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Abstract. In the last twenty years, many algorithms and heuristics were devel- 
oped to find solutions in constraint networks. Their number increased to such an 
extent that it quickly became necessary to compare their performances in order to 
propose a small number of "good" methods. These comparisons often led us to 
consider FC or FC-CBJ associated with a "minimum domain" variable ordering 
heuristic as the best techniques to solve a wide variety of constraint networks. 
In this paper, we first try to convince once and for all the CSP community that 
MAC is not only more efficient than FC to solve large practical problems, but it is 
also really more efficient than FC on hard and large random problems. Afterwards, 
we introduce an original and efficient way to combine variable ordering heuristics. 
Finally, we conjecture that when a good variable ordering heuristic is used, CBJ 
becomes an expensive gadget which almost always slows down the search, even 
if it saves a few constraint checks. 

1 Introduction 

Constraint satisfaction problems (CSPs) occur widely in artificial intelligence. They in- 
volve finding values for problem variables subject to constraints on which combinat ions 
are acceptable. For  simplicity we restrict our attention here to binary CSPs, where the 
constraints involve two variables. 

Binary constraints are binary relations. I f  a variable i has a domain of  potential  values 
Di  and a variable j has a domain of  potential values D j ,  the constraint on i and j,  Rij, 
is a subset of  the Cartesian product  o f  Di  and D j .  I f  the pair  o f  values a for i and b for 
j is acceptable to the constraint Rij between i and j ,  we will call the values consistent 
(with respect  to Ria'). Asking whether a pair  of  values is consistent is called a constraint 
check. 

The entity involving the variables, the domains, and the constraints, is called con- 
straint network. Any constraint network can be associated to a constraint graph in which 
the nodes are the variables o f  the network, and an edge links a pair  of  nodes i f  and only 
i f  there is a constraint on the corresponding variables. F(i) represents the set of  nodes 
sharing an edge with the node i. 

In the last twenty years, many algorithms and heuristics were developed to find so- 
lutions in constraint networks [16], [21], [22]. Their number had increased to such an 
extent  that it quickly became necessary to compare their performances in order to desig- 
nate some o f  them as being the best methods. In the recent years, many authors worked 
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in this way [23], [5], [10], [1]. The general inference drawn from these works is that 
forward checking [16] (denoted by FC) or FC-CBJ (CBJ: conflict directed backjump- 
ing [22]) associated with a "minimum domain" variable ordering heuristic is the most 
efficient strategy to solve CSPs. (It has been so repeated that hard problems are often 
considered as those that FC-CBJ cannot solve [24]). This can be considered as a surpris- 
ing conclusion when we know that the constraint programming community uses full arc 
consistency at each step of the search algorithms [32] and claims that it is the only practi- 
cable way to solve large real world problems in reasonable time [26]. The contradiction 
comes from the fact that in the CSP community, the sample problems used for the com- 
parisons were often very particular (especially small or easy [16], [21], [23]), and the 
way the algorithms were compared was sometimes incomplete (no procedure maintain- 
ing full arc consistency involved in the comparisons [5], [10]) or unsatisfactory [1]. But, 
this apparent contradiction did not give rise to other questions or comments than Sabin 
and Freuder's paper [28], in which it was pointed out that a procedure Maintaining Arc 
Consistency during the search (MAC) could outperform FC on random problems around 

the cross-over point. 
In this paper, we try to convince the reader that MAC is not only more efficient than 

FC to solve large practical problems, but it is also really more efficient than FC on hard 
and large random problems. Afterwards, we introduce an original 3 way to really com- 
bine different variable ordering heuristics (instead of just using a secondary heuristic to 
break ties in the main one) and show its efficiency. Finally, we conjecture that when a 
good variable ordering heuristic is used, CBJ becomes an expensive gadget which al- 
most always slows down the search, even if it saves a few constraint checks. 

The paper is organized as follows. Section 2 contains an overview of the main previ- 
ous works on algorithms and heuristics to solve CSPs. Section 3 describes the instance 
generator and the experimental method used in the rest of the paper. We show the good 
behavior of MAC in Sect. 4. The new way to combine variable ordering heuristics is pre- 
sented in Sect. 5. Section 6 shows that CBJ loses its power when high level look-ahead 
is performed during the search. Finally, Sect. 7 summarizes the work presented in this 

paper. 

