
MAC and Combined Heuristics: Two Reasons to
Forsake FC (and CBJ?) on Hard Problems

Christian Bessi~re 1 and Jean-Charles R6gin 2

1 LIRMM (UMR 5506 CNRS), 161 rue Ada, 34392 Montpellier cedex 5, France
e-mail: bessiore@ lirmm.fr

2 ILOG S.A., 9 me de Verdun BP 85, 94253 Gentilly Cedex, France
e-mail: rogin@ilog.fr

Abstract. In the last twenty years, many algorithms and heuristics were devel-
oped to find solutions in constraint networks. Their number increased to such an
extent that it quickly became necessary to compare their performances in order to
propose a small number of "good" methods. These comparisons often led us to
consider FC or FC-CBJ associated with a "minimum domain" variable ordering
heuristic as the best techniques to solve a wide variety of constraint networks.
In this paper, we first try to convince once and for all the CSP community that
MAC is not only more efficient than FC to solve large practical problems, but it is
also really more efficient than FC on hard and large random problems. Afterwards,
we introduce an original and efficient way to combine variable ordering heuristics.
Finally, we conjecture that when a good variable ordering heuristic is used, CBJ
becomes an expensive gadget which almost always slows down the search, even
if it saves a few constraint checks.

1 Introduction

Constraint satisfaction problems (CSPs) occur widely in artificial intelligence. They in-
volve finding values for problem variables subject to constraints on which combinat ions
are acceptable. For simplicity we restrict our attention here to binary CSPs, where the
constraints involve two variables.

Binary constraints are binary relations. I f a variable i has a domain of potential values
Di and a variable j has a domain of potential values D j , the constraint on i and j, Rij,
is a subset of the Cartesian product o f Di and D j . I f the pair o f values a for i and b for
j is acceptable to the constraint Rij between i and j , we will call the values consistent
(with respect to Ria'). Asking whether a pair of values is consistent is called a constraint
check.

The entity involving the variables, the domains, and the constraints, is called con-
straint network. Any constraint network can be associated to a constraint graph in which
the nodes are the variables o f the network, and an edge links a pair of nodes i f and only
i f there is a constraint on the corresponding variables. F(i) represents the set of nodes
sharing an edge with the node i.

In the last twenty years, many algorithms and heuristics were developed to find so-
lutions in constraint networks [16], [21], [22]. Their number had increased to such an
extent that it quickly became necessary to compare their performances in order to desig-
nate some o f them as being the best methods. In the recent years, many authors worked

62

in this way [23], [5], [10], [1]. The general inference drawn from these works is that
forward checking [16] (denoted by FC) or FC-CBJ (CBJ: conflict directed backjump-
ing [22]) associated with a "minimum domain" variable ordering heuristic is the most
efficient strategy to solve CSPs. (It has been so repeated that hard problems are often
considered as those that FC-CBJ cannot solve [24]). This can be considered as a surpris-
ing conclusion when we know that the constraint programming community uses full arc
consistency at each step of the search algorithms [32] and claims that it is the only practi-
cable way to solve large real world problems in reasonable time [26]. The contradiction
comes from the fact that in the CSP community, the sample problems used for the com-
parisons were often very particular (especially small or easy [16], [21], [23]), and the
way the algorithms were compared was sometimes incomplete (no procedure maintain-
ing full arc consistency involved in the comparisons [5], [10]) or unsatisfactory [1]. But,
this apparent contradiction did not give rise to other questions or comments than Sabin
and Freuder's paper [28], in which it was pointed out that a procedure Maintaining Arc
Consistency during the search (MAC) could outperform FC on random problems around

the cross-over point.
In this paper, we try to convince the reader that MAC is not only more efficient than

FC to solve large practical problems, but it is also really more efficient than FC on hard
and large random problems. Afterwards, we introduce an original 3 way to really com-
bine different variable ordering heuristics (instead of just using a secondary heuristic to
break ties in the main one) and show its efficiency. Finally, we conjecture that when a
good variable ordering heuristic is used, CBJ becomes an expensive gadget which al-
most always slows down the search, even if it saves a few constraint checks.

The paper is organized as follows. Section 2 contains an overview of the main previ-
ous works on algorithms and heuristics to solve CSPs. Section 3 describes the instance
generator and the experimental method used in the rest of the paper. We show the good
behavior of MAC in Sect. 4. The new way to combine variable ordering heuristics is pre-
sented in Sect. 5. Section 6 shows that CBJ loses its power when high level look-ahead
is performed during the search. Finally, Sect. 7 summarizes the work presented in this

paper.

2 P r e v i o u s W o r k

It has been noted by several authors (e.g. [15]) that there are four choices to be made
when searching solutions in constraint networks: what level of filtering to do, which
variable to instantiate next, what value to use as the instantiation, what kind of look-

back scheme to adopt.
In fact, a wide part of the CSP community has been working for twenty years to

answer these questions.
To the question of the level of filtering to perform before instantiating a variable,

many papers concluded that forward-checking (FC) is the good compromise between
the pruning effect and the amount of overhead involved ([16], [20], [19], [1]).

