs are slower than Btries in Row
10, where the time taken to reduce Mtries to MDDs is high in proportion to Tt.

Mtrie implementation of partition search is faster than hash-join implementation (Table 3b) only in Rows
1, 2, 4 and 6 of Table 5. However, Mtrie implementation of partition search is slower than reduction search
(Table 3a) in all of Rows 1–6 of Table 5. Experimentation suggests that for values of parameters n, q, etc., such
that partition search is faster than reduction search, hash-join implementation is faster than Mtrie implemen-
tation. Henceforward, in subsequent sections, it is to be understood that partition search means hash-join par-
tition search.

5.4. Preprocessing

5.4.1. Semijoin reduction preprocesing

In the bottom row of Table 4, partition search was faster than reduction search by a factor of 44.7, but this
was without preprocessing. In some cases reduction search can be speeded up substantially by executing a
semijoin reduction routine, until convergence, prior to the commencement of search. This attempt to reduce
the cardinality of constraint relations is an example of preprocessing.



Table 5
DD implementation of partition search: results of 50 trials with parameters as shown in Tables 3a and 6

Row Res Mtrie MDD Btrie BDD

av sd av sd av sd av sd

1 Tt 0.158 0.010 0.305 0.017 0.649 0.035 1.066 0.054
1 Nv 0.2M 13,791 0.2M 13,791 0.4M 23,415 0.4M 23,415
1 Nc 11,100 0.0 7502 3.69 0.2M 12.29 23,878 7.49
1 St% 13.49 12.93 12.26 20.27

2 Tt 48.30 11.75 67.49 16.50 107.1 27.1 161.7 41.1
2 Nv 91.1M 21.9M 91.1M 21.9M 179M 44.5M 179M 44.5M
2 Nc 2313 1.233 1858 21.7 11,420 4.8 4.717 3.070
2 St% 0.009 0.002 0.010 0.017

3 Tt 0.484 0.038 0.982 0.070 1.786 0.126 2.750 0.184
3 Nv 0.3M 28,588 0.3M 28,588 0.4M 40,196 0.4M 40,196
3 Nc 40,949 0.13 14,489 4.7 276,721 10.2 44,525 6.1
3 St% 18.11 23.77 23.03 30.01

4 Tt 4.197 1.264 5.813 1.751 7.052 2.175 10.18 3.12
4 Nv 7.8M 2.4M 7.8M 2.4M 13M 4.0M 13M 4.0M
4 Nc 2878.8 2.7 1460 1.1 7043 5.8 2889 2.3
4 St% 0.135 0.253 0.064 0.278

5 Tt 0.515 0.030 1.058 0.057 2.151 0.115 3.388 0.137
5 Nv 0.2M 17,659 0.2M 17,659 0.3M 27,231 0.3M 27,231
5 Nc 87,047 0.9 17,895 1.2 554,672 25.3 77,004 8.0
5 St% 34.39 42.65 38.85 54.04

6 Tt 0.436 0.061 0.597 0.081 0.700 0.089 1.030 0.132
6 Nv 0.8M 106,871 0.8M 0.1M 1.3M 0.2M 1.3M 0.2M
6 Nc 2759 2.1 1373 1.2 6536 4.4 2761 2.1
6 St% 0.525 2.681 0.327 1.444

7 Tt 0.485 0.007 1.371 0.004 2.259 0.025 4.829 0.008
7 Nv 340.7 155.9 340.7 155.9 337.3 67.9 337.3 67.9
7 Nc 0.3M 14.5 56,596 0.0 1.6M 59.9 0.2M 14.5
7 St% 99.99 99.99 99.99 99.99

8 Tt 14.06 2.811 18.63 3.45 48.25 9.24 51.52 9.57
8 Nv 14M 3.0M 14M 3.0M 44M 9.2M 44M 9.2M
8 Nc 0.3M 23.5 73,464 14.9 1.7M 81.9 0.3M 42.1
8 St% 1.876 9.381 2.369 8.460