2 P r e v i o u s  W o r k  

It has been noted by several authors (e.g. [15]) that there are four choices to be made 
when searching solutions in constraint networks: what level of filtering to do, which 
variable to instantiate next, what value to use as the instantiation, what kind of look- 

back scheme to adopt. 
In fact, a wide part of the CSP community has been working for twenty years to 

answer these questions. 
To the question of the level of filtering to perform before instantiating a variable, 

many papers concluded that forward-checking (FC) is the good compromise between 
the pruning effect and the amount of overhead involved ([16], [20], [19], [1]). 

3 This approach is original in the sense that it has never been published before. The only presen- 
tation we know of such an approach is given in [2]. 
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It has been shown for a long time that in constraint networks, the order in which 
the variables are instantiated strongly affects the size of the search space explored by 
backtracking algorithms. In 1980, Haralick and Elliot already presented the "fail first 
principle" as a fundamental idea [16]. Following this, a variety of static variable order- 
ing heuristics (SVO) were proposed to order the variables such that the most constrained 
variables are chosen first (thus respecting the Haralick and Elliot's principle). They cal- 
culate once and for all an order, valid during all the tree search, according to which vari- 
ables will be instantiated. They are usually based on the structure of the constraint graph. 
The minimum width ordering (rainw) is an order which minimizes the width of the con- 
straint graph [9]. The maximum degree heuristic (deg)  orders the variables by decreas- 
ing number of neighbors in the constraint graph [5]. The maximum cardinality ordering 
( c a r d )  selects the first variable arbitrarily, then, at each stage, selects the variable that is 
connected to the largest set of already selected variables [5]. The heuristic proposed by 
Haralick and Elliot to illustrate their principle was a dynamic variable ordering heuristic 
(DV04). They proposed the minimum domain (dora) heuristic, which selects as the next 
variable to be instantiated a variable that has a minimal number of remaining values in its 
domain. It is a dynamic heuristic in the sense that the order in which variables are instan- 
tiated can vary from branch to branch in the search tree. Papers discussing variable or- 
dering heuristics quickly found that DVO is generally better than SVO. More precisely, 
dom has been considered as the best variable ordering heuristic ([27], [ 15], [5]). 

The question of the choice of the value to use as an instantiation of the selected vari- 
able did not catch as much researchers' attention as variable ordering. It has been ex- 
plored in [15] or [6], but without producing a simple generic method proven efficient 
and usable in any constraint network. Even the promise selection criterion of Geelen 
[14] did not attract FC users. 

The question of the kind of look-back scheme to adopt had remained an open ques- 
tion for a long time. Different approaches had been proposed, but none had been elected 
as the best one (e.g. learning [4], backjumping [13], backmarking [12], etc.). This state 
of things seems to have finished with the paper of Prosser [22], which presented conflict- 
directed backjumping (CBJ). Indeed, Prosser showed in [23] that the hybrid algorithm 
FC-CBJ is the most efficient algorithm (among many hybrid algorithms) to find solu- 
tions in various instances of the zebra problem. 

That's why, for a few years, FC-CBJ associated with the dora DVO (denoted by FC- 
CBJ-dom) has been considered as the most efficient technique to solve CSPs (naturally 
following the FC domination of the eighties). Moreover, the numerous papers studying 
"really hard problems" ([241, [301, [71) often take the implicit definition: "an hard prob- 
lem is a problem hard to solve with FC-CBJ-dora". 

Recent Work. Recently, some authors, not satisfied at all by the conclusion of the story 
of search algorithms in CSPs, tried to improve this winner. This leads to the paper of 
Frost and Dechter [ 11], which reveals two important ways to overcome the classical FC- 
CBJ-dom algorithm. 

a The origin of the name DVO is in [10] to denote what we will call here dom. We use DVO in 
its general meaning, as it is proposed in [1]. 
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First, the dora DVO is not as perfect as it seems. When several domains have the 
same minimal size, the next variable to be instantiated is arbitrarily selected. When the 
constraint graph is sparse, many useful information on its structure is lost by dora, which 
does not deal with the constraint graph. In [ l t ] ,  a solulion to these shortcomings is pro- 
posed by using the dora+deg DVO: it consists of the dora DVO in which ties are broken ~ 
by choosing the variable with the highest degree in the constraint graph. Frost and Dech- 
ter underlined that "this scheme gives substantially better performance than picking one 
of the tying variables at random". 

Second, in FC-CBJ-dora, once a variable is selected for instantiation, values are pi- 
cked from the domain in an arbitrary fixed order (usually values are arbitrarily assigned a 
sequence number and are selected according to this sequence). In [ 11 ], Frost and Dechter 
presented various domain value ordering heuristics (LVO for look-ahead value ordering) 
and experimentally showed that the rain-conflicts 6 (rat) LVO is the one which improves 
the most the efficiency of FC-CBJ-dora+deg (denoted by FC-CBJ-dora§ 

Another, quite different way to improve search by reordering values (or variables 
and values) after a dead-end has been presented in [17]. Its features making it especially 
suitable to solve real world problems, we do not discuss it here. 