3 This approach is original in the sense that it has never been published before. The only presen-
tation we know of such an approach is given in [2].

63

It has been shown for a long time that in constraint networks, the order in which
the variables are instantiated strongly affects the size of the search space explored by
backtracking algorithms. In 1980, Haralick and Elliot already presented the "fail first
principle" as a fundamental idea [16]. Following this, a variety of static variable order-
ing heuristics (SVO) were proposed to order the variables such that the most constrained
variables are chosen first (thus respecting the Haralick and Elliot's principle). They cal-
culate once and for all an order, valid during all the tree search, according to which vari-
ables will be instantiated. They are usually based on the structure of the constraint graph.
The minimum width ordering (rainw) is an order which minimizes the width of the con-
straint graph [9]. The maximum degree heuristic (deg) orders the variables by decreas-
ing number of neighbors in the constraint graph [5]. The maximum cardinality ordering
(c a r d) selects the first variable arbitrarily, then, at each stage, selects the variable that is
connected to the largest set of already selected variables [5]. The heuristic proposed by
Haralick and Elliot to illustrate their principle was a dynamic variable ordering heuristic
(DV04). They proposed the minimum domain (dora) heuristic, which selects as the next
variable to be instantiated a variable that has a minimal number of remaining values in its
domain. It is a dynamic heuristic in the sense that the order in which variables are instan-
tiated can vary from branch to branch in the search tree. Papers discussing variable or-
dering heuristics quickly found that DVO is generally better than SVO. More precisely,
dom has been considered as the best variable ordering heuristic ([27], [15], [5]).

The question of the choice of the value to use as an instantiation of the selected vari-
able did not catch as much researchers' attention as variable ordering. It has been ex-
plored in [15] or [6], but without producing a simple generic method proven efficient
and usable in any constraint network. Even the promise selection criterion of Geelen
[14] did not attract FC users.

The question of the kind of look-back scheme to adopt had remained an open ques-
tion for a long time. Different approaches had been proposed, but none had been elected
as the best one (e.g. learning [4], backjumping [13], backmarking [12], etc.). This state
of things seems to have finished with the paper of Prosser [22], which presented conflict-
directed backjumping (CBJ). Indeed, Prosser showed in [23] that the hybrid algorithm
FC-CBJ is the most efficient algorithm (among many hybrid algorithms) to find solu-
tions in various instances of the zebra problem.

That's why, for a few years, FC-CBJ associated with the dora DVO (denoted by FC-
CBJ-dom) has been considered as the most efficient technique to solve CSPs (naturally
following the FC domination of the eighties). Moreover, the numerous papers studying
"really hard problems" ([241, [301, [71) often take the implicit definition: "an hard prob-
lem is a problem hard to solve with FC-CBJ-dora".

Recent Work. Recently, some authors, not satisfied at all by the conclusion of the story
of search algorithms in CSPs, tried to improve this winner. This leads to the paper of
Frost and Dechter [11], which reveals two important ways to overcome the classical FC-
CBJ-dom algorithm.

a The origin of the name DVO is in [10] to denote what we will call here dom. We use DVO in
its general meaning, as it is proposed in [1].

64

First, the dora DVO is not as perfect as it seems. When several domains have the
same minimal size, the next variable to be instantiated is arbitrarily selected. When the
constraint graph is sparse, many useful information on its structure is lost by dora, which
does not deal with the constraint graph. In [l t] , a solulion to these shortcomings is pro-
posed by using the dora+deg DVO: it consists of the dora DVO in which ties are broken ~
by choosing the variable with the highest degree in the constraint graph. Frost and Dech-
ter underlined that "this scheme gives substantially better performance than picking one
of the tying variables at random".

Second, in FC-CBJ-dora, once a variable is selected for instantiation, values are pi-
cked from the domain in an arbitrary fixed order (usually values are arbitrarily assigned a
sequence number and are selected according to this sequence). In [11], Frost and Dechter
presented various domain value ordering heuristics (LVO for look-ahead value ordering)
and experimentally showed that the rain-conflicts 6 (rat) LVO is the one which improves
the most the efficiency of FC-CBJ-dora+deg (denoted by FC-CBJ-dora§

Another, quite different way to improve search by reordering values (or variables
and values) after a dead-end has been presented in [17]. Its features making it especially
suitable to solve real world problems, we do not discuss it here.

3 A Few Words About the Experiments

Before starting the experimental comparisons between different algorithms, we say a
few words about the experimental method we chose.