9 Tt 3.278 0.130 15.56 0.18 11.80 0.48 39.91 0.43
9 Nv 0.5M 79,638 0.5M 79,638 1.3M 0.2M 1.3M 0.2M
9 Nc 2.9M 54.8 0.5M 45.7 9.6M 163.7 1.5M 115.2
9 St% 72.68 92.60 75.03 93.10

10 Tt 3.556 0.043 27.89 0.04 13.98 0.36 63.82 0.08
10 Nv 0.1M 4471 0.1M 4471 0.4M 16,830 0.4M 16,830
10 Nc 3.7M 40.8 1.3M 53.4 16.3M 165.3 5.2M 161.9
10 St% 94.04 99.01 94.05 98.82

11 Tt 2.205 0.077 14.88 0.09 8.246 0.324 33.64 0.22
11 Nv 0.3M 57,896 0.3M 57,896 1.0M 0.2M 1.0M 0.2M
11 Nc 1.9M 31.1 0.7M 40.5 8.49M 109.7 2.7M 124.8
11 St% 77.87 96.42 80.93 96.00
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Table 5 (continued)

Row Res Mtrie MDD Btrie BDD

av sd av sd av sd av sd

12 Tt 6.979 0.092 55.81 0.06 27.56 0.73 128.4 0.26
12 Nv 82,779 2946 82,779 2946 0.3M 11,397 0.3M 11,397
12 Nc 7.5M 74.9 2.5M 82.3 32.6M 275.8 10.4M 315.9
12 St% 96.61 99.34 96.00 99.2

M means millions.

Table 6
Parameter values used in Table 5, together with timings for hash-implemented partition search

Row n q d J av sd St% l

7 6 35 6 20,000 0.303 0.006 99.63 5
8 6 35 10 5000 4.969 1.152 1.467 4
9 10 35 6 20,000 0.532 0.028 65.56 5

10 10 35 10 20,000 0.344 0.007 93.91 4
11 10 18 10 20,000 0.232 0.013 72.86 4
12 10 70 10 20,000 0.656 0.007 96.30 4

All of the six rows have N = 50, H = 0 and P(sol) = 0. The columns headed av and sd show the average, and standard deviation (of the
average), of total time over 50 trials with hash-implemented partition search. For these 50 trials, the column headed St% shows average
set-up time as a percentage of total time.
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For preprocessing we use procedure ZM, with Bloom filter implementation, because this has very much
smaller memory requirements than PW-AC, as explained in Section 3.3. In all our experiments, Bloom filter
array B is always an array of arrays of 217 bits, so f = 5 when d = 10. The times shown in Table 7 are for pro-
cedures ZM (with Bloom filter implementation) and PW-AC [67] to reach convergence and then terminate
without any attempt at backtrack search.

5.4.2. Wipe-out by preprocessing
Semijoin reduction preprocessing is most effective under the conditions listed at the end of Section 4.2 for

best performance of partition search. It is therefore appropriate to use semijoin reduction preprocessing when
comparing partition search with reduction search. Moreover, reduction search experiments that will be
reported in Section 5.6 would have been intolerably slow without preprocessing.

When constraints are tight and the constraint relations are random, semijoin reduction may wipe out the
constraint relations entirely, so there is no backtrack search. When there is no search, a random problem is an
unsatisfactory benchmark because the absence of a solution is established too easily [34]. Of course, when J is
increased sufficiently, the probability of wipe-out goes to zero. This is illustrated in Fig. 23, which plots empty
domain ratio versus J. This ratio is the number of trials in which there is wipe-out, divided by the total number
of trials.
Table 7
Times in seconds in 500 trials with N = 48, J = 10,000 and H = 0

d n q PW-AC ZM

av sd av sd

5 6 32 0.648 0.002 1.189 0.002
5 6 48 1.088 0.011 1.916 0.004

10 6 32 10.12 1.535 1.357 0.009
10 6 48 24.10 1.900 2.411 0.017
10 7 32 91.68 5.335 3.177 0.048
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Fig. 23. Results of 500 trials with N = 24, n = 6, d = 4, q = 72 and H = 0. Empty domain ratio versus J.
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Instead of ZM preprocessing, we can preprocess by using Cn simple tabular reduction with a minor mod-
ification that puts all j, 1 6 j 6 q, in the queue initially. As would be expected from [71, Theorem 4], and as can
be seen in Fig. 23, this is very much less effective than ZM preprocessing. Cn-reduction preprocessing is not
used henceforward.