3 A Few Words About the Experiments 

Before starting the experimental comparisons between different algorithms, we say a 
few words about the experimental method we chose. 

When we want to work on random problems, the first step is to choose an instance 
generator. The characteristics of  the generated problems will depend on the generator 
used to create them. The CSP literature has presented several generators, always involv- 
ing four parameters: N the number of variables, D the common size of all the initial do- 
mains, and two other parameters concerning the density of the constraint graph and the 
tightness of  the chosen constraints. Early generators often used a probability Pl that a 
constraint exists between two variables, and a probability P2 that a value pair is forbid- 
den in a given constraint. The number of different networks that could be generated with 
the same four parameters (N~ D, Pl~ pz) was really huge. Networks with quite different 
features (e.g. a network with a complete constraint graph and one with only one con- 
straint) could be generated with the same set of parameters. One of the consequences of  
this fact was that a very large number of instances must be solved to predict the behavior 

of an algorithm with a good statistical validity. 
Hence, a new generation of instance generators appeared (beginning with [18]), 

which replaced the probability pl  to have a constraint between t~,r variables by a fixed 
number C of constraints [24]. In the same way, P2 can be replaced by a number T of for- 
bidden value pairs [ 11]. In [30], pl and p2 are still used, but they represent"proportions" 

5 The idea of breaking ties in SVOs and DVOs had been previously proposed in [33]. 
6 rain-conflicts considers each value in the domain of the selected variable and associates with it 

the number of vatues in doraair~s of future variables with which it is not compatible. The values 
are then affected to the selected variable in increasing order of this count. This is in fact the first 

LVO presented in [14, page 32]. 
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and not probabilities (i.e. if N=20 and Pl =0.1, the number of generated constraints is ex- 
actly 0.1 * ( 2 0 , 1 9 ) / 2  = 19). This new method generates more homogeneous networks 
and then, it is not necessary to solve a huge number of networks for each set of param- 
eters. Nevertheless, a particular care must be taken in order to generate networks with a 
uniform distribution. Specifically, the distribution must be as follows: out of all possi- 
ble sets of C variable pairs choose any particular set with uniform probability, and for 
each constrained pair out of all possible sets of T value pairs choose any particular set 
with uniform probability 7. We need an algorithm that generates uniform random permu- 
tations o f p  elements selected among k elements without repetition. Essentially, this is 
just choosing which of the k elements will be the first, which of the remaining k - 1 
elements will be the second, and so forth. 

When we want to perform experiments on randomly generated networks, and when 
the instance generator has already been chosen, a second step is to select the sets of  pa- 
rameters that will be used to illustrate the behavior of  the algorithms tested. Each set 
of  parameters <N, D, C, T) determines the type of the networks generated: N variables 
each having a domain of size D, C constraints out of  the N * (_N - 1)/2 possible, and T 
forbidden value pairs in each constraint among the D �9 D possible. In this paper, we did 
not want to make a complete study of which sets of parameters to use to illustrate our 
claims. Thus, we decided to use sets of parameters already presented in the literature, and 
quite well-known. We chose the problems presented in [11] (some of them were already 
used in [10]) and some of the most famous experiments used by Smith and Grant ([30], 
[31], [29]). In certain experiments, we propose some variations in the parameters (for 
example, increasing domain size to show the behavior of the algorithms on networks 
with larger domains). But, when we vary the density (C) or the domain size (D), we 
want to keep the networks generated as close as possible to the cross-overpoint (set of  
parameters for which approximately 50% of the problems are satisfiable and 50% are 
not). So, T is moved in order to stay at the value "Teo" which produces 50% satisfiable 
problems and 50% unsatisfiable. When for given values of N, D and C no value of T 
(which is an integer) produces exactly 50% satisfiable problems we always take as Teo 
the smallest value for which the number of unsatisfiable problems is greater than 50%. 
These variations of  the distance between Too and the effective cross-over point explain 
the serrated look of some of the curves reported below. The size of the problems tested 
in such cases is often rather small, because each point of  the curves given (see Fig. 2, 3, 
5) requires to solve a large number of networks just to find the right value Tco. 