When we want to work on random problems, the first step is to choose an instance
generator. The characteristics of the generated problems will depend on the generator
used to create them. The CSP literature has presented several generators, always involv-
ing four parameters: N the number of variables, D the common size of all the initial do-
mains, and two other parameters concerning the density of the constraint graph and the
tightness of the chosen constraints. Early generators often used a probability Pl that a
constraint exists between two variables, and a probability P2 that a value pair is forbid-
den in a given constraint. The number of different networks that could be generated with
the same four parameters (N~ D, Pl~ pz) was really huge. Networks with quite different
features (e.g. a network with a complete constraint graph and one with only one con-
straint) could be generated with the same set of parameters. One of the consequences of
this fact was that a very large number of instances must be solved to predict the behavior

of an algorithm with a good statistical validity.
Hence, a new generation of instance generators appeared (beginning with [18]),

which replaced the probability pl to have a constraint between t~,r variables by a fixed
number C of constraints [24]. In the same way, P2 can be replaced by a number T of for-
bidden value pairs [11]. In [30], pl and p2 are still used, but they represent"proportions"

5 The idea of breaking ties in SVOs and DVOs had been previously proposed in [33].
6 rain-conflicts considers each value in the domain of the selected variable and associates with it

the number of vatues in doraair~s of future variables with which it is not compatible. The values
are then affected to the selected variable in increasing order of this count. This is in fact the first

LVO presented in [14, page 32].

65

and not probabilities (i.e. if N=20 and Pl =0.1, the number of generated constraints is ex-
actly 0.1 * (2 0 , 1 9) / 2 = 19). This new method generates more homogeneous networks
and then, it is not necessary to solve a huge number of networks for each set of param-
eters. Nevertheless, a particular care must be taken in order to generate networks with a
uniform distribution. Specifically, the distribution must be as follows: out of all possi-
ble sets of C variable pairs choose any particular set with uniform probability, and for
each constrained pair out of all possible sets of T value pairs choose any particular set
with uniform probability 7. We need an algorithm that generates uniform random permu-
tations o f p elements selected among k elements without repetition. Essentially, this is
just choosing which of the k elements will be the first, which of the remaining k - 1
elements will be the second, and so forth.

When we want to perform experiments on randomly generated networks, and when
the instance generator has already been chosen, a second step is to select the sets of pa-
rameters that will be used to illustrate the behavior of the algorithms tested. Each set
of parameters <N, D, C, T) determines the type of the networks generated: N variables
each having a domain of size D, C constraints out of the N * (_N - 1)/2 possible, and T
forbidden value pairs in each constraint among the D �9 D possible. In this paper, we did
not want to make a complete study of which sets of parameters to use to illustrate our
claims. Thus, we decided to use sets of parameters already presented in the literature, and
quite well-known. We chose the problems presented in [11] (some of them were already
used in [10]) and some of the most famous experiments used by Smith and Grant ([30],
[31], [29]). In certain experiments, we propose some variations in the parameters (for
example, increasing domain size to show the behavior of the algorithms on networks
with larger domains). But, when we vary the density (C) or the domain size (D), we
want to keep the networks generated as close as possible to the cross-overpoint (set of
parameters for which approximately 50% of the problems are satisfiable and 50% are
not). So, T is moved in order to stay at the value "Teo" which produces 50% satisfiable
problems and 50% unsatisfiable. When for given values of N, D and C no value of T
(which is an integer) produces exactly 50% satisfiable problems we always take as Teo
the smallest value for which the number of unsatisfiable problems is greater than 50%.
These variations of the distance between Too and the effective cross-over point explain
the serrated look of some of the curves reported below. The size of the problems tested
in such cases is often rather small, because each point of the curves given (see Fig. 2, 3,
5) requires to solve a large number of networks just to find the right value Tco.

In the following sections we report different kinds of measures of performances for
the algorithms tested. First, we often present what we call "number of constraint checks".
The classmal number of constraint checks measure is well-adapted for algorithms like
FC, but presents some problems when used with MAC, which maintains lists where
some of the past constraint checks are recorded. Hence, for MAC, what we name "num-
ber of constraint checks" is in fact the number of classical constraint checks plus the
number of list checks it performs during the search. The second measure we use is cpu

7 Prosser's generator [24] does not choose all the possible sets of C constraints with a uniform
probability. Frost and Dechter's generator, while being better than Prosser's one, is not com-
pletely uniform [8]. Although it is not extensively described, Smith's generator seems to be
uniform [29] (while Smith and Grant's one is not [30]).

66

time, and the third one is the number of backtracks performed, i.e. the number of times
the algorithm goes backwards in the search tree.

In all the tables below, we generated and solved 100 instances for each tested Frost
and Dechter's set of parameters. In all the figures (curves), we limited this number to 50
instances for each tested value of the varying parameter.

We always report mean performances on the number of instances solved for a set of
parameters. Indeed, we think that reporting the median cost is questionable when the set
of parameters is near the cross-over point: unsatisfiable instances are generally harder
to solve than satisfiable ones, so the median will appear in a region where few problems
fall into, involving a low representativity of this measure. In the extreme case, we can
imagine a set of parameters for which 50 problems are found satisfiable in 1 second and
50 are found unsatisfiable in 10 seconds: what is the median cost of this experiment?

LVOs being outside the scope of the present paper, we just checked that me was a
significant improvement in our experiments compared to the versions of the algorithms
written without LVO. Hence, in the results presented in the next sections, me has always
been used, even if on some instances the promise LVO of Geelen can have a slight more
interesting behavior than mc. However, after a very rough comparison, we could not
select a winner.

Finally, we want to point out that the programs used to perform the experiments of
this paper are available via the ftp site ftp. lirmm, fr.

