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Abstract. Today, many universities are opting for modular degree pro-
grammes. Such modular courses provide greater flexibility for students.
However, such a system is naturally complex; modules may feature pre
and co-requisites and may run over different periods of times, and have
different credit values. General university requirements will need to be
met by students to continue their studies. Add to this timetable con-
straints and the module selection process can be a daunting task. Stu-
dents may further complicate the process by explicitly wanting to take or
avoid modules. They may require a general overview to see what options
are available to them, such as the different routes to a particular degree.
The University of Glasgow currently has no automated process to help
with this. This paper describes our efforts in applying constraint pro-
gramming to this configuration problem. We show how we went about
tackling the problem using the constraint programming language Choco.
We present a small example problem, a constraint programming model of
this problem, and describe how we deliver explanations. We then present
an extension of this model to deal with dynamic problems, where vari-
ables and constraints can be activated as a result of decisions made by
the user or search process. Throughout this study, our goal has been
to keep it simple, attempting to show that an off-the-shelf constraint
programming toolkit is up to the task.

1 Introduction

Students design their own degrees. A university degree (for example Computer
Science) is typically composed of a set of modules, each corresponding to a spe-
cific subject, such as databases, algorithms and data structures, communications,
etc. Each of these modules is worth a certain amount of credits. To progress from
one year to the next a student must accumulate a minimum amount of credits.
In a year of study there will be a set of modules. Typically, a subset of these
will be core modules that must be taken. Additional modules must then be
selected to achieve the minimum number of credits. This selection may then
influence subsequent modules that can, and cannot, be taken in later years. For
example, a student cannot take a third year course on algorithms if she has not
taken a second year course on discrete mathematics i.e. discrete mathematics is
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a pre-requisite. Similarly, certain modules must be taken together i.e. they are
co-requisites. Added to this, there is a limit to the number of modules a student
can take in any year, and sometimes in any term.

Students are then faced with a daunting task. They may decide that they
want a certain degree, say Software Engineering, yet there are certain modules
that they do and do not want to take, and some terms that they want to minimise
the number of modules that they take. What modules should they take, and what
are the consequences? Much time can be spent by advisors of study assisting
students in deciding what to study, and explaining why certain modules cannot
be taken i.e. the advisors help the students design their course. Although all this
information is available in the university handbook, it may require an expert to
interpret it.

What we attempt here, is to demonstrate that the task of advising a course
of study is essentially a problem of design, and that a constraint based model is
most appropriate. We demonstrate this by presenting the 4th year curriculum
from our department, an encoding of this in the Choco constraint programming
toolkit, and sample queries that a student may ask of such a model. However, this
problem is essentially static; all the variables of the problem are active and must
be assigned values. We show how we can readily extend our model to address
this, by using don’t care values allied to variable and value ordering heuristics.
Through out this study, our goal is to demonstrate that design problems can be
easily modelled using an off-the-shelf constraint programming toolkit. We make
no claims for efficiency, only that we expect that modest sized systems can be
fielded with relative ease.

In the next section we introduce the problem of designing a fourth year of
study in computer science, and show how we can model this using a constraint
programming toolkit. We then show typical queries and how we deliver explana-
tions. In section 5 we extend this model to deal with dynamic problems, where
variables and constraints become active as the result of decision making. Section
6 concludes this study.

2 A Fourth Year Problem

The 4th year of study is split across two semesters. All students must do an in-
dividual final year project (proj) and complete the module on professional issues
(pi). Students have then to take 8 other modules, selected from the following
options:

1. Formal Methods (fm) semester 1

Information Retrieval (ir) semester 1

Security & Cryptography (sc) semester 1

Advanced Communications (ac) semester 2
Artificial Intelligence (ai) semester 2

Algorithmics (al) semester 2

Computer Architecture (ca) semester 1

Databases & Information Systems (dbis) semester 1
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9. Design & Evaluation of Multimedia Systems (dems) semester 2
10. Issues in Collaborative & Distributed Systems (hci) semester 1
11. Modelling Reactive Systems (mrs) semester 2
12. Neural Computing (nc) semester 2
13. Network Communications Technology (nct) semester 1
14. Requirements Engineering & Re-engineering (rer) semester 2
15. Safety Critical Systems (scs) semester 1
16. Synthetic Graphics (sg) semester 2

In the first semester a student must take 4 or 5 modules. The semester 1 module
Network Communications Technology (nct) is a pre-requisite for the Advanced
Communications (ac) module in semester 2. This allows 8820 different ways for
a student to fulfil the degree regulations for final year Computer Science!.