To avoid wipe-out, we work with H > 0. Parameter H, which was introduced in Section 5.1, is the minimum
number of solutions that the set Z must contain. When H = 1, preprocessing can yield a single solution with-
out any search. To ensure that there is search, we work with H > 1. In this case our experiments are designed
to find all solutions in Z, for the reason given in Section 5.1.

Fig. 24a provides evidence that increasing the ratio H/(H + J) makes constraint satisfaction harder. In
Fig. 24a, K = H + J is held constant at K = 6000 while H increases from H = 1 to H = 6000. The average
times to enumerate Z using partition and simple tabular reduction search are shown on the left and right ver-
tical axes, respectively. As H increases, reduction search slows down very much more rapidly than partition
search. When H = 1, 600 and 6000, partition search is faster than SN-1 reduction search by factors of 36.6,
88.9 and 390, respectively. One reason is that ZM preprocessing becomes less effective when H increases, as
can be seen in Fig. 24b. When H = K the constraint relations are minimal [60] (or totally consistent [53])
and therefore semijoin reduction has no effect.

The fact that H > 0 favours partition search is unhelpful to a fair comparison between partition and reduc-
tion search. In subsequent experiments, the use of H/K = 0.1 avoids wipe-out but may approximately double
the ratio of reduction search time to partition search time. In the comparison of timings of partition and
reduction search, we are primarily interested in factors of at least 10. Nevertheless, the effect of H/K = 0.1
should be taken into account.
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Fig. 24. Results of 500 trials with K = 6000, d = 10, N = 48, n = 10, q = 15 and l = 3: (a) average time to enumerate Z; (b) average
cardinality of constraint relations after ZM preprocessing.
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5.4.3. Effects of preprocessing
Fig. 25 shows results of experiments using ZM preprocessing before Cn simple tabular reduction search.

The three plots are:

Plot 1: Time with preprocessing divided by time without preprocessing.
Plot 2: Time taken by preprocessing divided by total time to enumerate Z.
Plot 3: Average |Rj| after preprocessing divided by average |Rj| before preprocessing.

When K = H + J is small in Fig. 25a, the time taken by ZM preprocessing is such a large proportion of the
total time to enumerate Z that ZM preprocessing is only slightly beneficial. The downward slope of Plot 1 in
Fig. 25a indicates that when K is large, ZM preprocessing greatly reduces the total time taken to enumerate Z.
For K = 3328 the times with and without preprocessing are 0.413 and 5.288 s, respectively. In this case, five
hundred trials without preprocessing take about 44 min; this is why Plot 1 is truncated at K = 3,238. Plots
2 and 3 continue to higher K because they do not require trials omitting preprocessing.

The conditions listed at the end of Section 4.2 are not so well satisfied in Fig. 25b. When K = 128 in
Fig. 25b, the times to enumerate Z with and without preprocessing are 0.063 and 0.047 s, respectively; the
ZM preprocessing time is 0.058 s. In this case it is better to omit preprocessing.

ZM preprocessing can be applied before partition search. Table 8 shows examples of experimental timings
with and without ZM preprocessing; we have not found any case where this preprocessing is cost-effective.
Henceforward, partition search is always used without any preprocessing.

5.5. Backjumping

Dechter [24] provides an introduction to backjumping. Combination of reduction search with backjumping
is certainly valuable in the determination of propositional satisfiability [49,51]. However, within the range of
constraint satisfaction problems considered in the present paper, we have found experimentally that conflict-
directed backjumping does not improve performance. This is because the backjump distance (i.e. the number
Table 8
Time to enumerate Z using partition search

N Without prepro With prepro

Time Total time Prepro time

32 0.104 1.515 1.447
44 0.427 1.217 0.825
48 1.253 1.905 0.724

Times are averages over 500 trials with H/K = 0.1, K = 8192, q = 16, n = 8, d = 10 and l = 3.
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of variables that are jumped back over) turns out to be too small. We have also found experimentally that
combination of backjumping with partition search is unhelpful for the same reason. We will not report these
experiments in detail; backjumping is not used henceforward.