4 M A C is B e t t e r t h a n F C - C B J

We said in Sect. 2 that FC-CBJ is considered as the best algorithm to find solutions
in constraint networks. In fact, in the papers that have compared algorithms with dif-
ferent levels of filtering during search and that have concluded that FC performs the
right amount of filtering it is often specified that this claim is stated with respect to the
tested problems [16], [20], [23]. The tested problems were often the n-queens, very small
random problems not necessarily chosen in the phase transition, or the zebra problem.
Therefore, we can conclude that on very easy or very small problems FC is probably the
algorithm which performs the fight amount of filtering (pure look-back algorithms are

probably definitively overcome [23], [1]).
But, Dechter and Meiri already said that "it is conceivable that on larger, more dif-

ficult instances, intensive preprocessing algorithms may actually pay off" [5]. A first
confirmation appeared in the paper of Sabin and Freuder [28], in which they showed that
MAC can outperform FC on hard instances of CSPs. The good performances of MAC
on large radio link frequency assignment problems (where FC was thrashing) provide

another confirmation [3].
Recently, Smith agreed that "exceptionally hard problems ought more properly to

be called problems which the particular search algorithm we are using finds exception-
ally hard". This led her and Grant to study the behavior of MAC on problems found
exceptionally hard with FC-dora [31]. Their conclusion is that "in most cases, the MAC
algorithm can show that the problem is arc inconsistent, and so detects that it is insoluble

without searching it".

67

Finally, [1] is the only paper which clearly gives the advantage to FC-CBJ against
algorithms performing arc consistency at each node of the search tree after an experi-
mentation on non-easy problems. But, after discussion with Bacchus, it appears that in
his paper, the algorithm that performs arc consistency at each stage of the search uses a
kind of AC-0 algorithm, i.e. an AC- 1 algorithm which does not take care of the structure
of the constraint graph, checking all the variable pairs, as if the network was always a
complete graph. So, we cannot take these results into account.

We showed in Sect. 2 that the behavior of FC-CBJ can be improved by using a DVO
proposed by Frost and Dechter, dom+deg, and by using a good LVO as InC. In this sec-
tion, we will show that, even associated to the dom + deg DVO and the mc LVO, FC-CBJ
can no longer be considered as the best algorithm to solve CSPs. We will experimentally
show that FC has a too weak pruning effect to be the most efficient on relatively hard
problems. A search procedure as MAC, with a more intensive filtering mechanism, is
more efficient to find solutions on hard and large problems, in which the overhead due
to arc consistency is outweighed by its gain.

The experiments of this section are limited to the comparison of FC-CBJ-dom+ d e g -
mc and MAC-dom+deg-mc . FC-CBJ-dom+deg-mc is the algorithm stated to be the
best in Sect. 2. MAC -dom + deg -m c is here a classical MAC procedure [28] in which
the arc consistency algorithm used is AC-7 [31. The DVO and the LVO used are the same
in the two algorithms.

Table 1. FC-CBJ-dora+deg-mc and MAC-dom+deg-mc performances on problems generated
with Frost and Dechter's sets of parameters [11]. "arc-inc" in the backtrack ratio column means
that all the problems generated for a given set of parameters were arc-inconsistent, implying an
infinite ratio (MAC detects arc-inconsistency without any backtrack).

Parameters #constraint checks cpu seconds #backtracks

N, D, O, T / D * D FC-CBJ MAC ratio FC-CBJ MAC ratio ratio
#1 35,6,501,4/36 506,265 330,717 1.53 6.83 2 .66 2.56 7.45
#2 35.9,178,27/81 248,4J4 156,131 1.59 3.26 1.00 3.25 14.29
#3 50,6,325,8/36 412,505 152,197 221 5.8I 1 .29 4.50 17.35
#4 50,20,95,300/400 565,330 273,537 2.07 7.11 1.62 4.39 37.02
#5 100,12,120,110/144 243,766 15,709 15.52 3.79 0.14 25.99 870.28
#6 125,3,929,1/9 271,557 44,862 6.05 4.51 1.52 2.96 12.08
#7 250,3,391,3/9 19,636 2,686 7.31 0.55 0.05 11.26 arc-inc
#8 350,3,524,3/9 820,368 3,558 230.53 31.04 0.07 47631 arc-inc
#9 350,3,2292,1/9 426,713 51,176 8.34 9.40 4.35 2.16 9.68

A first set of experiments (in which parameters are taken from [11D is given in Table
1. The columns "ratio" represent how much MAC-dom+deg- inc was better than FC-
CBJ-dom+deg-mc with respect to the associated measure (mean number of constraint
checks, mean cpu time, mean number of backtracks). On this first set of experiments we
can stress that the ratio of the number of constraint checks is less advantageous for MAC
than the cpu time ratio. An explanation is that, for any search algorithm that performs
some look-ahead filtering, each backtrack point involves restoring the previous state,
and running again the variable-value selection. In spite of being free of any constraint
check, this process is time consuming. MAC-dom+cteg-mc being better and better than
FC-CBJ-dom+deg-mc in number of backtracks (see the last column of Table 1) saves

68

a lot of time in addition to the time saved by constraint checks savings. Anyway, MAC-
dom+deg-mc significantly overcomes FC-CBJ-dom+deg-mc on these problems.

