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ABSTRACT. The AllDifferent constraint is a crucial component of any constraint toolkit,
language or solver, since it is very widely used in a variety of constraint models. The liter-
ature contains many different versions of this constraint, which trade strength of inference
against computational cost. In this paper, we focus on the highest strength of inference
(enforcing a property known as generalised arc consistency - GAC), and propose several
new variants of the AllDifferent constraint propagation algorithm that achieve this. Most
importantly, we improve incrementality by exploiting the strongly-connected components
discovered during the standard propagation process, and improve efficiency by triggering
the propagation process less often. We perform an extensive empirical evaluation of the
new variants of AllDifferent versus existing GAC algorithms, as well as a fast AllDifferent
algorithm that does less propagation. The results confirm the value of our new variants,
which can improve run-times over the state-of-the-art by over five times.

1. INTRODUCTION

Constraints are a powerful and natural means of knowledge representation and infer-
ence in many areas of industry and academia. Consider, for example, the production of a
university timetable. This problem’s constraints include: the maths lecture theatre has a
capacity of 100 students; art history lectures require a venue with a slide projector; no stu-
dent can attend two lectures simultaneously. Constraint solving of a combinatorial problem
proceeds in two phases. First, the problem is modelled as a set of decision variables, and
a set of constraints on those variables that a solution must satisfy. A decision variable rep-
resents a choice that must be made in order to solve the problem. The domain of potential
values associated with each decision variable corresponds to the options for that choice.
In our example one might have two decision variables per lecture, representing the time
and the venue. For each class of students, the time variables of the lectures they attend
may have an AllDifferent constraint on them to ensure that the class is not timetabled to
be in two places at once. The second phase consists of using a constraint solver to search
for solutions: assignments of values to decision variables satisfying all constraints. The
simplicity and generality of this approach is fundamental to the successful application of
constraint solving to a wide variety of disciplines such as scheduling, industrial design and
combinatorial mathematics [26].

The AllDifferent constraint expresses that a vector of variables take distinct values. It
is a crucial component of any constraint system, since it is very widely used in a variety
of constraint models, for diverse problems such as quasigroup construction and comple-
tion, sports scheduling, timetabling and golomb ruler construction. The literature contains
many different versions of this constraint, which trade strength of inference against com-
putational cost. Indeed, choosing an appropriate level of consistency is sometimes vital
to solving a CSP efficiently [23]. Van Hoeve surveys various strengths of inference [25],
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including the weak and fast pairwise decomposition described in section 6.1.2, bound and
range consistency, and generalised arc consistency (GAC). In this paper, we focus on the
highest strength of inference (enforcing GAC). The classic GAC algorithm for the AlIDif-
ferent constraint is given by Régin [18].

This work is both an analytical survey of optimizations of the main algorithm for gen-
eralised arc consistency (GAC) for the AllDifferent constraint, and a contribution of novel
optimizations for it. We provide extensive implementation details of both old and new
optimizations, and extensive empirical analysis to show the value or otherwise of the tech-
niques. We show that our new contributions improve the state-of-the-art on almost all
instances, by over five times in the best cases. We also show that the combination of ex-
isting techniques and our new optimizations can lead to three orders of magnitude runtime
improvement on a careful implementation without these optimizations.

In Section 2 of this paper, we review key background material, present Régin’s algo-
rithm at a high level, and survey optimizations for it that have been proposed in the litera-
ture. In Section 3 we give implementation details for the algorithm. The detailed survey of
key implementation issues is one of the contributions of this paper.

The most important of our novel improvements is to exploit strongly connected com-
ponents (SCCs) to achieve a new form of incrementality in AllDifferent propagation. In
Régin’s algorithm, we find a set of SCCs in a graph formed from allowed values and a
matching between variables and values. Edges between distinct SCCs represent impossi-
ble values. As we move down a branch in the search tree, an SCC can only remain the
same or split into new SCCs. Thus, when we remove a variable-value pair, we need only
study the individual SCC which contained the deleted variable-value pair. Since this may
contain only a small fraction of all the variables in the original constraint, we can greatly
reduce the amount of work that this incremental propagation requires. We also give a fur-
ther, minor, optimization to the computation of SCCs, for the common case that we have
assigned a variable to a value. We give full details in Section 4 of this paper and show its
value experimentally in Section 6.5.

The second novel improvement is the exploitation of “dynamic triggers”, which are a
variant of watched literals [10]. The distinction between dynamic triggers and watched
literals is that dynamic triggers are restored on backtracking, and we require this for cor-
rectness, while watched literals are not moved at all on backtracking. For an AllDifferent
constraint with r variables and d values, in a standard algorithm we have to do some work
when any one of the rd values are deleted. We show that we can avoid much of this work,
by computing a subset of at most 27 + d variable-value pairs such that we need do no work
if any other value is deleted. This can be implemented in Minion using dynamic triggers,
with the result that there is zero cost for propagation when any other value is deleted.
However this does incur the cost of restoring the state of the triggers on backtracking. We
show in fact marginally better performance on a version where we implement dynamic
triggers internally within the AllDifferent propagator. This has the added advantage that
it is portable to solvers which do not have a dynamic trigger infrastructure. We give full
details in Section 5 with experimental results in Section 6.4.

Our empirical work represents by far the most extensive set of experiments on variants
of GAC algorithms for AllDifferent. We implement all techniques in the state-of-the-art
Minion constraint solver [9]. Our comparisons are never with a straw-man implementa-
tion, as all techniques use the same implementation except for the addition of optimizations
or the replacement of one technique with another. Our results make a number of points.
In some cases, we confirm standard advice from the literature on how to implement GAC
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AllDifferent. We show in Section 6.3 that incremental matching can reduce runtime, and
that as an expensive constraint the AllDifferent constraint should be propagated in a sep-
arate queue after cheaper constraints. Also, we show that it is worthwhile to combine the
GAC AllDifferent algorithm and a cheaper algorithm into a hybrid staged propagator. On
the other hand, we show that a simpler matching algorithm can be more effective than a
more complex one. Compared with a vanilla implementation of Régin’s algorithm, our best
combination of existing techniques is always better than not using them, and can speedup
runtime by up to 860 times. We then show that our new techniques give further improve-
ments. We show that exploiting strongly connected components is particularly beneficial.
Overall, we get up to 7 times speedup over our best combination of existing techniques,
with an average of 2.98 times. We get an average of 168 times speedup over the vanilla
implementation. Our empirical work is described in Section 6, while in Section 7 we sum-
marise the advice this leads us to give to future workers implementing GAC AllDifferent.

2. BACKGROUND

2.1. Preliminaries. A CSP & = (27,2, is defined as a set of n variables 2" =
(x1,-..,%,), a set of domains & = (Dy,...,D,) where D; C Z, |D;| < oo is the finite set
of all potential values of x;, and a conjunction € = C; ACy A --- AC, of constraints.

Within CSP &2 = (27, 2,%), a constraint C; € € consists of a sequence of r > 0
variables 2 = (xx,,...,x,) with respective domains % = (Dy,,...,Dy,) s.t. Zj is a
subsequencel of Z', Z is a subsequence of 2, and each variable x;, and domain Dy,
matches a variable x; and domain D; in &. Cy has an associated set C,f C Dy, X+ X Dy,
of tuples which specify allowed combinations of values for the variables in 2.

Although we define a constraint C to have scope (xg, , . . ., X, ), when discussing a partic-
ular constraint we frequently omit the k subscript, and refer to the variables as (x,...,x,),
and to the domains as (D, ...,D,).

An AllDifferent constraint is a constraint C of any arity, where C,f contains all tuples
where the values are all distinct. Throughout, we use r as the arity of the AllDifferent
constraint in question. We use d to represent the number of domain values involved in the
constraint: d = |D; U...UD;|.

A literal is defined as a variable-value pair, x; — j such that x; € 2 and j € Z. To
prune a literal is to remove the value j from the domain D;. In the context of a constraint
Cy., we refer to a tuple 7 of values as being acceptable iff T € C?, and valid iff |t| = r and
Vi t[jl e Dy (i.e. each value in the tuple is in its respective domain).

Graph theory. Régin’s AllDifferent algorithm [18] makes use of results from graph theory,
in particular maximum bipartite matching [4] and strongly connected components [24].

We consider bipartite graphs and digraphs. A bipartite graph G = (V, E) is defined as
a set of vertices V and a set of edges £ C V x V, where the edges are interpreted as having
no direction, there are no duplicate edges, and the vertices can be partitioned into two sets
V1 and V; such that no two elements in the same set are adjacent. Figure 2.1(a) shows an
example of a bipartite graph, where V| = {1,2,3} and V, = {4,5,6}.

A matching of a bipartite graph is a set of edges M C E such that no two edges connect
to the same vertex. Figure 2.1(b) shows an example of a matching of cardinality two, where
the bold, dotted edges are in the matching. A maximum matching (also called a maximum
cardinality matching) is a matching with the maximum cardinality. Figure 2.1(c) shows a
maximum matching for the example bipartite graph. In this case, the maximum matching is

1We use subsequence in the sense where (1,3) is a subsequence of (1,2,3,4).
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FIGURE 2.1. Examples of graphs

unique. There are many algorithms which can compute a maximum matching in a bipartite
graph, for example Hopcroft-Karp [14] and Ford-Fulkerson [6].