5.6. Time growth curves

Fig. 26a shows plots of time versus K for partition search with l = 2, 3, 4, 5. We would expect partition
search to be faster the smaller the number of tuples in each hash bucket. For example, when l = 4, d = 10
and K = 10,000, each bucket contains one tuple on average. For K > 11,264 in Fig. 26a a faster time is
obtained with l = 4 than with l = 3. If K were increased far beyond 32,768 we would expect a point to be
reached where a faster time would be obtained with l = 5 than with l = 4.

In Fig. 26b the set-up time is a remarkably large part of the total time to enumerate Z. The set-up time is
greater with l = 4 than with l = 3; calculation of hashðt½Sl

j �Þ processes mj elements of t. This is why in Fig. 26a
the total time with l = 4 is not less than with l = 3 when, for example, K = 8192.

Plots 5 and 6 in Fig. 26a are for Cn and Sn � 1 simple tabular reduction search, respectively, with ZM pre-
processing. Reduction search slows down more rapidly than partition search as K increases. In Fig. 26a and
for n > 8 in Table 9, Cn-reduction search is faster than Sn � 1-reduction but the difference between these is less
than the difference between the speeds of reduction and partition search. When n = 16 in Table 9, ZM prepro-
cessing perfectly minimizes the constraint relations.

When n = 12 in Table 9, partition search is faster than Cn dual search by a factor of 562. When K = 3000 in
Fig. 27a, partition search is faster than Cn dual search by a factor of 1,184. When K = 3000, partition search is
faster than Cn simple tabular reduction (STR) by a factor of 810 in Fig. 27a and by a factor of 52 in Fig. 27b.
Table 9
Time in seconds to enumerate Z in 500 trials with d = 10, N = 48, n = 6 � � � 16, K = 2048, H/K = 0.1 and q = 192/n rounded down to the
nearest integer, so q = qn/N is approximately four

n 6 7 8 9 12 16

Partition set-up time 0.031 0.025 0.022 0.024 0.007 0.014
Partition total time 0.147 0.042 0.031 0.032 0.010 0.020

Sn � 1-reduction total time 38.63 5.427 1.701 0.624 0.271 0.283
Cn-reduction total time 62.66 9.702 1.912 0.596 0.168 0.167
Cn-dual total time 195.9 55.68 10.70 3.696 3.937 6.004
Reduction preprocess time 0.377 0.481 0.576 0.377 0.124 0.128
Reduction av |Rj| 1941 1723 1125 446.7 205.3 205.0

The bottom row shows the average cardinality of the constraint relations after ZM preprocessing which was used with reduction and dual
search.
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The smaller factor in Fig. 27b exemplifies our reason for working with ZM preprocessing and H/K = 0.1 in
Fig. 28 and elswhere.

Fig. 28a–d plot time to enumerate Z versus N, d and q for partition search and for Cn simple tabular reduc-
tion search with ZM preprocessing. In Fig. 28c and d the left hand vertical axis is for partition search and the
right hand vertical axis is for reduction search, which is very much slower. If the time-growth curves in
Fig. 28a and b were simply of the form y = ex then there would not be much chance of achieving practical
results before being overwhelmed by very rapid growth of time. In fact there is a region of each curve where
growth is slow enough for practical work to be possible. Time growth in Fig. 26a is near-linear, but would
eventually become obviously exponential if continued to higher K.
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Table 10
Summary of timings on 37 crossword puzzles with and without ZM preprocessing

STR Dual Partition

+prepro �prepro +prepro �prepro

Did not terminate in 2 h 21 17 22 22 31
30 min < time < 2 h 0 1 1 0 1
Time < 700 s 16 19 14 15 5
Average of times < 700 s 44.3 63.1 42.1 114.2 74.9

The first three rows show counts. The column headed STR shows results for Cn simple tabular reduction search.
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5.7. Experiments with crossword puzzles

Crossword puzzles have been used in [8,11,35,71] as part of an assessment of various constraint satisfaction
algorithms. In this section we report experiments with benchmark crossword puzzles and a dictionary of
24,974 words used in [67].