We performed a second set of experiments on the now classical (50, 10, 0.1, P2) set
of parameters of Smith and Grant [30], [31]. In our formalism, it consists of the set of
parameters (50, 10, 123, T). Figure 1 gives the results, which corroborate those obtained
in Table 1. MAC is slightly worse than FC-CBJ on easy problems (under- and over-
constrained) while being much better around the cross-over point.

o

4000

3500

3000

2500

2000

1500

i000

500

0
45 50

MAC-dom+deg-mc --

/ ,,,, FC-CBJ-dom+deg-mc

, i
/

i \
' \ !
/

r i l

55 60 65
tightness

7 0

Fig. 1. FC-CBJ-dom+deg-mc and MAC-dom+deg-mc time performances on the
(50, 10,123, T) experiment of Smith and Grant [30].

Frost-Dechter and Smith-Grant's parameters being limited to small domain sizes,
we took the (50, 20, 95,300) set of parameters in Frost and Dechter's sample, and chan-
ged domain sizes while keeping N and C fixed at 50 and 95 respectively, T varying to
stay at Too (see Fig. 2-(left)). We note that the more D grows, the more MAC-dom+deg-
mc outperforms FC-CBJ-dom+deg-mc, going from 3 times faster when D is smaller

than 10 to 26 times faster when D reaches 40.
Finally, we wanted to see the behavior of MAC when the density of the constraint

graph increases. Figure 2-(right) presents the FC-CBJ-dom+deg-mc to MAC-c-tom+
deg-mc cpu time ratio when the number C of constraints increases in the (30,10, C, Too)
set of parameters. MAC efficiency increases till the constraint graph contains approxi-
mately a third of the possible number of constraints. Afterwards, FC-CBJ becomes less
and less worse as the number of constraints grows till the complete graph 8. This phe-
nomenon was pointed out by Sabin and Freuder.

8 These cpu times ratios, despite showing the advantage of MAC, do not go higher than 3. The
reason is that 30 variables is not enough to generate hard problems on which MAC would show

its real efficiency.

69

30

25

20

15

10

5

0 r i i i , ,

10 15 20 25 30 35 40
domain size

3.2

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1,2

1 , , , , i i i i

50 i00 150 200 250 300 350 400 450
number of constraints (complete graph = 4351

Fig. 2. FC-CBJ-dom+deg-mc to MAC-dom+deg-mc cpu time ratio on the (50, D, 95, Too)
(left), D growing from 6 to 40; and on the (30, 10, 6', Too) (fight), where C grows from 29 to 435
(complete graph).

5 Combined DVOs: dom/deg

In Sect. 2 we presented different kinds of variable ordering heuristics and said that the
dora D V O had been considered for a long time as the best one. However, when the con-
straint graph is sparse, many useful information is lost by this heuristic while it is caught
by the SVOs based on the structure of the constraint graph.

0
-r4

0

ad=

0.5

0.4

0.3

0.2

/

dom deg ,"

- x - _

I I I I I I I

40 60 80 i00 120 140 160 180

number of constraints

Fig. 3. Different variable ordering heuristics tested with MAC on the (20, 10, C, Too), where G
grows from 40 to 190 (complete graph). Each graph represents the ratio of the mean number of
backtracks of MAC with the given heuristic to the sum of the mean number of backtracks of the
four algorithms tested (absolute results would have given unreadable graphs since the difficulty
of the problems significantly grows when C grows).

In Fig. 3, where random problems with increasing density are solved by different ver-

70

sions of MAC (i.e. using different variable ordering heuristicsg), it is shown that dom
can be a very poor heuristic at low densities, while d e g is very efficient on the same
problems. Inversely, when the constraint graph becomes dense, d e g goes blind while
dom becomes clever, dom+deg, which breaks ties in dora by using the degree of the
tying variables is shown in this Fig. 3 to improve dora on problems where it was bad.
But, in dom+deg, the size of the domains clearly have the main influence on the order-
ing, the degree of variables being only used in cases where ties are found. To avoid this
drawback, which prevents dom + deg from being as good as d e g in sparse constraint
networks, we propose to really combine dora and d e g to obtain a new DVO in which
d e g is as influent as dora. This new DVO, d o m / d e g , selects as the next variable to be
instantiated a variable that has the smallest ratio: size of the remaining domain to degree
of the variable (i.e. a variable v minimizing [Dr t / I t (v) l). In Fig. 3 we have a first idea
of its behavior: it has the behavior of dom + deg in networks where dom was good, and
the one of d e g in networks where d e g was better. These first results being promising,
we give in Table 2 and Fig. 4 a more complete set of experiments in which we com-
pare M A C - d o m + d e g - m c and M A C - d o m / d e g - m c . Once again, the characteristics of
the problems tested are taken from [11] and [30]. Results obtained in Table 2 show that
with small domain sizes (D < 10) the two DVOs have similar behaviors, with a little
advantage for d o m / d e g . The difference is slightly perceptible on the (35, 9,178, 27)
and the (100, 12,120,110) experiments. It is significant on the (50, 20, 95,300}. This is
explained by the fact that when D is very small, d o r a / d e g and dom+deg are quite sim-
ilar criteria, the variations of IDv [- for a given variable v - dominating those of [/ '(v)[

in dom/deg.