A digraph is also a pair G = (V, E) of a set of vertices V, and a set of edges E CV X V.
Edges are interpreted as having direction. Figure 2.1(d) shows an example of a digraph.
A strongly connected component (SCC) is a maximal set of vertices of a digraph with the
property that there is a path from any vertex to any other in the set. It follows that there are
cycles within the SCCs, and no cycles with edges between SCCs. The set of SCCs forms
a partition of the vertices of the digraph. Tarjan’s algorithm can be used to efficiently
compute the SCCs of any digraph in linear time [24]. For figure 2.1(d), the three SCCs are
{1,2,4,5}, {3} and {6}, as shown in figure 2.1(e).

2.2. Régin and Costa’s algorithm. The classic GAC algorithm for the AllDifferent con-
straint is given by Régin [18]. A very similar algorithm was published by Costa [7] simul-
taneously. Régin’s algorithm has a better time bound. From here on, we will only consider
Régin’s algorithm.

The algorithm uses results from graph theory, in particular a theorem by Berge [4] (ch.
7, page 125), in an algorithm with two major stages: finding a maximal matching from vari-
ables to distinct values, and finding the strongly connected components of a digraph. The
algorithm is usually incremental, but for simplicity we summarize it in a non-incremental
form:

(1) Find a maximum valid matching M from variables to distinct values. The Hopcroft-
Karp [14] or Ford-Fulkerson [6] algorithms may be used for this.

(2) If |[M| < r, the constraint is unsatisfiable.

(3) Construct the residual graph R from M and the variable domains. This digraph has
the property that edges between strongly-connected components of R correspond
to literals which can be pruned. R is defined below (definition 2.2).
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FIGURE 2.2. Graph for maximum flow algorithm

(4) Compute the strongly connected components (SCCs) of R. Tarjan’s algorithm [24]
may be used for this.

(5) Prune variable-value pairs where the corresponding edge traverses two SCCs in G,
and the pair is not contained in M.

2.2.1. Informal description of the algorithm. Consider the following example.

xi,x2 € {1...2},x3,x4 € {2...6} : AlDifferent([x; ...x4])

Computing the matching. The bipartite variable-value graph is shown in figure 2.2(a).
Each variable is represented by a vertex, each value is represented by a vertex, and a
variable x; and value j are connected by an edge iff j is in the domain of x;. This graph is
denoted B. The first stage of the algorithm above is to construct a maximum matching in
this graph.

We can consider the bipartite maximum matching problem as a maximum flow problem
in a digraph. Maximum flow is the problem of finding the maximum rate at which a
material can be shipped from a source vertex to a sink, along the edges in the digraph,
without violating capacity constraints on the edges. The digraph is constructed from B by
adding a source vertex s and a sink 7. The set of edges is as follows: s to all variables
X1 ...Xxs4, each value 1...6 to the sink #, and each edge in B is translated to a directed edge
from the variable vertex to the value. This yields the graph in figure 2.2(b), which we refer
to as the flow graph. For the purpose of finding a maximum flow, each edge has capacity
1.

The Ford-Fulkerson method [6] (chapter 27) can be used to find a maximum flow in the
flow graph from s to ¢. The algorithm finds an augmenting path, which is a path which can
be used to increase the flow. For example, s — x; — 1 — 7 is an augmenting path in figure
2.2(b). The algorithm applies the augmenting path to increase the flow, and computes a
second flow graph. A second augmenting path is sought in the second flow graph, and in
this way Ford-Fulkerson iteratively finds and applies augmenting paths until no such path
exists. Hence there is a sequence of flow graphs, culminating in a final flow graph which
represents a maximum flow from s to .
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(a) Final flow graph (b) Alternate final flow graph

FIGURE 2.3. Two possible final flow graphs

Each edge of any flow graph is either used in the flow from s to ¢, or unused. An
unused edge can carry a new flow of size one, in the direction of the edge in the first flow
graph. Conversely, a used edge can carry a new flow in the opposite direction, and become
unused. Therefore, in all flow graphs, the direction of used edges is reversed relative to
their direction in the first flow graph.

When an augmenting path is applied, each used edge in the path becomes unused and
vice versa. This has the effect of reversing the direction of all edges in the path, to create
the next flow graph in the sequence.

One possible final flow graph is shown in figure 2.3(a), representing the matching x; =i
foralli € 1...r. The final flow graph represents a maximum matching, which is used in
the next stage of the AllDifferent algorithm.

At this point, the algorithm must test whether the maximum matching covers all vari-
ables. If it does not, then the constraint cannot be satisfied, since every variable must be
assigned some value (line 2 in the algorithm above).

Computing the SCCs. Consider figure 2.3(a) again. If we take any cycle in this graph, and
reverse the direction of all its edges, then we have another flow graph which represents a
different maximal matching. For example, if the cycle t — 4 — x4 — 5 — ¢ is reversed,
we change the assignment of x4 to 5 in the matching. Reversing the cycle 3 — x3 — 4 —
x4 — 3 corresponds to swapping values 3 and 4 in the matching. This is very similar to
one iteration of the Ford-Fulkerson algorithm, the difference being that the flow from s
to ¢ remains constant, because the path starts and ends at the same vertex. For the cycle
3 — x3 — 4 — x4 — 3, the result of reversing the cycle is shown in figure 2.3(b).

It is possible to generate all maximum matchings by finding cycles in the final flow
graph, and reversing all edges in the cycle [4] (ch. 7, pages 124-125). In the language
of Berge, the cycles which include ¢ correspond to alternating elementary even chains
starting at an unsaturated vertex. Cycles which do not include ¢ correspond to alternating
elementary cycles.

In figure 2.3(a), the two sets s; = {x,x2,1,2} and s, = {x3,x4,3,4,5,6,t} are distinct
because there is no cycle containing vertices from both sets. In other words, the variables
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in s1 cannot be made to take values in s, and vice versa. In fact s; and s, are SCCs (as
defined in section 2.1). Two edges (x3 — 2, x4 — 2) cross from one SCC to the other.

The final flow graph is partitioned into SCCs. For figure 2.3, the SCCs are s; =
{x1,x2,1,2}, 52 = {x3,%4,3,4,5,6,1}, and s3 = {s}. For any edge which crosses from
one SCC to another, and is not contained in the matching, its corresponding domain value
is removed. This is sufficient to enforce GAC [18]. In this example, 2 is removed from the
domain of x3 and x4 because of the edges x3 — 2 and x4 — 2.

2.2.2. The AllDifferent algorithm in detail. In the informal description above, we used the
Ford-Fulkerson algorithm to compute the matching, and its final residual graph is used in
the second stage of the algorithm. Ford-Fulkerson may not be the most efficient matching
algorithm, so in this section we separate the matching from the SCC computation.

The size of the union of all domains is |D; U...UD,| =d. For simplicity, domain
elements are assumed tobe 1...d.

Definition 2.1. The bipartite variable-value graph is defined as B = (V,E) where V =
{x1,...,x,1,...,d} and E = {x; < j|j € D;}

A bipartite matching algorithm is applied to B, returning a maximum-cardinality match-
ing M : {xi,...,x,} — {1,...,d}. If M| < r then the AllDifferent constraint is not satisfi-
able, and the algorithm returns false.

Next we construct the residual digraph as a function of M and D ...D,. This is similar
to the final flow graph, except that we omit the source vertex s since it is always a singleton
SCC, and the direction of each edge is opposite (for efficiency reasons; this does not affect
the SCCs).

Definition 2.2. The residual digraph is defined as R = (V' E') where V' = {x{,...,x,,1,...,d,t}
and there are four types of edges: E' = M UE, UE3 U E4. The matching edges M connect
variables to values. Residual edges connect values to variables, where the value is not used

in the matching: E; = {j— x;|j € D; A (x; — j) ¢ M}. A third set of edges connect to

t: E3={j—1t|3i:(x;— j) € M} and a fourth set connect from ¢ to unmatched values:
Ey={t— j|(Bi: (xi= j) M) A (3i: j € Di)}.

An SCC algorithm is applied to R, returning a partition S = {sy,...,s,} of V.. If k=1
then the algorithm is finished. Otherwise, for each edge in B which is not contained in M,
and which connects vertices in two SCCs in S, the edge corresponds to a variable-value
pair which is pruned.

Régin proved this is a sound and complete GAC algorithm [18] following a result by
Berge, applied to B: an edge is free (belonging to some, but not all, of the maximum match-
ings) iff the edge belongs to a path which is even (containing an even number of edges)
and alternating (the path alternates between edges in the matching and not) beginning at
an unmatched vertex, or an alternating cycle [4] (ch. 7, page 125). Edges which are neither
free nor in the matching are in no maximum matching, and correspond to a variable-value
pair which can therefore be pruned.

2.3. Improvements to the basic algorithm. A number of improvements to the basic al-
gorithm have been proposed by various authors. We survey them here.

2.3.1. Incremental matching. The matching M may be maintained incrementally during
search [18]. Régin suggested that a representation of the variable-value graph and the set
of edges involved in the matching would be stored between calls. Deleted edges would
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be restored upon backtracking beyond the decision that caused their removal. Edges cor-
responding to pruned values would be removed incrementally. In order to remove the
appropriate edges, Régin’s algorithm requires that a set of removed values is passed into
the propagator.

If Hopcroft-Karp is used to repair the matching, this proposal has been shown to im-
prove the time complexity of Hopcroft-Karp, and of the AllDifferent algorithm as a whole,
from O(r'>d) to O(vkrd) where k is the number of matching edges which have been
lost [18].

2.3.2. Domain counting. Quimper and Walsh [17] proposed variants of the AllDifferent
and Global Cardinality constraints for set, multiset and tuple variables. These variable
types can have extremely large domains. They observe that if the domain of a variable
x; is larger than some threshold, then the constraint need not be triggered by any pruning
from x;. The threshold value is always less than or equal to r. Quimper and Walsh give
an algorithm that calculates the size of all domains before constructing a set of variables
whose domains are smaller than their threshold value. While this idea was conceived in the
context of set, multiset and tuple variables, it may apply to small finite domains as well.