In Figure 1 we represent the above curriculum as a constraint satisfaction
problem [8] using the Choco toolkit [3]. The Choco function, leveld(), delivers
an object representing a constraint satisfaction problem composed of integer
variables and constraints. Each module is a 0/1 variable, with a value of 1 if
taken, 0 otherwise. The two compulsory modules, Professional Issues (pi) and
Individual Project (proj), are represented for completeness so that a student is
aware that they must be taken (i.e. assigned a value of 1). The constraint on line
(B) represents the pre-requisite: Network Communications Technology (nct) is
a pre-requisite for Advanced Communications (ac). The constraint on line (C)
guarantees that either 4 or 5 modules are taken in the first semester, and the
constraint on line (D) guarantees that either 3 or 4 modules are taken from the
second semester. The final constraint (E) ensures that 8 modules are taken in
total. Some of these constraints might initially appear superfluous, but as we
will soon show, they are there to allow more interesting queries by the user.

3 Making Choices: an example

The above problem is not solved in the conventional sense; instead a user inter-
acts with it. The interaction involves enforcing a decision and then seeing the
consequences of this, asking for an explanation as to why certain choices are
forced upon the user, or why certain choices are not available. We now present
a typical sequence of decisions and queries.

Assume we have created the problem (i.e. p:Problem := level4()), and that
we have (male) student X. X wants to get started on his project and reckons that
he might do well to lighten his load in the first semester. In Choco, we create
a new world (i.e. world+()), set suml to 4 (i.e. setVal(sum1,4)), and propagate
this through the problem (i.e. propagate(p)). This will set sum?2 to 4, forcing the
student to take 4 modules in the second semester. Note that in creating a new
world, we can manually retract the most recent decision by backtracking via the

! In fact, this is an under estimate. Typically in a module’s exam, 2 questions have to
be answered from 3. In addition, each student has to choose a final year project.
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[level4() : Problem

-> let pb := makeProblem("Level 4",20),
proj := makeIntVar(pb,"proj",0,1),
pi := makeIntVar(pb,"pi",0,1),
fm := makeIntVar(pb,"fm",0,1),
dbis := makeIntVar(pb,"dbis",0,1),
hci := makeIntVar(pb,"hci",0,1),
scs := makeIntVar(pb,"scs",0,1),
ca := makeIntVar(pb,"ca",0,1),
ir := makeIntVar(pb,"ir",0,1),
nct := makeIntVar(pb,"nct",0,1),
sc := makeIntVar(pb,"sc",0,1),
al := makeIntVar(pb,"al",0,1),
rer := makeIntVar(pb,"rer",0,1),
mrs := makeIntVar(pb,"mrs",0,1),
ai := makeIntVar(pb,"ai",0,1),
nc := makeIntVar (pb,'"nc",0,1),
sg := makeIntVar(pb,"sg",0,1),
dems := makeIntVar (pb,"dems",0,1),
ac := makeIntVar(pb,"ac",0,1),
must := list(proj,pi),

suml := makeIntVar(pb,"suml",list(4,5)),
sum2 := makeIntVar(pb,"sum2",list(3,4)),

seml := list(fm,dbis,hci,scs,ca,ir,nct,sc),
sem2 := list(al,rer,mrs,ai,nc,sg,dems,ac)

in (post(pb, sumVars(must) == 2), // <A>
post(pb, implies((ac == 1),(nct == 1))), // <B>
post(pb,sumVars(seml) == suml), // <C>
post(pb,sumVars(sem2) == sum2), // <D>
post(pb,suml + sum2 == 8), // <E>
pb)]

Fig. 1. The 4th year of study, as a constraint program

function call world-(), and in the extreme we can return to our initial problem
state via the call world=(0).

Student X does not want to take the first semester module Network Commu-
nication Technology (nct). Again, we create a new world, now moving to world
2. We set variable nct to 0 (i.e. setVal(nct,0)) and propagate this decision. Since
Network Communication Technology is a pre-requisite for Advanced Communi-
cation (ac) the variable ac is set to 0 via propagation. Consequently, student X
now has a reduced set of options in the second semester.

The above steps can be performed quite easily within the Choco interpreter
with just a handful of functions, for selecting and setting variables. That is, as



a proof of concept we need not develop a user interface, but merely interact via
the interpreter?.

We could have encoded the above problem differently. In particular, we could
have had a constraint stating that 4 or 5 modules must be taken in the first
semester i.e. sumVars(seml) == 4 OR sumVars(seml) == 5, and similarly that
3 or 4 modules must be taken in the second semester i.e. sumVars(sem2) == 3
OR sumVars(sem2) == 4. However, this would not have allowed student X to
make the decision that he will take 4 modules in semester 1. By doing away with
the variable sum1, we no longer allow the student to make the strategic decision
to spread his study load evenly over the two semesters. Clearly, our choice of
model influences the kinds of decisions that a user can make.