In the following sections we report different kinds of measures of performances for 
the algorithms tested. First, we often present what we call "number of constraint checks". 
The classmal number of  constraint checks measure is well-adapted for algorithms like 
FC, but presents some problems when used with MAC, which maintains lists where 
some of the past constraint checks are recorded. Hence, for MAC, what we name "num- 
ber of constraint checks" is in fact the number of classical constraint checks plus the 
number of list checks it performs during the search. The second measure we use is cpu 

7 Prosser's generator [24] does not choose all the possible sets of C constraints with a uniform 
probability. Frost and Dechter's generator, while being better than Prosser's one, is not com- 
pletely uniform [8]. Although it is not extensively described, Smith's generator seems to be 
uniform [29] (while Smith and Grant's one is not [30]). 
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time, and the third one is the number of  backtracks performed, i.e. the number of times 
the algorithm goes backwards in the search tree. 

In all the tables below, we generated and solved 100 instances for each tested Frost 
and Dechter's set of  parameters. In all the figures (curves), we limited this number to 50 
instances for each tested value of the varying parameter. 

We always report mean performances on the number of instances solved for a set of 
parameters. Indeed, we think that reporting the median cost is questionable when the set 
of  parameters is near the cross-over point: unsatisfiable instances are generally harder 
to solve than satisfiable ones, so the median will appear in a region where few problems 
fall into, involving a low representativity of this measure. In the extreme case, we can 
imagine a set of parameters for which 50 problems are found satisfiable in 1 second and 
50 are found unsatisfiable in 10 seconds: what is the median cost of this experiment? 

LVOs being outside the scope of the present paper, we just checked that me was a 
significant improvement in our experiments compared to the versions of the algorithms 
written without LVO. Hence, in the results presented in the next sections, me has always 
been used, even if on some instances the promise LVO of Geelen can have a slight more 
interesting behavior than mc. However, after a very rough comparison, we could not 
select a winner. 

Finally, we want to point out that the programs used to perform the experiments of  
this paper are available via the ftp site ftp. lirmm, fr. 

4 M A C  is B e t t e r  t h a n  F C - C B J  

We said in Sect. 2 that FC-CBJ is considered as the best algorithm to find solutions 
in constraint networks. In fact, in the papers that have compared algorithms with dif- 
ferent levels of filtering during search and that have concluded that FC performs the 
right amount of filtering it is often specified that this claim is stated with respect to the 
tested problems [ 16], [20], [23]. The tested problems were often the n-queens, very small 
random problems not necessarily chosen in the phase transition, or the zebra problem. 
Therefore, we can conclude that on very easy or very small problems FC is probably the 
algorithm which performs the fight amount of filtering (pure look-back algorithms are 

probably definitively overcome [23], [1]). 
But, Dechter and Meiri already said that "it is conceivable that on larger, more dif- 

ficult instances, intensive preprocessing algorithms may actually pay off" [5]. A first 
confirmation appeared in the paper of Sabin and Freuder [28], in which they showed that 
MAC can outperform FC on hard instances of CSPs. The good performances of MAC 
on large radio link frequency assignment problems (where FC was thrashing) provide 

another confirmation [3]. 
Recently, Smith agreed that "exceptionally hard problems ought more properly to 

be called problems which the particular search algorithm we are using finds exception- 
ally hard". This led her and Grant to study the behavior of MAC on problems found 
exceptionally hard with FC-dora [31]. Their conclusion is that "in most cases, the MAC 
algorithm can show that the problem is arc inconsistent, and so detects that it is insoluble 

without searching it". 
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Finally, [1] is the only paper which clearly gives the advantage to FC-CBJ against 
algorithms performing arc consistency at each node of the search tree after an experi- 
mentation on non-easy problems. But, after discussion with Bacchus, it appears that in 
his paper, the algorithm that performs arc consistency at each stage of the search uses a 
kind of AC-0 algorithm, i.e. an AC- 1 algorithm which does not take care of the structure 
of the constraint graph, checking all the variable pairs, as if the network was always a 
complete graph. So, we cannot take these results into account. 

We showed in Sect. 2 that the behavior of  FC-CBJ can be improved by using a DVO 
proposed by Frost and Dechter, dom+deg,  and by using a good LVO as InC. In this sec- 
tion, we will show that, even associated to the dom + deg  DVO and the mc LVO, FC-CBJ 
can no longer be considered as the best algorithm to solve CSPs. We will experimentally 
show that FC has a too weak pruning effect to be the most efficient on relatively hard 
problems. A search procedure as MAC, with a more intensive filtering mechanism, is 
more efficient to find solutions on hard and large problems, in which the overhead due 
to arc consistency is outweighed by its gain. 