We suspect that counting all domains would be expensive. In our experiments, we
follow the simpler approach of Lagerkvist and Schulte [16], which uses r as the threshold
value. When a variable event triggers the constraint, the domain D; of the variable is
counted. If |D;| < r, then the propagator is called (or queued to be called).

We observe that the threshold can be reduced to r — 1. The original lemma [17] is based
on Hall sets, where a Hall set is a set H of variables such that each variable domain is a
subset of a set of values Dy, and |Dy| = |H|. If a Hall set exists, then all values in Dy are
pruned from all variables not in H. If all Hall sets are found and corresponding pruning
is performed, then GAC is established. A Hall set of size r is of no use, because there are
no variables outside the Hall set to be pruned. The largest Hall set which is useful is of
size r — 1, where all domains are of size r — 1 or less. Therefore in our experiments with
domain counting, the propagator is called (or queued to be called) only if D; is changed
and |D;| <.

As an example of a Hall set, consider the following AllDifferent constraint: x;...x3 €
{1...3},x4...x6 € {3...6} : AllDifferent(x; ...xg). The variables x; ...x3 form a Hall set,
with values 1...3. Therefore, value 3 is removed from the domains of variables x4 . . .xg.
This type of reasoning is used informally to solve Sudoku puzzles.

2.3.3. Priority queue. Many constraint solvers have a priority queue for constraints [1,
2,20], such that the priorities determine the order in which constraint propagators are
executed. It is standard practice for the AllDifferent constraint to have a low priority.
Schulte and Stuckey demonstrate the importance of priority queueing [19], and we evaluate
it in our experiments.

2.3.4. Staged propagation. Schulte and Stuckey also propose multiple or staged propaga-
tion [19], where a cheap propagator with a high priority is combined with a more expensive,
low priority propagator. For instances containing AllDifferent this approach shows some
promise, so we evaluate a staged propagator in our experiments.

2.3.5. Other proposals in the literature. Lagerqvist and Schulte develop advisors in the
context of the Gecode solver [16]. An advisor is a procedure which is executed imme-
diately when a variable event occurs. They use advisors with AllDifferent to implement
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Algorithm 1 AllDifferent most basic variant
propagate(): returns Boolean

(1) foriin {1...r}: matching[i]« i // initialize the matching

(2) hasMatching«—FindMaximumMatching(matching, {x; ...x,}) / repair the match-
ing

(3) if not hasMatching:

“4) return False

(5) FindSCCsRemoveValues(matching, {xj ...x,})

(6) return True

domain counting, and to eagerly maintain the matching whenever it is violated. Unfortu-
nately, for all the AllDifferent variants and problem instances they experimented with, the
cost of advisors outweighed their benefits [16]. We did not experiment with advisors.

Schulte and Stuckey propose fixpoint reasoning [19] and observe a very slight (0.1%)
improvement in runtime for their instance golomb-10-d which has a GAC AllDifferent con-
straint. Fixpoint reasoning can reduce the number of calls to the propagator, by eliminating
useless calls. However, they observe that useless execution of the AllDifferent algorithm
is cheap due to its incrementality. We did not experiment with fixpoint reasoning.

3. IMPLEMENTATION OF THE ALLDIFFERENT ALGORITHM

Algorithm 1 shows the most basic variant of the AllDifferent propagator. This variant
is not incremental in any way. It simply calls FindMaximumMatching and FindSCCsRe-
moveValues.

To support incremental matching, line 1 would be removed. The two matching algo-
rithms we consider both perform iterative repair, so no changes need to be made there to
support incremental matching. This variant of AllDifferent has one item of state which
is stored from one call to the next (the matching function). This is not backtracked, be-
cause a valid matching is backtrack stable. As values are restored on backtracking, a valid
matching remains valid since none of the values in it are removed.

Both variants of AllDifferent call FindMaximumMatching and FindSCCsRemoveVal-
ues. These two functions are described in sections 3.1 and 3.2 below.

In this paper we do not focus on the matching and SCC algorithms, but on the size of
the graphs they are applied to and on the number of times they are called during the search
process. However, it is important to use efficient algorithms to provide a realistic setting
for evaluating our proposals. To this end, we compare two bipartite maximum matching
algorithms, selecting one which has a good time bound and another which is known to
work well in practice.

Régin claims that the space complexity of AllDifferent is O(rd) because the variable-
value graph is stored explicitly [18]. In Régin’s approach, the variable-value graph is
maintained as values are removed from domains, and it must be backtracked as search
backtracks. This could be justified in a context where querying domains is expensive.
However, in our experimental context, querying domains is cheap. Therefore, in our imple-
mentation, we do not store either the variable-value graph or the residual graph explicitly,
reducing the space complexity to O(d). The graphs are discovered as they are traversed.
Since most edges correspond to a variable-value pair, checking if an edge is present is im-
plemented as testing if a domain contains a particular value. When discovering all edges
from a variable vertex, it is necessary to iterate over a domain. Ideally the solver would
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provide a domain iterator, which would find the first and next domain elements in constant
time. In our experiments, the solver provides the minimum and maximum values of the
domain, which we use to bound the iteration.

3.1. Maximum Bipartite Matching. The first algorithm we considered was the Hopcroft-
Karp algorithm [14]. The Hopcroft-Karp algorithm runs in time O(+/rm) where m is the
number of edges in the variable-value graph (m < rd). However (when using incremental
matching) the algorithm only computes a matching from scratch at the root node of search;
subsequently it repairs a matching where k edges have been lost. With Hopcroft-Karp the
cost is 0(\/l;m) [18]. Our implementation in C++ follows that of Eppstein [8].

The second algorithm we implemented was Ford-Fulkerson [6] with a simple breadth-
first search (FF-BFS) for augmenting paths. It begins with an unmatched variable vertex,
and searches for an augmenting path. The augmenting path is then applied to increase the
cardinality of the matching by one. This is iterated until there are no more unmatched
variable vertices, or the BFS does not find an augmenting path.

FF-BFS has the advantage of good average behaviour on a wide range of bipartite graphs
[22], although the algorithm runs in time O(rm). To repair a matching where k edges have
been lost, the cost is O(km).

Régin [18] used the Alt, Blum, Mehlhorn and Paul [3] (ABMP) algorithm, which is
a variant of Hopcroft-Karp with a time bound of O(r!>y/m/logr). In terms of the up-
per bound, Hopcroft-Karp is better for sparse graphs, whereas ABMP is better for dense
graphs. We do not know the density of the variable-value graph in advance.

Compared to other applications of matching algorithms, our graphs are relatively small.
In our experiments, the problem class with the largest AllDifferent constraint is the con-
trived problem (r = 500). The second largest is for social golfers (r = 432), and the third
is sports scheduling (» = 120). This is not because our instances are easy; many take over
two hours to solve.

Setubal empirically compared ABMP, FF-BFS, FF-DFS (Ford-Fulkerson with depth-
first search) and Goldberg’s algorithm [22]. He generated bipartite graphs with 2 vertices
in each partition, where p € {8...17}. If we estimate that our graphs have 2° vertices
in each partition, an examination of Setubal’s results (taking the size closest to 2° for
each class of graphs, and only considering sequential computers) shows that FF-BFS is
competitive for all classes and is most efficient (or equal) in 8/11 classes.

Taking these results together with earlier work by Setubal [21], we expect FF-BFS to
perform better than Hopcroft-Karp in our experiments. This is the case, as shown in section
6.3.

3.2. Finding SCCs and removing domain values. To compute the SCCs, we use Tar-
jan’s algorithm [24], since it is simple and efficient (with a time bound of O(|V|+ |E|) or
O(rd)). It is also suitable for the proposal we make in section 5, where some information
is collected from the algorithm as it runs.

Algorithm 1 calls FindSCCsRemoveValues (algorithm 2), which finds SCCs and re-
moves the appropriate values to achieve GAC. To avoid storing all the SCCs explicitly,
these two tasks are implemented together. FindSCCsRemoveValues is a simple wrapper
which initializes data structures and calls TarjanRemoveValues, possibly more than once
as needed. All variables are shared between FindSCCsRemoveValues and TarjanRemove-
Values.

TarjanRemoveValues performs Tarjan’s algorithm [24] recursively (lines 1-12), and re-
moves values from domains using the SCCs (lines 13-23). Tarjan’s algorithm performs a
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Algorithm 2 FindSCCsRemove Values
FindSCCsRemoveValues(matching, varSet): returns nothing
(1) visited« 0; TStack« []; maxDFS« 1; hasSCCSplit«False
(2) for x; evarSet:
3) if x; ¢visited:
“4) TarjanRemoveValues(x;) // start search at x;

TarjanRemoveValues(curnode): returns nothing

(1) TStack.push(curnode)

(2) DFSNum|[curnode]«—maxDFS

(3) lowLink[curnode]«—maxDFS

(4) maxDFS « maxDFS + 1

(5) visited.insert(curnode)

(6) for newnodeeneighbourhood(curnode):

7 if newnodecvisited:
(8) if newnodecTStack:
©)] lowLink[curnode]«—min(lowLink[curnode], DFSNum[newnode])
(10) else:
(11 TarjanRemove Values(newnode)
(12) lowLink[curnode]«—min(lowLink[newnode], lowLink[curnode])
(13) if lowLink[curnode]=DFSNum][curnode]: // if curnode is the root of an SCC
(14) if lowLink[curnode]>1 or DFS did not traverse all variables:
(15) hasSCCSplit«—True
(16) if hasSCCSplit:
a7 SCC+« 0; stacknode«—null
(18) while stacknode£curnode:
19) stacknode«—TStack.pop()
(20) SCC.insert(stacknode)
(1) for ¢ €SCC where e € {1...d}: // e is a domain value
(22) for x; €varSet where x; ¢SCC:
(23) removeFromDomain(x;, e)

depth-first search (DFS). If it is implemented recursively, the SCCs can be constructed as
the recursion unwinds. The residual graph (definition 2.2) is given by the neighbourhood
function (line 6), where neighbourhood(v) returns the set of vertices {vi,v,,...} that are
connected to v by a directed edge v — v;.