The time taken to solve a crossword puzzle may depend strongly on which variable is instantiated first. For
example, we ran simple tabular reduction search on puzzle 15.01 with two different choices of the first variable.
With one of these a solution was found in 1.71 s. With the other choice, the algorithm ran for 2 h without
finding a solution.

As another example of this phenomenon, there were 16 equally plausible choices of the initial instantiation
in partition search on puzzle 19.01. With six of these choices, partition search ran for 2 h without finding a
solution. With another two choices, partition search found a solution in 6.32 and 4.23 s, respectively. With
each of the remaining eight choices, partition search found a solution in less than 2 s.

These and similar examples suggest that algorithms should be assessed by comparing their performance
aggregated over a number of puzzles. Table 10 summarizes experimental results with 37 puzzles of size
15 · 15 or more, excluding puzzles 19.05, 19.10 and 23.01 because these demand words of a length such that
no word in the given dictionary has this length. These results illustrate the tendency either to find a solution (or
find that there is none) in less than 12 min or to run for 2 h without terminating.

Table 10 indicates that partition search is not suitable for crossword puzzles. This result is attributable to
the incidence of cases where the cardinality of Sa

j is one. For example, over the ten 21 · 21 benchmark puzzles,
the average number of values of j such that jSa

j j ¼ 1 was 9.9 (and the sd of this mean was 1.06). For all cross-
word puzzles, jSa

2j ¼ jSa
3j ¼ 1, which is particularly unhelpful to partition search.
6. Conclusion

A positive conclusion is that with tight constraints it is easy to find cases where semijoin reduction
preprocessing, using Bloom filter implementation, makes reduction search substantially faster. A negative
observation is that we have not found any case where GAC2001 is faster than simple tabular reduction
search.

Our main conclusion is that, with tight constraints, partition search may be very much faster than reduction
search, depending on the problem parameters and on the constraint structure. For example, in Fig. 28a and b,
when N = q = 40, partition search is faster than simple tabular reduction search by a factor of 193.3. This may
be of interest because partition search is definitely not a reduction search process; partition search does not
delete values nor tuples during backtrack search.
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Appendix
Theorem 1. The set Z is not changed as a result of deletion from any domain Di of any value v such that

v 62 pV iðRj \ ðDj1
� Dj2

� � � � � Djn
ÞÞ for some Sj 2 Ri.

Proof. By contradiction. Consider any N-tuple z that was in Z but is no longer in Z because a value
v 62 pV iðRj \ ðDj1

� � � � � Djn
ÞÞ has been deleted from a domain Di. There must be some j 2 Ri such that the

tuple t = z[Sj] was in Rj \ ðDj1
� � � � � Djn

Þ before v was deleted from Di but t was not in Rj \ ðDj1
� � � � �

Djn
Þ after this deletion because t[Vi] = v. But before deletion we had t 2 Rj \ ðDj1

� � � � � Djn
Þ and t[Vi] = v

whence v 2 pV iðRj \ ðDj1
� � � � � Djn

ÞÞ. h

Theorem 2. The set Z is not changed as a result of deletion, from any constraint relation Rh, of any tuple t such

that t 62 pShðRh ffl RjÞ for some Rj such that Sh \ Sj 5 ;.

Proof. By contradiction. Consider any N-tuple z that was in Z but is no longer in Z because a tuple t such that
t 62 pShðRh ffl RjÞ, for some j, has been deleted from Rh. This deletion has removed z from Z because z[Sh] = t

and t is not now in Rh. Before deletion, z 2 R1ffl � � � fflRq and therefore z½Sh� 2 pShðR1 ffl � � � ffl RqÞ. But
pShðR1 ffl � � � ffl RqÞ � pShðRh ffl RjÞ, whence t 2 pShðRh ffl RjÞ. h

Theorem 3. Partition search enumerates Z = {z|("16j6q j)(z[Sj] 2 Rj)}.