The experiments of this section are limited to the comparison of FC-CBJ-dom+ d e g -  
mc and MAC-dom+deg-mc .  FC-CBJ-dom+deg-mc is the algorithm stated to be the 
best in Sect. 2. MAC -dom + deg -m c  is here a classical MAC procedure [28] in which 
the arc consistency algorithm used is AC-7 [31. The DVO and the LVO used are the same 
in the two algorithms. 

Table 1. FC-CBJ-dora+deg-mc and MAC-dom+deg-mc performances on problems generated 
with Frost and Dechter's sets of parameters [11 ]. "arc-inc" in the backtrack ratio column means 
that all the problems generated for a given set of parameters were arc-inconsistent, implying an 
infinite ratio (MAC detects arc-inconsistency without any backtrack). 

Parameters #constraint checks cpu seconds #backtracks 

N, D, O, T / D  * D FC-CBJ MAC ratio FC-CBJ MAC ratio ratio 
#1 35,6,501,4/36 506,265 330,717 1.53 6.83 2 .66  2.56 7.45 
#2 35.9,178,27/81 248,4J4 156,131 1.59 3.26 1.00 3.25 14.29 
#3 50,6,325,8/36 412,505 152,197 221 5.8I 1 .29 4.50 17.35 
#4 50,20,95,300/400 565,330 273,537 2.07 7.11 1.62 4.39 37.02 
#5 100,12,120,110/144 243,766 15,709 15.52 3.79 0.14 25.99 870.28 
#6 125,3,929,1/9 271,557 44,862 6.05 4.51 1.52 2.96 12.08 
#7 250,3,391,3/9 19,636 2,686 7.31 0.55 0.05 11.26 arc-inc 
#8 350,3,524,3/9 820,368 3,558 230.53 31.04 0.07 47631 arc-inc 
#9 350,3,2292,1/9 426,713 51,176 8.34 9.40 4.35 2.16 9.68 

A first set of  experiments (in which parameters are taken from [11D is given in Table 
1. The columns "ratio" represent how much MAC-dom+deg- inc  was better than FC- 
CBJ-dom+deg-mc  with respect to the associated measure (mean number of constraint 
checks, mean cpu time, mean number of backtracks). On this first set of experiments we 
can stress that the ratio of the number of constraint checks is less advantageous for MAC 
than the cpu time ratio. An explanation is that, for any search algorithm that performs 
some look-ahead filtering, each backtrack point involves restoring the previous state, 
and running again the variable-value selection. In spite of being free of  any constraint 
check, this process is time consuming. MAC-dom+cteg-mc being better and better than 
FC-CBJ-dom+deg-mc in number of backtracks (see the last column of Table 1) saves 
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a lot of time in addition to the time saved by constraint checks savings. Anyway, MAC- 
dom+deg-mc  significantly overcomes FC-CBJ-dom+deg-mc on these problems. 

We performed a second set of experiments on the now classical (50, 10, 0.1, P2) set 
of parameters of Smith and Grant [30], [31]. In our formalism, it consists of the set of 
parameters (50, 10, 123, T). Figure 1 gives the results, which corroborate those obtained 
in Table 1. MAC is slightly worse than FC-CBJ on easy problems (under- and over-  
constrained) while being much better around the cross-over point. 

o 

4000 

3500 

3000 

2500 

2000 

1500 

i000 

500 

0 
45 50 

MAC-dom+deg-mc -- 

/ ,,,, FC-CBJ-dom+deg-mc ...... 

, i 
/ 

i \ 
' \ ! 
/ 

r i l 

55 60 65 
tightness 

7 0  

Fig. 1. FC-CBJ-dom+deg-mc and MAC-dom+deg-mc time performances on the 
(50, 10,123, T) experiment of Smith and Grant [30]. 

Frost-Dechter and Smith-Grant's parameters being limited to small domain sizes, 
we took the (50, 20, 95,300) set of parameters in Frost and Dechter's sample, and chan- 
ged domain sizes while keeping N and C fixed at 50 and 95 respectively, T varying to 
stay at Too (see Fig. 2-(left)). We note that the more D grows, the more MAC-dom+deg-  
mc outperforms FC-CBJ-dom+deg-mc, going from 3 times faster when D is smaller 

than 10 to 26 times faster when D reaches 40. 
Finally, we wanted to see the behavior of MAC when the density of the constraint 

graph increases. Figure 2-(right) presents the FC-CBJ-dom+deg-mc to MAC-c-tom+ 
deg-mc cpu time ratio when the number C of constraints increases in the (30,10, C, Too) 
set of parameters. MAC efficiency increases till the constraint graph contains approxi- 
mately a third of the possible number of constraints. Afterwards, FC-CBJ becomes less 
and less worse as the number of constraints grows till the complete graph 8. This phe- 
nomenon was pointed out by Sabin and Freuder. 