The neighbourhood function does not appear in the program code, to avoid the overhead
of a function call. Instead, lines 6-12 are repeated three times for the following three
cases: where curnode=t, curnode€ {x;...x,}, or curnode€ {1...d}. For the case where
curnode= ¢, the neighbour set is computed ahead of time. If this set is empty, ¢ is omitted
from the residual graph, since it will be a singleton SCC. When curnode€ {x; ...x,,1...d},
the neighbour set is iterated without being explicitly constructed beforehand.

When the algorithm finds the root of an SCC (line 13), it does a simple test to determine
if the residual graph is partitioned (lines 14-15). If the DFS has not traversed all variable
vertices (because some are unreachable), or the recursion did not unwind fully, then the
residual graph must partition into more than one SCC.
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If the residual graph does partition, the algorithm computes the current SCC (lines 17-
20). This SCC contains both variables and values, such that in all maximum matchings, the
values are assigned to variables within the SCC. Therefore these values cannot be assigned
to any variable from varSet which is not in the SCC. Accordingly, these values are removed
from all such variables using removeFromDomain.

3.3. Minor implementation details. The graph algorithms manipulate small sets of in-
tegers, performing operations such as inserting and removing integers, clearing the set,
testing the presence of a particular integer, and iterating through the set. One example
is the set of visited vertices in Tarjan’s algorithm. (In the implementation, each vertex is
mapped to a distinct integer.) In all cases we know the range of the integers (it is never
more than 0...r+d).

We designed the following data structure to represent a subset of 0...n. We have an
integer array v[0...n], indexed by set element, and an integer ¢ (called the certificate). v is
initialized to 0, and the certificate to 1. An element e is present in the set iff v[e] = ¢. To
insert an element e, v[e] < ¢, and to delete e, v[e] «<— 0. To clear the set, ¢ < ¢+ 1. In this
way, we can clear the set in small constant time. We do not claim novelty for this approach,
since it is very likely it has been invented before.

When we require a set to be iterable, we also maintain an array of the values, stored con-
tiguously, with an integer representing the size of the set. The clear operation can still be
implemented in constant time by setting the size to 0 and incrementing the certificate. For
this type of set the remove operation is linear time, but it is very rarely used, being called
in only one place. It is called once for each application of the assignment optimization
(described in section 4.2).

The matching M is primarily represented as an array of domain values, indexed by
variable number. When using Hopcroft-Karp, it is also represented as an array of variable
numbers, indexed by value. Both Hopcroft-Karp and FF-BFS maintain the set of values in
the matching. Hopcroft-Karp also maintains the set of variables.

4. PROCESSING SCCS INDEPENDENTLY

In this section we describe a proposal which is new to the best of our knowledge. We
add another type of incrementality to the AllDifferent algorithm (in addition to incremental
matching), by storing and reusing the SCCs discovered by Tarjan’s algorithm. This leads
to considerable efficiency gains.

“4.1) xp...x3 €{1...3},xa...x6 € {3...6} : AllDifferent(x; ...xc)

Consider formula (4.1). Assume that the matching found is x; +— i for all i. The residual
graph is shown in figure 4.1. Running Tarjan’s algorithm on this graph computes two
SCCs containing variables {x;...x3} and {x4...x¢} respectively. After partitioning the
graph, the GAC algorithm would prune value 3 from variables x4...x6. At this point,
the two SCCs are completely disconnected in the residual graph and in the variable-value
graph, and will remain so until values are restored by backtracking. In future calls to the
propagator, the two SCCs can be considered independently. This allows us to speed up
both the maximum matching algorithm and Tarjan’s algorithm. The two algorithms are
run on a subgraph of the variable-value graph (the maximum matching algorithm), or on
a subgraph of the residual graph (Tarjan’s). Furthermore, when a variable x; is changed
and the changes trigger the AllDifferent constraint, only the SCC containing x; needs to be
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considered. These changes result in considerable efficiency gains, as shown in section 6.5
below.

4.1. Representing set partition. In order to store the SCCs between calls to the AlIDif-
ferent algorithm, a backtrackable representation of set partition is needed. It is sufficient
to store the partition of the set of variables (represented as integers 1...r), since the values
can be quickly discovered from the variables. It is important that each set in the partition
is efficiently iterable, since both the matching algorithm and Tarjan’s algorithm need to
iterate over the set of variables. The order of iteration is not important. It is not necessary
to have an O(1) set membership test.

When the AllDifferent algorithm executes, it may subdivide the SCCs further but it
never merges SCCs together or changes them in any other way. Therefore only subdivision
is required, with the sets being restored on backtracking.

For a set of integers S = {1...r}, the partition representation we used consists of two
arrays of integers, and an array of backtracking Booleans.

setElements[1...r]: Contains a permutation of the elements in S.
setElementIndex[1...r]: For each element a € S, setElements[setElementIndex[a]
]=a.
splitPoint[1...r — 1]: If splitPoint[a]=False, elements setElements[a] and setElements[a+
1] are in the same subset. Otherwise, elements setElements[a] and setElements[a+
1] belong to different subsets in the partition.

The operation of subdividing the partition involves permuting the elements in setElements
(and updating setElementIndex accordingly), and changing Booleans in splitPoint from
false to true. When this change is backtracked, it is only necessary to restore the splitPoint
array. This is illustrated in figure 4.2 for a simple example.

To subdivide a subset of size n takes O(n) time, since n elements may need to be written
in the setElements array, and n indices updated in the setElementIndex array. Up to n —
1 elements of splitPoint may be changed in this operation. To undo this operation on
backtracking, up to n — 1 values of splitPoint are restored.

The setElements and setElementIndex arrays are simple arrays of integers. The split-
Point array is maintained by trailing. Changing a value in the splitPoint array has O(1)
cost overall. It involves three operations which each take O(1) time: changing the value

X, X, X, X, X Xg
1 2 3 4 5 6
t

FIGURE 4.1. Residual graph example
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Representation of {1,2,3,4,5,6} setElementindex:
setElements: 123|456 123456
splitPoint: ololol ol o

Partition this s% in*o {1,3,5},{2,4,6}

setElements: 13| 5)2]4]6 142|536
splitPoint: 01l o 1 01l 0 splitPoint[3]=frue indicates that
Iy adjacent elements 5 and 2 are in
different subsets in the partition.
Backtrack
setElements: 13|52 ]4]6 142|536
splitPoint: 0 ol ol ol o

FIGURE 4.2. Illustration of set partition data structure

in memory, adding a record to the trail stack, and also reading the record and restoring
the value on backtracking. Therefore the cost of maintaining splitPoint does not affect the
overall O(n) time to subdivide the partition.

4.2. Assignment optimization. Assignment of a variable, whether by the search proce-
dure or by propagation, is likely to be a common enough case that optimizing it will pay
off. When a variable x; is assigned, the computation of SCCs can be simplified somewhat.
In the residual graph, x; has one outward edge and no inward edges, therefore x; must be
in a singleton SCC. Where x; — a, value a must be removed from the domain of all other
variables.

To optimize this case, the SCC s containing x; is partitioned. First x; is swapped with
the first element of the SCC in setElements. Then splitPoint[setElementIndex[i]] is set to
True to subdivide s into s; = {x;} and s, = s\ {x;}. This process is illustrated in figure
4.3. The value a is removed from the domain of all variables in s, and s, is queued to
be processed by Tarjan’s algorithm (since it may subdivide further). This takes O(r) time,
and does not decrease the number of calls to Tarjan’s algorithm. However it does reduce
the size of the graph which Tarjan’s operates on. The effectiveness of this optimization is
tested in section 6.5.

4.3. Implementing independent SCCs. To implement both the above proposals, we re-
place the simple propagate function (algorithm 1) with propagate-SCC (algorithm 3). This
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Representation of {1,2,3,4,5,6} setElementindex:
setElements: 123|456 123456
splitPoint: ololol ol o

Partition out {4], I%aving {1,2,3,5,6}

setElements: 411213156 2 03|41 ]5]6
splitPoint: 1 ol ol ol o splitPoint[1]=true indicates that
1N adjacent elements 4 and 1 are in

different subsets in the partition.

Backtrack
setElements: 4 1 2 3 5 6 2 3 4 1 5 6
splitPoint: 0 0] 0] 0] O

FIGURE 4.3. Tllustration of partitioning element 4 from the set {1,2,3,4,5,6}

function requires a set of variables named triggeringVars as a parameter. These are the vari-
ables which have triggered the constraint: in the simplest case this would be all variables
whose domain has changed since the last call to propagate-SCC. When dynamic triggers
(described in section 5) are used, triggeringVars is the set of all variables which have lost
one or more of their trigger values.