4 Giving Explanations

In [4] Junker presents a simple and elegant method for delivering explanations
for conflicts. Assume we have a sequence of decisions S = di,ds,...,d,, where
dy,, is our last decision before we detect a conflict. Therefore we know that d,
must be one of the culprits. But what other decisions might be involved? Junker
proposes that we retract all our decisions and then enforce d,. If this results
in a contradiction we have an explanation, i.e. d,, on its own. If this is not the
case we then attempt to make the sequence of decisions S \ {d,}, up to conflict.
Assume that on making decisions d;...d; we again have a conflict. We can then
be sure that decisions d,, and d; together are a subset of the culprit decisions.
We then repeat this process, making decisions d,, and d;, and then the sequence
of decisions S \ {dn,d;}, again up to conflict, always adding the last decision
that fails to the set of culprits. This set of culprits is then a sound and minimal
explanation®.

Junker’s technique can be easily extended to cover the situation where we
want to determine why propagation sets a specific variable to a specific value
i.e. why student X must take a given module or cannot take a given module. We
modify the above procedure such that rather than stopping when a contradiction
is detected, we stop when a specified variable is set to a specified value. In fact,
we can generalise even further, producing an explanation for the removal of a
value, a set of values, the setting of a variable, etc.

We use this procedure to deliver explanations. We record all decisions made
by the user in a history list H. When a user asks for an explanation, we return
to our initial problem via the Choco function call world=(0). This returns us
to the first world, where no decisions have been made. We then use the above
procedure on the list H building up the list of culprits.

2 And this might not be unreasonable considering that this would only be used by 4th
year Computer Scientists.
3 However, there may be many other explanations.



5 Dynamic Constraint Satisfaction

The dynamic constraint satisfaction problem (dcsp) is sometimes misunderstood
i.e. there are a number of ways we might think of a csp as being dynamic. The
first, and most obvious, is a csp where variables and constraints may be added
and retracted from the problem after a solution has been found [1,2,6]. Such a
task might be thought of as maintaining a problem. Another notion of dynamicity
is proposed in [5] and more recently in [7]. Here we have a problem that involves
initially two sets of variables. The set V, is the set of active variables, and these
variables are to be assigned values. The set V; is the set of inactive variables, and
they do not initially take part in problem solving. There are constraints between
variables, and some of these constraints can activate variables in V; such that
they now participate in problem solving.

Mittal and Falkenhainer [5] propose a technique where there are functions to
activate or deactivate constraints, and these are expressed within the constraint
themselves. They also suggest an alternative approach, using don’t care values
in the domains of variables; when a variable is inactive it can take such a value.

Consider the following simple example of Figure 2, taken from Mittal and
Falkenhainer.

variables
vl in {a,b}
v2 in {c,d}
v3 in {e,f}
v4 in {g,h}

active variables
Va = {vi,v2}

constraints
vi = a -> v2
vi=Db > v2 c
v2=c & v3=e->v4d=hHh
vl = b -> active(v3)
v3 = e —> active(v4)

solutions
{a,d,-,-
{b,c,f,-}
{b,c,e,h}

Fig. 2. A dynamic csp



We see that if variable v1 takes the value b then v3 becomes active and must
be assigned a value e or f. The 3 solutions are listed with a - meaning the variable
is inactive, and therefore should not be instantiated.

The Figure 2 problem is presented as Choco code in Figure 3. Rather than
use letters as domain values we use numbers, such that 1 substitutes for a, and 8
substitutes for h. Any variable that is not initially in the set V, has an additional
value DC in its domain (i.e. the don’t care value). In our example, DC might
have a value of -99. Rather than have a function to activate a variable we just
remove the DC value from the domain. For example the constraint

vl = b -> active(v3)
becomes

vl =Db -> v3 <> DC

i.e. to activate a variable we post a conditional unary constraint.

However, this encoding alone does not prevent us enumerating unwanted
solutions. To do this we must exploit variable and value ordering heuristics.
When we select a variable for instantiation we prefer to select an active variable.
That is, we select a variable that does not contain DC in its domain. If all the
remaining (future) variables are inactive, i.e. each variable has DC in its domain,
then the variable ordering heuristic performs an additional, out of character,
function; it forces the instantiation of the variable to take the DC value.

[desp() : Problem

-> let pb := makeProblem("dcsp",4),
vl := makeIntVar(pb,"vi",{1,2}),
v2 := makeIntVar(pb,"v2",{3,4}),
v3 := makeIntVar(pb,"v3",{5,6,DC}),
v4 := makeIntVar(pb,"v4",{7,8,DC})

in (post(pb,implies(vl == 1,v2 == 4)),

post(pb,implies(vl == 2,v2 == 3)),
post (pb,implies(and(v2 == 3,v3 == 5),v4 == 8)),

post(pb,implies(vl == 2,v3 <> DC)), // <A>
post(pb,implies(v3 == 5,v4 <> DC)), // <B>
pb)]

Fig. 3. A dynamic csp using don’t care and ordering heuristics

Variables v3 and v4 are initially inactive, with domains {5,6, DC} and {7, 8, DC}

respectively. The constraints in lines (A) and {(B) correspond to the activation
of variables v3 and v4. When a variable is inactive it will have in its domain the
DC value, and when a variable becomes active the DC value is removed from
its domain. Only active variables are selected for instantiation, or offered to the



user at a decision point. When no active variables remain, inactive variables are
selected and assigned the DC value.