Table 2. MAC-doln+deg-mc versus MAC-dom/deg-mc. Only ratios are given (real values
can be obtained from these ratios and Table 1). Values greater than 1 mean dom/deg is better,

values smaller than 1 mean dora+deg is better.

Parameters ratios

N, D, C, T / D * D #constraint checks time #backtracks

#1 35,6,501,4/36 1.00 1.01 1.35
#2 35,9,178,27/81 1.24 1.23 1.63
#3 50,6,325,8/36 1.11 1.12 1.53
#4 50,20,95,3001400 3.45 3.05 7.01
#5 100,12,120,110/144 1.11 1.10 3.20
#6 125,3,929,1/9 1.02 0.98 1.42
#7 250,3,391,3/9 1.00 1.00 arc-inc
#8 350,3,524,3/9 1.00 1.00 arcane
#9 350,3,2292,1/9 1.00 0.97 1.56

To be convinced that dom/deg is more advantageous when domains are larger, we
tested the two heuristics on instances of problems with increasing domain size. In Fig.
5-(left), the domain sizes vary while N and 6' are fixed to 50 and 95 respectively. T
changes so that problems are always on the cross-over point. The more the size of the do-
mains increases, the more M A C - d o m / d e g - m c overcomes MAC-dom+deg-mc , go-
ing from once to 7 times faster when D grows from 6 to 40. Furthermore, Prosser (per-

9 The LVO used is rac in all these versions. Without LVO, we remarked that the differences in-

crease between good and bad algorithms.

71

t)

800

700

600

500

400

300

200

i00

45

MAC-dom+deg-mc - -

i i i

50 55 60 65
tightness

70

Fig. 4. MAC-dom+deg-mc and MAC-dom/deg-mc on the (50, 10, 123, T).

sonal communication) has pointed out that when initial domain sizes are not all equal,
dora (or dom+deg) can be fooled by these initial differences. We suppose that in these
cases d o r a / d e g would be even more interesting.

7

4

3

, f ~ , , i

10 15 20 25 30 35 40
domain sire

1.8 ~

1.7

1.6

1,5

1.4

1.3

1.2

i.i

1 i , J

i0 15 20 25 30 35 40
domain size

Fig. 5. MAC-dom+deg-mc versus MAC-dom/deg-mc on the (50, D, 95, Tee) (left), and
MAC-CBJ-dom/deg-mc versus MAC-dom/deg-mc on the (50, D, 95, Tco) (right).

Thus, we can conclude that combining different DVOs is a promising approach. We
have tested other combined DVOs not presented in this paper. The one that can be named
d o r a / c a r d , in which the number of previously assigned neighbors of die variable re-
places the total number of neighbors in the ratio seems to be quite worse than d o r a / d e g
(when c a r d alone was considered as a better SVO than d e g alone [5]). On the other
hand, when the ratio involves the number of not yet assigned neighbors o f the variable,
the performances are roughly similar to those obtained with dora /de9 , sometimes bet-

72

ter, sometimes worse, d o m / d e g has been also implemented in FC-CBJ. We saw an im-
provement with respect to dom+deg, but smaller than the one observed on MAC.

6 CBJ Becomes Useless

We have shown that using MAC instead of FC as the filtering scheme was worthwhile on
hard and large problems. I f we follow the evolution of FC in FC-CBJ we should now use
MAC-CBJ [25]. But, let us recall a sentence found in [16]: "Look ahead to the future in
order not to worry about the past". In fact, some authors remarked that if we use a good
variable ordering heuristic "CBJ is unlikely to generate large backjumps, and its savings
are likely to be minimal" because "variables that have conflicts with past assignments
are likely to be instantiated sooner" [1]. In [30], Smith and Grant said that "for most
problems, the ordering given by dom ensures that chronological backtracking usually
results in backtracking to the real culprit for a failure, so that informed backtracking does
not add very much".

These statements, done in the case of FC-dom were probably too optimistic since
a non negligible number of problems are easily solved by FC-CBJ-dom when FC-dom
is thrashing [31]. But, as it is suggested by Haralick and Elliot's sentence, the more we
will perform look-ahead, the less we will have to worry about looking back. CBJ was
a strong improvement on BT (simple backtracking), FC-CBJ can be an improvement
on FC on hard problems, MAC-CBJ cannot simply be claimed to be an improvement
on MAC. In [31], while a lot of problems were found on which FC-CBJ-dom outper-
formed FC-dom by at least one order of magnitude, only one instance was found on
which MAC-CBJ-dom significantly outperformed MAC-dora. If we consider now the
DVO d o m / d e g in place of dom, there are even more reasons to think that CBJ becomes
useless (since d o m / d e g has been shown smarter than dom). Furthermore, the more the
amount of filtering involved in a search procedure is high, the more the overhead caused
by CBJ is heavy [25]. CBJ was cheap to incorporate in BT, it was not prohibitive in FC,
but it palpably slows down the search in MAC. Hence, a significant number of constraint

checks must be saved to outweigh this overhead.