8 These cpu times ratios, despite showing the advantage of MAC, do not go higher than 3. The 
reason is that 30 variables is not enough to generate hard problems on which MAC would show 

its real efficiency. 
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Fig. 2. FC-CBJ-dom+deg-mc to MAC-dom+deg-mc cpu time ratio on the (50, D, 95, Too) 
(left), D growing from 6 to 40; and on the (30, 10, 6', Too) (fight), where C grows from 29 to 435 
(complete graph). 

5 Combined DVOs: dom/deg 

In Sect. 2 we presented different kinds of  variable ordering heuristics and said that the 
dora D V O  had been considered for a long time as the best one. However, when the con- 
straint graph is sparse, many useful information is lost by this heuristic while it is caught 
by the SVOs based on the structure of  the constraint graph. 
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Fig. 3. Different variable ordering heuristics tested with MAC on the (20, 10, C, Too), where G 
grows from 40 to 190 (complete graph). Each graph represents the ratio of the mean number of 
backtracks of MAC with the given heuristic to the sum of the mean number of backtracks of the 
four algorithms tested (absolute results would have given unreadable graphs since the difficulty 
of the problems significantly grows when C grows). 

In Fig. 3, where random problems with increasing density are solved by different ver- 
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sions of  MAC (i.e. using different variable ordering heuristicsg), it is shown that dom 
can be a very poor heuristic at low densities, while d e g  is very efficient on the same 
problems. Inversely, when the constraint graph becomes dense, d e g  goes blind while 
dom becomes clever, dom+deg,  which breaks ties in dora by using the degree of the 
tying variables is shown in this Fig. 3 to improve dora on problems where it was bad. 
But, in dom+deg,  the size of the domains clearly have the main influence on the order- 
ing, the degree of variables being only used in cases where ties are found. To avoid this 
drawback, which prevents dom + deg  from being as good as d e g  in sparse constraint 
networks, we propose to really combine dora and d e g  to obtain a new DVO in which 
d e g  is as influent as dora. This new DVO, d o m / d e g ,  selects as the next variable to be 
instantiated a variable that has the smallest ratio: size of the remaining domain to degree 
of the variable (i.e. a variable v minimizing [Dr t / I t  (v) l). In Fig. 3 we have a first idea 
of its behavior: it has the behavior of dom + deg  in networks where dom was good, and 
the one of d e g  in networks where d e g  was better. These first results being promising, 
we give in Table 2 and Fig. 4 a more complete set of experiments in which we com- 
pare M A C - d o m + d e g - m c  and M A C - d o m / d e g - m c .  Once again, the characteristics of 
the problems tested are taken from [11] and [30]. Results obtained in Table 2 show that 
with small domain sizes (D < 10) the two DVOs have similar behaviors, with a little 
advantage for d o m / d e g .  The difference is slightly perceptible on the (35, 9,178, 27) 
and the (100, 12,120,110) experiments. It is significant on the (50, 20, 95,300}. This is 
explained by the fact that when D is very small, d o r a / d e g  and dom+deg  are quite sim- 
ilar criteria, the variations of IDv [ - for  a given variable v -  dominating those of [/ '(v)[ 

in dom/deg. 

Table 2. MAC-doln+deg-mc versus MAC-dom/deg-mc.  Only ratios are given (real values 
can be obtained from these ratios and Table 1). Values greater than 1 mean dom/deg is better, 

values smaller than 1 mean dora+deg is better. 

Parameters ratios 

N, D, C, T /  D * D #constraint checks time #backtracks 

#1 35,6,501,4/36 1.00 1.01 1.35 
#2 35,9,178,27/81 1.24 1.23 1.63 
#3 50,6,325,8/36 1.11 1.12 1.53 
#4 50,20,95,3001400 3.45 3.05 7.01 
#5 100,12,120,110/144 1.11 1.10 3.20 
#6 125,3,929,1/9 1.02 0.98 1.42 
#7 250,3,391,3/9 1.00 1.00 arc-inc 
#8 350,3,524,3/9 1.00 1.00 arcane 
#9 350,3,2292,1/9 1.00 0.97 1.56 