Proof. We assume that pV iðRjÞ � Di for all j and for all Vi 2 Sj; if this is not true initially it can be made true
by deleting tuples from constraint relations before commencement of search. Let Y 0eðjÞ be the set of all instan-
tiations of We(j) by partition search. Moreover, let Ye(j) be the set of all instantiations of We(j) such that con-

sistent(j) returns true. The set H1 is empty and therefore Ye(1) = R1.
We now assume inductively for 1 < j 6 qd that Y eðjÞ ¼ Y eðj�1Þ ffl Rjffl8Sx2Hj Rx. For all t 2 Rj+1 such that

t½Sa
jþ1� ¼ weðjþ1Þ½Sa

jþ1�, partition search extends we(j) to we(j+1) = we(j) [ t. Therefore
Y 0eðjþ1Þ ¼ fweðjþ1Þjweðjþ1Þ½W eðjÞ� 2 Y j ^ weðjþ1Þ½Sjþ1� 2 Rjþ1g ¼ Y j ffl Rjþ1
The call consistent(j + 1) returns true iff we(j+1)[Sx] 2 Rx for all Sx in Hj+1. Therefore
Y eðjþ1Þ ¼ fweðjþ1Þjweðjþ1Þ 2 Y 0eðjþ1Þ ^ ð8xSx2Hjþ1
Þðweðjþ1Þ½Sx� 2 RxÞg ¼ Y eðjÞ ffl Rjþ1ffl8Sx2Hjþ1

Rx:
After partition resequencing, every scope that is not in Rd is in Hj for some j. Therefore by induction
Y eðqd Þ ¼ R1 ffl R2 ffl � � � ffl Rq ¼ Z: �
References

[1] D. Achlioptas, M.S.O. Molloy, L.M. Kirousis, Y.C. Stamatiou, E. Kranakis, D. Krizanc, Random constraint satisfaction: a more
accurate picture, Constraints 6 (4) (2001) 329–344.

[2] M. Al-Suwaiyel, E. Horowitz, Algorithms for trie compaction, ACM Trans. Database Syst. 9 (1984) 243–263.
[3] J. Aoe, K. Morimoto, M. Shishibori, K.-H. Park, A trie compaction algorithm for a large set of keys, IEEE Trans. Data Knowledge

Eng. 8 (1996) 476–491.
[4] P.J. Artymiuk, H.M. Grindley, A.R. Poirrette, D.W. Rice, E.C. Ujah, P. Willett, Identification of b-sheet motifs, of w-loops and of

patterns of amino-acid residues in three-dimensional protein structures using a subgraph-isomorphism algorithm, J. Chem. Inform.
Comput. Sci. 34 (1994) 54–62.

[5] E. Babb, Implementing a relational database by means of specialized hardware, ACM Trans. Database Syst. 4 (1979) 1–29.
[6] B. Babcock, S. Chaudhuri, Towards a robust query optimizer: a principled and practical approach, in: Proceedings ACM SIGMOD,

Baltimore, MD, 2005, pp. 119–130.
[7] F. Bacchus, P. van Run, Dynamic variable ordering in CSPs, Lecture Notes in Computer Science, vol. 976, Springer, New York, 1995,

pp. 258–275.
[8] F. Bacchus, P. van Beek, On the conversion between non-binary and binary constraint satisfaction problems, in: Proceedings of

AAAI’98, Madison, WI, 1998, pp. 310–318.
[9] F. Bacchus, X. Chen, P. van Beek, T. Walsh, Binary vs. non-binary constraints, Artif. Intell. 140 (2002) 1–37.



3676 J.R. Ullmann / Information Sciences 177 (2007) 3639–3678
[10] S. Bandyopadhyay, Q. Fu, A. Sengupta, A cyclic multi-relation semijoin operation for query optimization in distributed databases, in:
Proceedings of IEEE International Conference on Performance, Computing, and Communications (IPCCC’00), 2000, pp. 101–
107.

[11] A. Beacham, X. Chen, J. Sillito, P. van Beek, Constraint programming lessons learned from crossword puzzles, Lecture Notes in
Computer Science, vol. 2056, Springer, New York, 2001, pp. 78–87.

[12] P.A. Bernstein, D-M.W. Chiu, Using semi-joins to solve relational queries, JACM 28 (1) (1981) 25–40.
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