When domain counting is used, triggeringVars is the set of all changed variables whose
domain size is less than r. For a variable x; with a large domain, it is possible for its
matching value (M[i]) to be removed from D; while x; ¢triggeringVars, thus invalidating
the matching without triggering the constraint. To cover this case, lines 15-17 check the
matching for an SCC s. If some value in the matching has been removed, FindMaximum-
Matching is called. This is only required when domain counting is used, so we introduce
the flag DomainCounting, which is True iff domain counting is being used.

Propagate-SCC iterates through the set of triggering variables, finding which SCC each
variable belongs to (named s, line 3) and checking if the matching has been invalidated
(line 4). If it has, FindMaximumMatching is called to repair the matching (lines 5-6).

Lines 7-11 of algorithm 3 implement the assignment optimization. If x; has been as-
signed, lines 8-11 are executed. It is possible that s has already been added to changed-
SCCs, and since it is about to be partitioned it must be removed from changedSCCs. This
is done on line 8. s is partitioned into the singleton SCC {x;}, and the remainder of s:
s\ {x;} (line 9). Line 10 performs the removal of the assigned value from all variables in
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Algorithm 3 AllDifferent with SCCs processed independently
propagate-SCC(triggering Vars): returns Boolean
(1) changedSCCs« @
(2) for x; etriggeringVars:
3) s «—findSCC(x;,SCCs) {find SCC including x;}

4 if not inDomain(x;, matching]i]):
5) hasMatching«—FindMaximumMatching(matching, s) {repair the match-
ing}
(6) if not hasMatching: return False
@) if isAssigned(x;):
©) changedSCCs«+—changedSCCs\{s}
) Partition s into s; = {x;} and s, = s\ {x;} in SCCs
(10) for x; € s55: removeFromDomain(x;,getMin(x;))
(11) if |s2| > 1: changedSCCs«—changedSCCsU{s, }
(12) else:
(13) if |s| > 1: changedSCCs«changedSCCsU{s}
(14) for s echangedSCCs:
(15) if DomainCounting and (3x; € s :not inDomain(x;, matching[i])):
(16) hasMatching«FindMaximumMatching(matching, s)
a7 if not hasMatching: return False

(18) FindSCCsRemoveValues(matching, s)
(19) return True

52, and s, is queued on changedSCCs if necessary (line 11). If x; is not assigned, and it is
possible for s to subdivide (|s| > 1) then s is added to changedSCCs (line 13).

If the assignment optimization is not required, lines 7-13 are replaced with a single line
which inserts s into changedSCCs.

5. DYNAMIC TRIGGERS FOR THE ALLDIFFERENT CONSTRAINT

By default the AllDifferent constraint would be triggered by any change to any variable
domain. However it is possible to identify cases where the SCCs will remain strongly
connected, and therefore no pruning can be done. As described in section 2.3.2, Quimper
and Walsh proposed one such method, based on the number of values in the domains. We
propose another method based on dynamic (movable) triggers.

5.1. Background. Gent et al. proposed watched literals [10], inspired by SAT. Used as
triggers to fire constraint propagations, watched literals have three features different from
triggers as normally used. Watched literals only cause propagation when a given variable-
value pair is deleted; their triggering conditions can be changed dynamically during search;
and they remain stable on backtracking so do not use memory for restoration. Watched
literals have been shown to be effective for the element, table and Boolean sum constraints
by Gent et al. [10, 11].

Watched literal propagation algorithms typically revolve around the concept of support.
A support for a literal is an object which is evidence that the literal is consistent, and
therefore cannot be removed by the propagation algorithm. An example of support would
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be a valid, acceptable tuple of a table constraint.? In this case, the tuple can act as support
for all the literals it contains. While this support is intact, no work needs to be done, but the
constraint must be triggered when any part of the support is invalidated. A second example
of support is a pair of unassigned variables for a CNF clause in SAT: this shows that no
unit propagation can be done. Therefore it is a support for all literals in the clause.

The variables have certain events which occur when their domain is changed. These
could include lowering the upper bound, raising the lower bound, assigning the variable
to a single value, or removing a specific value from the domain. We refer to placing a
watched literal, meaning to attach it to a variable event, and clearing it, which removes
it from its event. When a variable event occurs, the solver iterates through the watched
literals attached to the event, calling the relevant constraint propagator for each. A fixed
number of watched literals is allocated by the constraint before search begins.

The concept of watched literals is not completely suitable to the AllDifferent constraint.
The object we use as support is not always backtrack-stable (as we will demonstrate in
the next section), therefore the triggers are not backtrack-stable and must be backtracked.
Gent et al. refer to backtracked watched literals as dynamic triggers [10].

5.2. Adapting AllDifferent for dynamic triggers. When adapting the AllDifferent al-
gorithm to use dynamic triggers, the important structure is the set of SCCs: if each SCC
remains strongly connected, then no propagation can be done, and it is not necessary to
trigger the constraint. Therefore we focus on Tarjan’s algorithm, and identify edges in the
residual graph which must be present for Tarjan’s algorithm to follow the same trajectory,
and therefore return the same result, if it were to be executed again. We collect a set T of
edges as follows.

As described in section 3.2, Tarjan’s algorithm performs a depth-first search (DFS) in
the residual graph R = (V' E’). The edges in E’ which are traversed by the DFS are
included in 7. The lowlink value of each vertex is also updated using edges in the graph,
and the criterion for identifying an SCC is based on the lowlink value. For each vertex, the
lowlink value may be changed several times, but only its final value is used in identifying
SCCs, therefore the edge used to obtain its final value is included in 7. All other edges in
E' are not included in 7.

We claim that the removal of any edge in £’ and not in T does not affect the set of SCCs.
We consider all such edges together, since the effect of removing edges on the set of SCCs
is monotonic. (Removing an edge may cause no change, or cause an SCC to subdivide
into two SCCs. Therefore the number of SCCs monotonically increases.) To demonstrate
the claim, we prove that digraph R = (V/,T) has the same SCCs as R. The execution of
Tarjan’s algorithm on digraph D is denoted 7 (D).

Theorem 5.1. The digraphs R = (V' E') and R = (V', T) have the same SCCs

Proof. The proof is by showing that Tarjan’s algorithm returns the same SCCs for both R
and R. Tarjan’s algorithm is correct [24] (Thm. 14).

The order of vertex exploration in the DFS of Tarjan’s algorithm is irrelevant to the
result. It is possible for .7 (R) to perform the exact same DFS as .7 (R), because the set
of vertices is the same and all edges required by the DFS are in T by definition. Hence,
without loss of generality, we assume that .7 (R) does perform the same DFS as .7 (R).
Therefore DFSNum for each vertex is identical.

2Each element of a valid tuple is in the relevant domain, and an acceptable tuple is one which satisfies the
constraint, as defined in section 2.1.
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X Xy

FIGURE 5.1. Example of identifying triggers with two different DFS orderings

At each vertex v in the DFS tree, lowLink[v] is computed by taking the minimum of a
set S, of values. S, corresponds to the lowLink or DFSNum of neighbours of v. For each
neighbour, the inclusion of its corresponding value in S,, depends only on DFS order, which
is invariant. Therefore, all that is required is that an edge corresponding to a smallest value
in S, is present in 7. This is the case by definition.

The final part of .7 (R) constructs the SCCs as recursion unwinds. The computed SCCs
depend on final values of lowLink and the order of DFS. Therefore .7 (R) constructs the
same set of SCCs. O

Some edges in T directly represent a literal: the edge is of the form x; — j or j — x;.
We place dynamic triggers on all corresponding literals. It is safe to ignore all other edges
in T since they do not correspond to a domain value.

Figure 5.1(a) illustrates the process on a residual graph representing three variables,
X1,X2,x3 and five values 1,2,3,4,5. The DFS is performed in the following order: x1, 1,x3,2,x3,3,¢,4,5.
The eight edges traversed by the DFS are represented in wide dotted lines in the figure.
Three edges are used to finally change a lowlink value: 2 +— x, 4 +— x,, and 5 — x3, which
are represented in solid black in the figure.

Edges to and from ¢ are ignored for the purpose of placing triggers. For figure 5.1(a),
the set of triggers would be x; — 1, x1 — 2, xp — 1, xp — 2, xp — 4, x3 — 2, x3 — 3 and
X3 — 5.

Figure 5.1(b) shows a different execution of the algorithm over the same graph. In
this case, DFS is performed in the order xy,1,#,4,x2,2,x3,3,5. This gives a smaller set of
triggers, since xp — 1 is not included in this case. All other triggers are the same as for
figure 5.1(a).

This method yields at most 3 triggers per variable, plus one trigger per spare value
(at most 3r+ (d — r) = 2r+d triggers). It does not necessarily give a minimal set of
triggers. This can be seen in figure 5.1(a), where the triggers on 4 — x; and 5 +— x3 are
not necessary. The other triggers are sufficient to prove that the three vertices xy,x;,x3 are
indeed in the same SCC. However the method is simple and efficient, only requiring that
some information is gathered as Tarjan’s algorithm runs. A minimal method is likely to be
more expensive.

The triggers are not always backtrack-stable. Consider the case where an SCC s; divides
into s7,s3 when some edges are lost: the triggers computed for both s, and s3 clearly do
not cover all the edges necessary to prove the connectedness of sy, since there are no edges
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connecting the two components. Therefore, when s; is restored upon backtracking, the
triggers must be backtracked as well.

We conjecture that this approach will work well when domains are large, or when few
values are removed from the domains at each search node.

5.3. Implementing the collection of dynamic triggers. This approach is very cheap to
implement since it only requires some information to be collected from the execution of
Tarjan’s algorithm. No additional computation is required.