To be convinced that dom/deg is more advantageous when domains are larger, we 
tested the two heuristics on instances of problems with increasing domain size. In Fig. 
5-(left), the domain sizes vary while N and 6' are fixed to 50 and 95 respectively. T 
changes so that problems are always on the cross-over point. The more the size of  the do- 
mains increases, the more M A C - d o m / d e g - m c  overcomes MAC-dom+deg-mc ,  go- 
ing from once to 7 times faster when D grows from 6 to 40. Furthermore, Prosser (per- 

9 The LVO used is rac in all these versions. Without LVO, we remarked that the differences in- 

crease between good and bad algorithms. 
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Fig. 4. MAC-dom+deg-mc and MAC-dom/deg-mc on the (50, 10, 123, T). 

sonal communication) has pointed out that when initial domain sizes are not all equal, 
dora (or dom+deg)  can be fooled by these initial differences. We suppose that in these 
cases d o r a / d e g  would be even more interesting. 
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Fig. 5. MAC-dom+deg-mc versus MAC-dom/deg-mc on the (50, D, 95, Tee) (left), and 
MAC-CBJ-dom/deg-mc versus MAC-dom/deg-mc on the (50, D, 95, Tco) (right). 

Thus, we can conclude that combining different DVOs is a promising approach. We 
have tested other combined DVOs not presented in this paper. The one that can be named 
d o r a / c a r d ,  in which the number of  previously assigned neighbors of  die variable re- 
places the total number of  neighbors in the ratio seems to be quite worse than d o r a / d e g  
(when c a r d  alone was considered as a better SVO than d e g  alone [5]). On the other 
hand, when the ratio involves the number of  not yet assigned neighbors o f  the variable, 
the performances are roughly similar to those obtained with dora /de9 ,  sometimes bet- 
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ter, sometimes worse, d o m / d e g  has been also implemented in FC-CBJ. We saw an im- 
provement with respect to dom+deg,  but smaller than the one observed on MAC. 

6 CBJ Becomes Useless 

We have shown that using MAC instead of FC as the filtering scheme was worthwhile on 
hard and large problems. I f  we follow the evolution of FC in FC-CBJ we should now use 
MAC-CBJ [25]. But, let us recall a sentence found in [16]: "Look ahead to the future in 
order not to worry about the past". In fact, some authors remarked that if we use a good 
variable ordering heuristic "CBJ is unlikely to generate large backjumps, and its savings 
are likely to be minimal" because "variables that have conflicts with past assignments 
are likely to be instantiated sooner" [1]. In [30], Smith and Grant said that "for most 
problems, the ordering given by dom ensures that chronological backtracking usually 
results in backtracking to the real culprit for a failure, so that informed backtracking does 
not add very much". 

These statements, done in the case of FC-dom were probably too optimistic since 
a non negligible number of problems are easily solved by FC-CBJ-dom when FC-dom 
is thrashing [31]. But, as it is suggested by Haralick and Elliot's sentence, the more we 
will perform look-ahead, the less we will have to worry about looking back. CBJ was 
a strong improvement on BT (simple backtracking), FC-CBJ can be an improvement 
on FC on hard problems, MAC-CBJ cannot simply be claimed to be an improvement 
on MAC. In [31], while a lot of problems were found on which FC-CBJ-dom outper- 
formed FC-dom by at least one order of magnitude, only one instance was found on 
which MAC-CBJ-dom significantly outperformed MAC-dora. If  we consider now the 
DVO d o m / d e g  in place of dom, there are even more reasons to think that CBJ becomes 
useless (since d o m / d e g  has been shown smarter than dom). Furthermore, the more the 
amount of filtering involved in a search procedure is high, the more the overhead caused 
by CBJ is heavy [25]. CBJ was cheap to incorporate in BT, it was not prohibitive in FC, 
but it palpably slows down the search in MAC. Hence, a significant number of constraint 

checks must be saved to outweigh this overhead. 

Table 3. MAC-CBJ-dom/deg-mc versus MAC-dom/deg-mc. 

Parameters ratios 

N, D, C, T /  D * D #constraint checks time #backtracks 

#1 35,6,501,4/36 0.99 1.17 0.99 
#2 35,9,178,27/81 0.99 1.32 0.99 
#3 50,6,325,8/36 0.99 1.21 0.99 
#4 50,20,95,3001400 0.99 1.33 0.99 
#5 100,12,120,110/144 0.98 0.99 0.96 
#6 125,3,929,1/9 0.97 t.08 0.96 
#7 250,3,391,3/9 arcane are-inc arc-inc 
#8 350,3,524,3/9 arcane arcane arc-ine 
#9 350,3,2292,1/9 0.64 0.70 0.6!. 