Table 3. MAC-CBJ-dom/deg-mc versus MAC-dom/deg-mc.

Parameters ratios

N, D, C, T / D * D #constraint checks time #backtracks

#1 35,6,501,4/36 0.99 1.17 0.99
#2 35,9,178,27/81 0.99 1.32 0.99
#3 50,6,325,8/36 0.99 1.21 0.99
#4 50,20,95,3001400 0.99 1.33 0.99
#5 100,12,120,110/144 0.98 0.99 0.96
#6 125,3,929,1/9 0.97 t.08 0.96
#7 250,3,391,3/9 arcane are-inc arc-inc
#8 350,3,524,3/9 arcane arcane arc-ine
#9 350,3,2292,1/9 0.64 0.70 0.6!.

Table 3 gives the comparison of M A C - C B J - d o m / d e g - m c and M A C - d o m / d e g -
mc on the Frost and Dechter's problems. On the problems #1 to #8 the result is easy to
read: CBJ leads to a few constraint checks savings which are not sufficient to make good

73

the loss of time. But, on the set of parameters #9, there is a significant gain for MAC-
CBJ-dom/de g-inc. If we focus on the 100 instances which form this experiment we see
that on 99 instances MAC-dom/deg -mc and MAC-CBJ-dom/deg-mc have almost
the same behavior, solving the problem in less than 1 second with a number of back-
tracks smaller than 1000. But on one of the 100 instances M A C - d o m / d e g - m c needs
137 seconds and 41,639 backtracks to find a solution when MAC-CBJ-dom/deg-mc
only needs 73 seconds and 20,069 backtracks. The mean performances are strongly in-
fluenced by this single instance which seems to match with the definition of "excep-
tionally hard problems" (ehps) [30]. Indeed, it occurs in the region where almost all
problems are soluble (2547 constraints are necessary to be at the cross-over point in the
(350, 3, C, 1) set of parameters [11]). But, as opposed to the ehps found in [31], where
FC-CBJ or MAC-CBJ were orders of magnitude faster than FC or MAC, MAC-CBJ-
d o m / d e g - m c is only twice faster than MAC-dom/deg -mc on our ehp. Further ex-
periments should probably be done to see whether ehps could be found on which MAC-
CBJ-dom/deg-mc is really better than MAC-dom/deg-mc , though we did not find
any in all the experiments we performed on smaller networks (50 variables).

Finally, we want to recall that the more domain sizes increase, the more the length of
the jumps performed by CBJ decreases while CBJ time overhead increases (see the CBJ
mechanism in [22]). This is confirmed in Fig. 5-(right) where MAC-CBJ-dom/deg-mc
and M A C - d o m / d e g - m c are compared on the (50, D, 95, Too) experiment with increas-
ing D.

Therefore, except on sparse networks with small domain sizes where more studies
should be done, we think we can conclude that including CBJ in M A C - d o m / d e g - m c
has more chances to slow down the search of at least 20% cpu time than to speed it up.

7 Conclusion

After a recall of the story of search procedures in constraint networks, this paper has
shown how MAC can outperform FC and FC-CBJ on relatively hard and large randomly
generated instances of constraint networks. Once the superiority of MAC has been pro-
ven, we have proposed a new kind of variable ordering heuristic, dora /dog , which re-
ally combines information on domain sizes and constraint graph structure. We proved
its efficiency when compared with dora+deg, the most efficient previous heuristic. The
total gain involved by these two techniques (MAC and d o m / d e g) is summarized in Ta-
ble 4. The ratios of the mean performances of FC-CBJ-dom+deg-mc to the mean per-
formances of MAC-dom/deg- rac are presented. The tested problems are again Frost
and Dechter's problems. The benefit is always significant. Furthermore, we must have
in mind that with larger domains the gain is greater and greater.

Therefore, we can conclude that on relatively hard and large instances of random
problems, MAC and our new variable ordering heuristic are more efficient than FC-CBJ
and classical dora or dom+deg DVOs.

Finally, we have shown in the last section that performing CBJ is almost always use-
less when combined with a procedure achieving as much look-ahead as MAC-dom/deg-
mc. The time overhead is too heavy to be outweighed by the small number of constraint
checks and backtracks saved.

74

Table 4. FC-CBJ-dom+deg-mc versus MAC=dora/deg-mc.

Parameters ratios

N, D, C, T / D �9 D #constraint cheeks time #backtracks
#t 35,6,501,4/36 1.54 2.58 '10.03
#2 35,9,178,27/81 1.97 3.98 23.33
#3 50,6,325,8/36 3.00 5.03 26.55
#4 50,20,95,300/400 7.13 13.38 259.64
#5 100,12,120,110/144 17.29 28.69 2785.20
#6 125,3,929,1/9 6.15 2.91 17.15
#7 250,3,391,3/9 7.31 11.26 are-inc
#8 350,3,524,3/9 230.53 476.31 arc-inc
#9 350,3,2292,119 8.35 2.10 15.10

Acknowledgmen t s . We want to thank Dan Frost and Stuart Grant for their help concerning
instance generators, Olivier Dubois, who is at the origin of our comments on previous instance
generators, Dan Sabin for the fruitful discussions we had on MAC, and Gene Freuder for his advice
on ordering heuristics.