Two sets of changes are needed to algorithm 2. Firstly, at the top of algorithm Find-
SCCsRemoveValues, all dynamic triggers for variables in s are cleared. Then a dynamic
trigger is placed on each value used in the matching for the current SCC s. This is be-
cause these values will be used during the DFS. In addition, a watched literal is placed on
each value of the matching. This is required because the matching is not backtracked, and
the dynamic triggers are, therefore they can diverge when search backtracks. Placing the
watched literals as well guarantees that AllDifferent will be triggered when the matching is
violated. In some cases this would cause the constraint to be triggered twice for the same
variable-value pair. However, when combining dynamic triggers with a priority queue
(section 2.3.3), when the constraint is triggered it merely adds the triggering variable to a
set to be processed later, and returns. Therefore the cost of the additional watched literals
is minimal.

The second set of changes are in algorithm TarjanRemoveValues. When curnodee
{1...d}, dynamic triggers are added corresponding to edges used for the DFS (line 9)
and for the final change of lowLink[curnode] (lines 7 and 10). If the final change of
lowLink[curnode] occurred on line 10, one edge was used for both the DFS and updat-
ing lowLink. It is not necessary to place two dynamic triggers corresponding to one edge.
Only one dynamic trigger is placed in this case.

5.4. Internal dynamic triggers. It is possible to simulate dynamic triggers entirely within
the AllDifferent constraint. To do this, the propagator stores the dynamic trigger values in
a backtracking array. The constraint sets static triggers to trigger on any domain change.
When it is triggered by a variable x;, the propagator checks the domain of the triggering
variable to see if any important values have been lost. If not, it immediately returns. For
each variable, the values are stored contiguously in an array with a length counter. In our
experiments, the arrays are backtracked by block copying. We refer to this method as
internal dynamic triggers.

There are two reasons it might be useful to simulate dynamic triggers in this way. Firstly,
it may be more efficient. The cost of writing the trigger value into an array is very low, and
clearing an array (by setting the size to 0) is very cheap. By contrast, placing a watched
literal (implemented with doubly-linked lists, as described by Gent et al. [10]) requires
four assignments to pointers. Clearing a set of watched literals requires two assignments
for each literal. In addition to this, any changes must be recorded on the trail stack, and
reversed on backtracking.

Secondly, a solver may not provide dynamic triggers. Indeed, most solvers do not
provide this facility. Therefore internal dynamic triggers are important for the generality
of using dynamic triggers for AllDifferent.

6. EXPERIMENTAL EVALUATION

In this section we describe the context of our experimental evaluation. Then we present
four groups of experiments. First we evaluate the standard approaches of incremental
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matching and priority queueing in section 6.3. Secondly, in section 6.4 we evaluate the
dynamic triggers and domain counting approaches, which are both intended to reduce the
number of calls to the propagator. Thirdly, in section 6.5 we evaluate processing SCCs
independently. Finally we compare our best GAC AllDifferent constraint against a propa-
gator that establishes a weaker consistency.

6.1. Experimental context. For all experiments we use the solver Minion [9, 10]. We
adapted Minion 0.4.1 in the following ways:

Trailed set: We made a trailed set available to constraints through a new interface.
This is used to implement the set partition data structure described in section 4.1.
In particular it is used for the splitPoint array. The cost of removing an element
from the set combined with its subsequent restoration on backtracking is O(1).

Dynamic triggers: We took watched literals [10] and added a trailing mechanism to
restore them as search backtracks. This facility co-exists with standard watched
literals. In Minion, a watched literal may be placed on a variable-value pair, an up-
per or lower bound, or a variable (triggering on any domain change, or triggering
only on assignment). A watched literal can also be unused. AllDifferent makes
use of watched literals and dynamic triggers on variable-value pairs.

Minion already provides the other facilities that we need. When a constraint is triggered,
it is easy to identify the triggering variable. The inDomain, getMin and getMax methods
allow us to query the variable domains. The method removeFromDomain is used to remove
values from variable domains.

Domain lookups are designed to be fast in Minion, since it is a very common operation.
This is important when running the graph algorithms, since they query domains in order
to discover the graph as they traverse it. Domain iteration is also important for the AllD-
ifferent algorithm. Unfortunately Minion does not support domain iteration, but it does
maintain upper and lower bounds that are used to bound the iteration.

All experiments were run on Apple iMac computers with 2GHz Core Duo processors
and 2GB RAM, under OS X Tiger (10.4.11). The branch of Minion which we used is
available at http://minion.sourceforge.net/files/, including build instructions.

We have conducted extensive testing, which our code has passed. As well as continual
and detailed testing during development, we checked that the number of search nodes
explored is the same for each variant of the algorithm for each instance, excepting only
instances exceeding time or node limits.

Finally, all runtimes we report are total time to solve each given instance, including
all initialisation and search time including time outside the AllDifferent propagator. This
automatically means that all incidental features of each optimization are accounted for,
such as for example additional or reduced memory usage and its effect on practical runtime.
It does however mean that results we report are typically less dramatic than would be
obtained if we had only measured runtime inside the AllDifferent propagator. Despite this
we will often see orders of magnitude improvement in runtime.

6.1.1. Minion queue mechanisms and triggers. Minion is a variable-centric solver with
an additional constraint-centric queue. Conceptually there are two queues, which are de-
scribed below. The solver has two queues for efficiency reasons: the variable queue is
very fast, because adding a variable event to the queue is an O(1) operation. However, the
variable queue does not allow constraints to be given a low priority. Having the additional
constraint queue overcomes this limitation.
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The variable queue. The variable queue contains variable events, which are of three dif-
ferent types:

e Value a removed from D;
e Upper/lower bound of x; changed
e x;settoa

The variable queue can contain duplicates of the bound events. The other events cannot
be duplicated in the queue simply because they cannot happen twice at a single search
node. Each variable event has two lists associated with it: a list of static triggers that is
fixed before search begins, and a doubly-linked list of dynamic triggers. To propagate
a variable event, the solver iterates through both lists, calling the propagators associated
with the triggers. Each trigger contains an integer which is passed to the propagator. In
this way, the propagator can identify which trigger (and therefore which variable event)
has triggered it.

The constraint queue. The constraint queue contains pointers to constraints. Constraints
are responsible for setting triggers, and for adding themselves to the constraint queue as
necessary. In this way, when a constraint is triggered by the variable queue, it may perform
a test to determine whether a record should be added to the constraint queue. This allows
us to implement domain counting, described in section 2.3.2, and internal dynamic triggers
as described in section 5.4.

Indeed the constraint can fail, update internal data structures and perform propagation
when triggered from the variable queue, so this mechanism is more general than Lagerkvist
and Schulte’s advisors (section 2.3.5) which are not permitted to perform propagation.

The constraint queue allows duplication, however the AllDifferent constraint keeps a
record of whether it is present on the constraint queue, and thus avoids duplication.

The constraint queue is not a priority queue. However, the constraint queue has a
lower priority than the variable queue: the variable queue is emptied before each item
is processed from the constraint queue. In all the experiments presented below, the only
constraint to use the constraint queue is the AllDifferent constraint, hence it has a lower
priority than any other constraint.

The overall algorithm to process the queues is shown below.

while any queue not empty:
if variable queue not empty:
process entire variable queue
if constraint queue not empty:
process one item from constraint queue

6.1.2. Pairwise AllDifferent. Minion provides a simple AllDifferent propagator which is
triggered whenever a variable becomes assigned, and removes the assigned value from the
domains of all other variables. This is clearly a very simple and fast algorithm, and it
performs the same propagation as AC on a clique of binary not-equal constraints. We call
this the Pairwise propagator.

6.1.3. Staged AllDifferent. As described in section 2.3.4, Schulte and Stuckey propose to
combine a cheap propagator (which is similar to the pairwise propagator described above)
with GAC AllDifferent [19]. They suggest two ways to do this: simply posting both con-
straints, or building a staged propagator from the two propagators. They showed staged
propagation to be more efficient in Gecode on their instances [19].
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The proposed staged propagator makes use of the multiple constraint queues of Gecode,
and is impossible to implement exactly in Minion. We implement a close analogue. When-
ever the staged propagator is called from the variable queue, it checks if the triggering
variable is assigned. If so, the assigned value is removed from the domain of all other
variables. Apart from this additional check, the staged propagator is identical to the con-
ventional one. This very simple change yields very good experimental results, shown in
section 6.3.

6.2. Benchmark set. We generated a large number of benchmark instances, which are
available at http://minion.sourceforge.net/. They are described briefly here.

Langford’s number problem (prob024 in CSPLib [13]) with k£ = 2 (i.e. two occur-
rences of each number) and n € {10,11,12,...,25}. This is modelled with a vector v of
length 2n which is all different, where elements v[i] and v[i + n] represent the two positions
of colour i in the problem. The model is by Gent, Miguel and Rendl [12].

The Golomb ruler problem (prob006 in CSPLib) is to construct a set of n integers
which are all different, and the intervals between pairs are all different. The lowest integer
is assumed to be 0, and the highest integer is minimized using branch and bound. This
is modelled as a vector of n(n — 1) /2 differences between pairs of integers, with a single
AllDifferent constraint on the vector.

Balanced quasigroup with holes (QWH) [15] is the problem of completing a partial
latin square with a particular structure. The instances were generated from random, com-
plete latin squares of order n € {20,25,30,35}. Ten latin squares were generated at each
size, and [1.7 x n1'55] holes were punched to create balanced partial latin squares. The
number of holes yields instances at or near the difficulty peak. The problem is modelled as
an n X n matrix of variables with domain {1...n}, with an AllDifferent constraint on each
row and column.