Table 3 gives the comparison of M A C - C B J - d o m / d e g - m c  and M A C - d o m / d e g -  
mc on the Frost and Dechter's problems. On the problems #1 to #8 the result is easy to 
read: CBJ leads to a few constraint checks savings which are not sufficient to make good 
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the loss of time. But, on the set of parameters #9, there is a significant gain for MAC- 
CBJ-dom/de  g-inc. If we focus on the 100 instances which form this experiment we see 
that on 99 instances MAC-dom/deg -mc  and MAC-CBJ-dom/deg-mc have almost 
the same behavior, solving the problem in less than 1 second with a number of back- 
tracks smaller than 1000. But on one of the 100 instances M A C - d o m / d e g - m c  needs 
137 seconds and 41,639 backtracks to find a solution when MAC-CBJ-dom/deg-mc 
only needs 73 seconds and 20,069 backtracks. The mean performances are strongly in- 
fluenced by this single instance which seems to match with the definition of "excep- 
tionally hard problems" (ehps) [30]. Indeed, it occurs in the region where almost all 
problems are soluble (2547 constraints are necessary to be at the cross-over point in the 
(350, 3, C, 1) set of parameters [11]). But, as opposed to the ehps found in [31], where 
FC-CBJ or MAC-CBJ were orders of magnitude faster than FC or MAC, MAC-CBJ- 
d o m / d e g - m c  is only twice faster than MAC-dom/deg -mc  on our ehp. Further ex- 
periments should probably be done to see whether ehps could be found on which MAC- 
CBJ-dom/deg-mc  is really better than MAC-dom/deg-mc ,  though we did not find 
any in all the experiments we performed on smaller networks (50 variables). 

Finally, we want to recall that the more domain sizes increase, the more the length of 
the jumps performed by CBJ decreases while CBJ time overhead increases (see the CBJ 
mechanism in [22]). This is confirmed in Fig. 5-(right) where MAC-CBJ-dom/deg-mc 
and M A C - d o m / d e g - m c  are compared on the (50, D, 95, Too) experiment with increas- 
ing D. 

Therefore, except on sparse networks with small domain sizes where more studies 
should be done, we think we can conclude that including CBJ in M A C - d o m / d e g - m c  
has more chances to slow down the search of at least 20% cpu time than to speed it up. 

7 Conclusion 

After a recall of the story of search procedures in constraint networks, this paper has 
shown how MAC can outperform FC and FC-CBJ on relatively hard and large randomly 
generated instances of constraint networks. Once the superiority of MAC has been pro- 
ven, we have proposed a new kind of variable ordering heuristic, dora /dog ,  which re- 
ally combines information on domain sizes and constraint graph structure. We proved 
its efficiency when compared with dora+deg, the most efficient previous heuristic. The 
total gain involved by these two techniques (MAC and d o m / d e g )  is summarized in Ta- 
ble 4. The ratios of the mean performances of FC-CBJ-dom+deg-mc to the mean per- 
formances of MAC-dom/deg- rac  are presented. The tested problems are again Frost 
and Dechter's problems. The benefit is always significant. Furthermore, we must have 
in mind that with larger domains the gain is greater and greater. 

Therefore, we can conclude that on relatively hard and large instances of random 
problems, MAC and our new variable ordering heuristic are more efficient than FC-CBJ 
and classical dora or dom+deg DVOs. 

Finally, we have shown in the last section that performing CBJ is almost always use- 
less when combined with a procedure achieving as much look-ahead as MAC-dom/deg-  
mc. The time overhead is too heavy to be outweighed by the small number of constraint 
checks and backtracks saved. 
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Table  4. FC-CBJ-dom+deg-mc versus MAC=dora/deg-mc. 

Parameters ratios 

N,  D, C, T /  D �9 D #constraint cheeks time #backtracks 
#t 35,6,501,4/36 1.54 2.58 '10.03 
#2 35,9,178,27/81 1.97 3.98 23.33 
#3 50,6,325,8/36 3.00 5.03 26.55 
#4 50,20,95,300/400 7.13 13.38 259.64 
#5 100,12,120,110/144 17.29 28.69 2785.20 
#6 125,3,929,1/9 6.15 2.91 17.15 
#7 250,3,391,3/9 7.31 11.26 are-inc 
#8 350,3,524,3/9 230.53 476.31 arc-inc 
#9 350,3,2292,119 8.35 2.10 15.10 
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