5.1 Dynamic Variables and Constraints

Our initial problem, the fourth year problem, is not dynamic. Variables corre-
spond to modules, and these are either taken or not taken. There is only one
set of variables, and these are all active. Consider the richer (but admittedly
artificial) problem of Figure 4, where we have two options, A or B. If we select A
then the sum of the variables al, a2, and a3 must be equal to 4, and the variables
bl, b2, and b3 should be inactive, i.e. the b* variables take the don’t care value
DC. Alternatively, if we select B the sum of the variables bl, b2, and b3 must
be 4, and variables al, a2, and a3 must remain inactive. Initially, only variables

[Pb() : Problem

-> let pb := makeProblem("Pb",8),

A := makeIntVar(pb,"A",1ist(0,1)),
B := makeIntVar(pb,"B",1ist(0,1)),
al := makeIntVar(pb,"al",1list(0,1,DC)),
a2 := makeIntVar(pb,"a2",1list(1,2,DC)),
a3 := makeIntVar(pb,"a3",list(1,2,DC)),
bl := makeIntVar(pb,"b1",1ist(0,1,DC)),
b2 := makeIntVar(pb,"b2",list(1,2,DC)),
b3 := makeIntVar(pb,"b3",list(1,2,DC)),
la := list(al,a2,a3),
1b := 1list(b1,b2,b3)

in (post(pb,1 - A == B), // <A>
post(pb,implies(A == 1,sumVars(la) == 4)),// <B>
post(pb,implies(A == 1,al !== DC)), // <C>
post(pb,implies(A == 1,a2 !== DC)), // <D>
post(pb,implies(A == 1,a3 !== DC)), // <E>
post(pb,implies(B == 1,sumVars(lb) == 4)),// <F>
post(pb,implies(B == 1,bl !== DC)), // <G>
post(pb,implies(B == 1,b2 !== DC)), // <H>
post(pb,implies(B == 1,b3 !== DC)), // <I>
pb)]

Fig. 4. A problem with dynamic variables and constraints

A and B are active. Therefore, initially a user can only make decisions on A or
B. Assume we select variable A and set it to 1. Constraint (A) will force B to
0. Constraint (B) is now active, forcing the sum of variables al, a2, and a3 to
be equal to 4. Constraints (C), (D) and (E) now activate the a* variables. The
b* variables remain inactive. Qur variable and value ordering will now allow us
to make decisions on the a* variables, and will ultimately instantiate all the b*
variables to the don’t care value.



When we have a constraint that involves variables that can be inactive we
must condition them with the activating event. For example, in constraint (B)
above the constraint sumVars(la) == 4 is only applied when A is set to 1,
and constraints (C), (D) and (FE) then activate the a* variables. That is, the
constraint implies(A == 1,sumVars(la) == 4) is satisfied when A has a value of
0, and the a* variables can then take any values (although they will be forced to
take the DC value due to our ordering heuristics). When A has a value of 1 the
constraint can only be satisfied when sumVars(la) == 4, and constraints (C),
(D) and (E) will by then have activated the a* variables.

6 Future Work and Conclusion

Within this department, there have been an number of failed attempts at pro-
ducing a system that can be used to advise students on a course of study. These
failed attempts tend to be dominated by efforts to capture the student handbook
in a data base and allow access to it via a user interface. Essentially, such systems
fail because they do not capture the dynamic effects of decision making. In this
project our goal has been to produce a convincing demonstration of constraint
programming as a solution to this problem. Our goal was not to produce a fully
fledged system, but rather to produce a proof of concept. We believe that we
have done that.

Clearly, the above test case (4th year Computer Science) is very small. At-
tempting to extend this to cover a faculty, let alone an entire university, is a huge
task (for example, see van der Linden’s PhD thesis [9]). However, we should ex-
pect that some day it will become a necessity, especially so as universities become
more involved in distance learning.*

We are pleasantly surprised at the simplicity and effectiveness of Junker’s
explanation technique; this fits well with the above problem. As for dynamic
constraint satisfaction, we believe that the proposed scheme of using don’t care
values, conditioned constraints, and variable and value ordering, allows a simple
and effective solution to this problem. However, we make no claims as to the
efficiency of such a scheme. As problems become large it may be unacceptable
to maintain large sets of inactive variables and constraints. However, for small
to medium sized problems, the emphasis is most probably ease of development
and maintenance. We believe our scheme meets that bill.
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