Quasigroup existence (prob003 in CSPLib) is the problem of determining whether
a quasigroup exists with certain properties, for example idempotence (a x a = a for all
elements a). We used types QG3 and QG4, both idempotent and non-idempotent, with
orders n € {7,8,9,10} making 16 instances in total. The problem is modelled with an
n x n matrix of variables with domain {1...n}, with an AllDifferent constraint on each
row and column, an AllDifferent on the primary diagonal, and various other constraints
representing the properties of the quasigroup type. Various redundant constraints are also
included. The model is by Colton and Miguel [5].

Social golfers (prob010 in CSPLib) is the problem of assigning gs golfers to s sets of
size g, for each of w weeks, such that two golfers never play together more than once. It
is modelled as w vectors of variables with domain 1...g X s, representing the weeks. For
each week, the vector is partitioned into s sets. To break some symmetries, the sets are lex-
ordered within the week, golfers are ordered within the sets and the weeks are lex-ordered.
Each week vector has an AllDifferent constraint. A second vector of variables with domain
{1...gs(gs —1)/2} represents the pairs that play together. For each week, for each pair
of variables in the same set, the two variables are mapped to a single variable in the pairs
vector using a table constraint. The pairs vector has an AllDifferent constraint on it. We
generated social golfers instances with g = 4 and the following other parameters (w,s):
(5,4...8)(6,4...8), (7,5...8), (8,6...8), (9,7...8), (10, 8), making 20 instances in all.

Sports scheduling is similar to social golfers where g = 2 (i.e. fixtures involve two
teams). n teams play on n/2 pitches over n — 1 weeks. Each team plays on each pitch at
most twice. It is modelled as n — 1 vectors of variables with domain 1...#n representing
the weeks. The vector is partitioned into pairs. To break some symmetries, each pair is
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ordered and the weeks are lex-ordered. Also, the pitches are interchangeable so the vectors
of games on each pitch are lex-ordered. Sports scheduling also has the pairs vector with
AllDifferent, and the table constraints between the two representations. In this way it is
guaranteed that every team plays every other team exactly once.

The contrived problem has been contrived to show the benefit of dynamic triggers and
domain counting. It is pathological because the GAC AllDifferent constraint performs no
pruning, despite doing a significant amount of computation. It consists of two vectors v
and w. v is of length 5 and the variables have domain {1...50}. An AllDifferent constraint
(using the pairwise propagator) is placed on v, and also v[4] = v[5]. Therefore there are
no solutions. The pairwise AllDifferent is only present to make the problem unsatisfiable,
while causing Minion to search extensively: the binary search tree has 50 x 49 x 48 x 47 =
5527200 left branches. w is a vector of length [ > 4, containing variables with domain
{1...d}. w has a redundant GAC AllDifferent constraint, and the two vectors v,w are
linked by v[1] # w[l1], v[2] # w[2], v[3] # w[3], and v[4] # w[4]. Hence, whenever a variable
in v is assigned, one value is removed from a variable in w by propagation.

We generated instances with [ = {100,200, 300,400,500}, of two types where d = [ or
d =1+ 1. Both types should work well with dynamic triggers, because only one value is
removed for each left branch, and this is unlikely to trigger the GAC AllDifferent. When
using domain counting, when d = [ the constraint is always triggered by the removal of a
single value. However when d = [ 4 1 then the constraint is never triggered, so the prop-
agator is only executed at the root node. In this case, domain counting should outperform
dynamic triggers.

6.3. Experiment one: variants proposed in the literature. Prioritized queueing and
incremental matching are standard techniques. In this experiment we test their merit. We
also consider an alternative matching algorithm, and staged propagation.

Simple: The simplest variant of AllDifferent is shown in algorithm 1. It does not
use the constraint queue, therefore it is called once for each variable event. Simple
does not process SCCs independently or use dynamic triggers or domain counting.
The Hopcroft-Karp algorithm is used to compute the matching.

PriorityQ: The Simple algorithm, but called from the constraint queue. It is added to
the constraint queue on any variable event, unless it is already present. Therefore
duplicates are removed and the constraint is propagated after all others.

PriorityQ-IncMatch: PriorityQ with incremental matching. (Algorithm 1 with line
1 removed, so that the matching is retained from one call to the next.)

PriorityQ-IncMatch-BFS: This is PriorityQ-IncMatch using the FF-BFS matching
algorithm rather than Hopcroft-Karp.

PriorityQ-IncMatch-BFS-Staged: This is PriorityQ-IncMatch-BFS with staged prop-
agation as described in section 6.1.3.

Firstly, Simple and PriorityQ were compared on our benchmark set. We expected PriorityQ
to perform better for all instances. Figure 6.1 shows that this is not the case, although
most instances benefit from the constraint queue, with some performing over 100 times
better. This mainly agrees with the results of Schulte and Stuckey [19] regarding priority
queueing, although their results are less dramatic.

The instances that Simple solves faster than PriorityQ are all QWH instances. These
contain only AllDifferent constraints, so reducing the priority of the constraint would have
no effect.
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FIGURE 6.1. Comparing PriorityQ to Simple. The x-axis represents the
run time of Simple to solve the instance, and the y-axis is the ratio of
the number of search nodes explored per second. Therefore, a point
above the line y = 1 represents an instance which solves faster with Pri-
orityQ than with Simple. For example, a point at y = 10 would indicate
a problem instance where PriorityQ searched 10 times as many nodes
per second as Simple did, and therefore PriorityQ would explore the en-
tire search space (or the first 500000 nodes thereof) in 1/10th of the time
required by Simple. Search nodes are limited to 500000, and time is lim-
ited to 1200s, although for some Social Golfers and Golomb instances
Minion did not stop until well after the time limit. This is because of a
minor flaw in the time limit implementation.

All subsequent graphs labelled ‘Comparing X to Y’ follow the same con-
ventions, where in this case X=PriorityQ and Y=Simple

Given the theoretical advantage of incremental matching, we expect PriorityQ-IncMatch
to perform better than PriorityQ. This is the case for all instances, as shown in figure 6.2,
although the gain is less than 40%.

We compared PriorityQ-IncMatch-BFS with PriorityQ-IncMatch to compare the two
matching algorithms. As shown in figure 6.3, the AllDifferent with FE-BFS can be 30%
faster, and is never slower than with Hopcroft-Karp.

Finally, we compare the staged propagator PriorityQ-IncMatch-BFS-Staged to PriorityQ-
IncMatch-BFS. As shown in figure 6.4, staged propagation is very useful for our set of
benchmarks, with up to three times improvement.

For all further experiments, we use both the constraint queue and incremental matching,
since they are standard techniques, and verified to be useful in this context. We use the FF-
BFS algorithm in all further experiments, since it is often faster and never slower than
Hopcroft-Karp. We also use staged propagation since it is considerably faster on average.
Comparing PriorityQ-IncMatch-BFS-Staged to Simple, we observe a speedup between
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FIGURE 6.3. Comparing PriorityQ-IncMatch-BFS to PriorityQ-IncMatch

2.14 and 863 times, with a mean average speedup of 80.8, excluding the contrived instance
family.

6.4. Experiment two: Dynamic triggers and domain counting. For the purpose of this
experiment, all variants will use the constraint queue and incremental matching. The aim
is to compare waking up on all domain events against using dynamic triggers and domain
counting.

Baseline: The same as PriorityQ-IncMatch-BFS-Staged in the previous section.
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FIGURE 6.4. Comparing PriorityQ-IncMatch-BFS-Staged to PriorityQ-
IncMatch-BFS

DynamicTrigger: Baseline with the addition of dynamic triggers as described in
section 5.

DynamicTriggerInternal: Baseline with the addition of internal dynamic triggers
(section 5.4).

DomainCount: When the constraint is triggered from the variable queue, and it is
not present on the constraint queue, the domain D; of the triggering variable is
counted. (The number of values is not maintained by default in Minion.) If |D;| < r
then the constraint is added to the constraint queue.

Figure 6.5 shows the ratio of search nodes per second between DynamicTrigger and Base-
line. Instances are scattered above and below 1, suggesting that the advantage of Dy-
namicTrigger is negated by its overheads in many cases. All the contrived instances are
considerably faster with DynamicTrigger, as expected. Figure 6.6 shows the same plot
between DynamicTriggerInternal and Baseline. DynamicTriggerInternal performs slightly
better than Baseline on most instances, exploring up to 1.3 times as many nodes per sec-
ond, with an average 6% improvement (excluding contrived). Surprisingly, the contrived
instances are an exception, since they are slower with DynamicTriggerInternal than Base-
line. In DynamicTriggerInternal, the cost of placing dynamic triggers is much lower (since
they are just written into an array). However, the arrays are backtracked by block copying,
and for the contrived instances the arrays are large.

Finally we compare DomainCount with Baseline. The ratio of search nodes per second
is shown in figure 6.7. Domain counting is cheap, so no instances are substantially slower,
but it never substantially wins either. This is perhaps not surprising, since domain count-
ing was originally intended for set or tuple variables with very large domains [17]. The
contrived instances behave as expected, with instances where d = r + 1 showing a huge
advantage for domain counting, and instances where d = r showing no advantage.
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FIGURE 6.6. Comparing DynamicTriggerInternal to Baseline

Our conclusions for this experiment are that internal dynamic triggers are worthwhile
on average, whereas dynamic triggers had too great an overhead and domain counting does
not work well on this benchmark set.