References

1. E Bacchus and E van Run. Dynamic variable ordering in csps. In Proceedings CP'95, pages
258-275, Cassis, France, 1995.

2. C. Bessi~re. Syst~mes h contraintes 6volutifs en intelligence artificielle. Phd thesis, LIRMM,
University of Montpellier II, September 1992. (in French).

3. C. Bessi~re, E.C. Freuder, and J.C. R6gin. Using inference to reduce arc consistency com-
putation. In Proceedings IJCAI'95, pages 592-598, Montr6al, Canada, 1995.

4. R. Dechter. Learning while searching in constraint satisfaction problems. In Proceedings
AAAI'86, pages 178-183, Philadelphia PA, 1986.

5. R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms for constraint
satisfaction problems. Artificial Intelligence, 68:211-241, 1994.

6. R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems. Ar-
tificial Intelligence, 34:1-38, 1988.

7. M.J. Dent and R.E. Mercer. Using local topology to model hard binary constraint satisfaction
problems. In Proceedings of the workshop -Studying and Solving Really Hard Problems-,
CP'95, pages 52-61, Cassis, France, 1995.

8. O. Dubois. Private communication, 1995.
9. E.C. Freuder, A sufficient condition for backtrack-free search. Journal of the ACM,

29(1):24-32, 1982.
10. D. Frost and R. Dechter. In search of the best constraint satisfaction search. In Proceedings

AAAI'94, pages 301-306, Seattle WA, 1994.
11. D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction problems. In

Proceedings IJCAI'95, pages 572-578, Montr6al, Canada, 1995.
12. J. Gaschnig. A general backtrack algorithm that eliminates most redundant tests. In Pro-

ceedings IJCAI'77, page 457, Cambridge MA, 1977.
13. J. Gaschnig. Performance measurement and analysis of certain search algorithms. Technical

Report CMU-CS-79-124, Carnegie-Mellon University, Pittsburgh PA, 1979.
14. P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. In Pro-

ceedings ECAI'92, pages 31-35, Vienna, Austria, 1992.

75

15. M.L. Ginsberg, M. Frank, M.E Halpin, and M.C. Torrance. Search lessons learned from
crossword puzzles. In Proceedings AAAI'90, pages 210-215, Boston MA, 1990.

16. R.M. Haralick and G.L. Elliot. Increasing tree seach efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263-313, 1980.

17. W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Proceedings IJCAI'95,
pages 607-613, Montrral, Canada, 1995.

18. ED. Hubbe and E.C. Freuder. An efficient cross product representation of the constraint satis-
faction problem search space. In Proceedings AAAI'92, pages 421--427, San Jos6 CA, 1992.

19. V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine,
13(1):32--44, Spring 1992.

20. B.A. Nadel. Tree search and arc consistency in constraint satisfaction algorithms. In
L.Kanal and V.Kumar, editors, Search in Artificial Intelligence, pages 287-342. Springer-
Verlag, 1988.

21. B.A. Nadel. Constraint satisfaction algorithms. Computational Intelligence, 5:188-224,
1989.

22. E Prosser. Domain filtering can degrade intelligent backtracking search. In Proceedings
IJCAl'93, pages 262-267, Chambrry, France, 1993.

23. E Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelli-
gence, 9(3):268-299, August 1993.

24. E Prosser. Binary constraint satisfaction problems: some are harder than others. In Proceed-
ings ECAI'94, pages 95-99, Amsterdam, The Netherlands, 1994.

25. E Prosser. Mac-cbj: maintaining arc consistency with conflict-directed backjumping. Tech-
nical Report 95-177, Department of Computer Science, University of Starthclyde, 1995.

26. J.E Puget. Ilog solver. In J. Gensel, editor, Journdes Contraintes et Objets, Grenoble, France,
November 1992. (in French).

27. EW. Purdom. Search rearrangement backtracking and polynomial average time. Artificial
Intelligence, 21:117-133, 1983.

28. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
Alan Boming, editor, PPCP'94: Second Workshop on Principles and Practice of Constraint
Programming, Seattle WA, May 1994.

29. B. Smith. The phase transition in constraint satisfaction problems: A closer look at the mushy
region. In Proceedings ECAI'94, pages 100-104, Amsterdam, The Netherlands, 1994.

30. B. Smith and S.A. Grant. Sparse constraint graphs and exceptionally hard problems. In Pro-
ceedings IJCAI'95, pages 646-651, Montrral, Canada, 1995.

31. B. Smith and S.A. Grant. Where the exceptionally hard problems are. In Proceedings of
the workshop -Studying and Solving Really Hard Problems-, CP'95, pages 172-182, Cassis,
France, 1995.

32. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, Cam-
bridge, MA, 1989.

33. R.J. Wallace and B.C. Freuder. Conjunctive width heuristics for maximal constraint satisfac-
tion. In Proceedings AAAl'93, pages 762-768, Washington D.C., 1993.