6.5. Experiment three: Processing SCCs independently. The SCC optimization de-
scribed in section 4 aims to decrease the time spent running the graph algorithms. It is
independent of domain counting. However, there is a dependence between dynamic trig-
gers and the SCC optimization, because running Tarjan’s algorithm on a smaller graph will
potentially cause fewer triggers to be moved, therefore potentially reducing the overhead of
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FIGURE 6.7. Comparing DomainCount to Baseline

using dynamic triggers. For these experiments we ignore domain counting but do consider
dynamic triggers.

Baseline: The same as PriorityQ-IncMatch-BFS-Staged in experiment one.

SCC: In addition to Baseline, SCCs are processed independently as described in
section 4.

SCC-AssignOpt: In addition to SCC, the assignment optimization described in sec-
tion 4.2 is used.

SCC-AssignOpt-DynamicTrigger: In addition to SCC-AssignOpt, dynamic trig-
gers are used.

SCC-AssignOpt-DynamicTriggerInternal: In addition to SCC-AssignOpt, inter-
nal dynamic triggers are used.

Figure 6.8 shows results comparing SCC to Baseline. The SCC variant is able to explore
up to ten times more search nodes per second on the benchmarks, and SCC is never slower
than Baseline. This is as expected, since there is not much additional cost with SCC, and
the potential savings of running the graph algorithms on smaller graphs are large.

Comparing SCC-AssignOpt to SCC (figure 6.9) shows that AssignOpt is worthwhile,
although the average improvement in nodes/second is only 3%, excluding contrived in-
stances.

Social golfers and sports scheduling problems solve slower with AssignOpt. These two
problems have a similar structure, with a very large AllDifferent constraint on the pairs
vector. This may indicate that AssignOpt does not scale well to large constraints.

In a staged constraint, part of the work done in the assignment optimization (removing
the assigned value from other variables in the SCC) is redundant and could be removed.
This could improve AssignOpt a little.

Figure 6.10 shows results comparing SCC-AssignOpt-DynamicTrigger against SCC-
AssignOpt. Apart from a few Social Golfers instances, these results are not promising
for dynamic triggers. Many instances solve considerably slower with dynamic triggers.
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FIGURE 6.9. Comparing SCC-AssignOpt to SCC

Internal dynamic triggers (figure 6.11) fare better, perhaps because the cost of moving trig-
gers is lower. The sports scheduling instances solve faster with internal dynamic triggers.
However on average (excluding the contrived problem) internal dynamic triggers lose by
5%. This is in contrast to the experiment without SCC and AssignOpt, where internal dy-
namic triggers gained 6%. Exploiting SCCs and the assignment optimization have reduced
the cost of applying the graph algorithms, so now it is not worthwhile to apply internal
dynamic triggers.
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FIGURE 6.11. Comparing SCC-AssignOpt-DynamicTriggerInternal to
SCC-AssignOpt

Since dynamic triggers do not do well in this context, we regard SCC-AssignOpt as our
strongest variant overall.

6.6. Experiment four: Comparing with the pairwise propagator. We compare the
pairwise propagator (described in section 6.1.2) with the most efficient variant of GAC
AllDifferent. Since the two propagators do not provide the same level of consistency, com-
paring node rates would be of limited use: it would only show the overhead of maintaining
GAC, without showing the benefit. Therefore we compare solution times, using a much
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FIGURE 6.12. Comparing Best to Pairwise runtime. In this plot the
x-axis represents the runtime of Pairwise, and the y-axis is the ratio Pair-
wise over Best runtime. The time limit was set to 7200s, and there was
no node limit.

longer 7200 second time limit, and no node limit. The variant of GAC AllDifferent we
use is SCC-AssignOpt from experiment three. We refer to this as Best, and to the pairwise
propagator as Pairwise.

Figure 6.12 shows a plot of solution times, with Pairwise on the x-axis, and the ratio
Pairwise over Best on the y-axis. Points on the line x = 7200 represent instances which
timed out for Pairwise. Two instances timed out for GAC and not for Pairwise, this is in
the area where x > 1000 and y < 1.

Clearly the GAC reasoning on the AllDifferent constraint is very important for some
instances. In particular, QWH and some difficult Social Golfers instances solve much
faster with GAC. In some cases, they solve more than 1000 times faster than with Pairwise.
Many authors (for example Stergiou and Walsh [23]) have found that GAC AllDifferent is
important.

There are a large number of instances which caused both GAC and Pairwise to time
out. There are two instances where GAC timed out and Pairwise completed (Golomb ruler
n = 13, Langford’s n = 14), but there are 22 instances where Pairwise timed out and GAC
completed, although many of these are in the QWH class. For many other instances, GAC
does not perform as well as Pairwise. However, ignoring the contrived instances, Pair-
wise is never more than 2.34 times faster than GAC. Interestingly, this holds for easy and
difficult instances, without increasing divergence as the instances become more difficult.

Overall this experiment shows that adding the GAC AllDifferent propagator substan-
tially extends the reach of Minion to solve challenging problem instances.

6.7. Experimental conclusions. We have individually evaluated many different efficiency
measures for the GAC AllDifferent algorithm. In this section, we consider the effect of
them all together. Figure 6.13 compares Best with Simple. Excepting the contrived in-
stances, we get a speedup from 2.69 times to 1813 times, with an average of 168 times.
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FIGURE 6.13. Comparing Best to Simple

Clearly Best is a huge improvement over Simple, and this shows the importance of taking
care to implement AllDifferent well.

Simple does not include standard optimizations (prioritized queueing, incremental match-
ing or staging), and it uses Hopcroft-Karp rather than the more efficient FF-BFS to perform
the matching. Therefore in figure 6.14 we compare Best with Baseline. The only differ-
ences between these two algorithms are optimizations we have proposed (SCC and assign-
ment optimization), so this shows the value of the contributions in this paper. All except the
pathological contrived instances lie between 0.96 and 7.06 times faster, and the mean im-
provement is 2.98 times. Since these figures are for solving the instance, the improvement
in the AllDifferent constraint is greater than that.

Finally, figure 6.15 is a plot of the nodes explored per second by Best. This is to give
an idea of the speed of the algorithm on different classes of instances. The Langford’s
instances are very fast, exceeding 20,000 nodes per second in some cases, which is perhaps
remarkable when maintaining GAC. Social Golfers and QWH are the slowest classes, since
Social Golfers has very large AllDifferent constraints and QWH has a large number of them
per instance.

7. IMPLEMENTATION ADVICE

In this section we abstract from the details of our experimental results to give brief
advice to those following us in implementing GAC for AllDifferent, or researching further
optimizations for it.

Our results show that there is huge benefit from propagating (in order of importance)
AllDifferent in a separate queue from other constraints, from the incremental exploitation
of strongly connected components and from combining GAC and pairwise propagators
using staging. These improvements are so big that they are unlikely to be reversed by

3Note that the average ratios are not multiplicative. That is, we have Best:Simple = 168, Best:Baseline = 2.98
and Baseline:Simple = 81. To retain multiplicative properties of the mean we should use the geometric means.
The geometric means are: Best:Simple = 31.98, Best:Baseline = 2.44, Baseline:Simple = 13.11.
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FIGURE 6.15. Plot of Best nodes per second. The x-axis represents Best
runtime, and the y-axis the number of nodes per second.

different implementation choices or the study of different instances. The improvement
from incremental matching is typically in the range of 20-30%, so is much less important
but we never saw it slow down propagation and we expect it to be generally useful.

We must be more tentative where we get less dramatic results. Here, different choices
might be appropriate with different benchmark sets or different features of a solver. Indeed,
these optimizations could be omitted to save programmer time without undue penalty for
the end-user. We find that our assignment optimization is worthwhile. We did not find
dynamic triggers of either type to be worthwhile. In our experiments dynamic triggers
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were slightly better when implemented internally within the AllDifferent constraint, an
approach which is also more portable. We did not find Lagerkvist and Schulte’s variant of
Quimper and Walsh’s domain counting to be beneficial, even with our slight improvement
on it. However, both dynamic triggers and domain counting are sensitive to the benchmark
set, and may come into their own on problems with larger domains.

One question we have not been able to come to a definite conclusion on is the best
matching algorithm within the GAC AllDifferent propagator. We experimented with the
simpler BFS algorithm and the more complex Hopcroft-Karp algorithm. We found BFS to
be significantly better and can recommend it over Hopcroft-Karp. However, there are many
other matching algorithms and it is quite possible that another choice might outperform
both of the algorithms we tested.

8. CONCLUSIONS

We have made a number of contributions to the study of propagation methods to es-
tablish generalised arc consistency (GAC) for the AllDifferent constraint. Our results are
based on careful implementation of existing and new techniques, and extensive empiri-
cal analysis of their behaviour. Our experiments are very easily the deepest experimental
analysis of GAC algorithms for AllDifferent.

We have introduced new optimizations to Régin’s algorithm for GAC propagation for
AllDifferent. We showed significant improvements from the observation that individual
strongly connected components can be treated independently. We also showed a lesser
improvement by treating the assignment of a variable as a special case. Overall, our new
contributions speed up search on instances containing AllDifferent by an average of 3
times. We have also evaluated existing optimizations from the literature. In combination
with our new contributions, we found an average improvement of a more than 160 times
in runtime over a careful implementation of Régin’s algorithm.

Apart from some contrived examples, GAC propagation of AllDifferent never slows
down search by more than a factor of 2.34, even when compared with a highly optimized
implementation of a non-GAC AllDifferent algorithm. The combination of existing and
our new optimizations is bringing GAC propagation of AllDifferent to the point where it
is practical for almost all instances, and beneficial for a very large number.
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