
J Sched (2006) 9: 153–176

DOI 10.1007/s10951-006-7186-9

Algorithms for the car sequencing and the level scheduling
problem

Andreas Drexl · Alf Kimms · Lars Matthießen

C© Springer Science + Business Media, LLC 2006

Abstract This paper deals with two most important problems arising in sequencing mixed-model

assembly lines. One problem is to keep the line’s workstations loads as constant as possible (the

‘car sequencing problem’) while the other is to keep the usage rate of all parts fed into the

final assembly as constant as possible (the ‘level scheduling problem’). The first problem is

a difficult constraint-satisfaction problem while the second requires to optimize a nonlinear

objective function. The contribution of this paper is twofold: First, we describe a branching

scheme and bounding algorithms for the computation of feasible sequences for the car sequencing

problem. Second, we present an algorithm which can optimize a level scheduling objective while

taking care of the car sequencing constraints. Computational results are presented which show

that feasible sequences can be obtained quickly for large problem instances.

Keywords Car sequencing . Level scheduling . Branching . Bounding . Computational results

1. Introduction

In many assembly systems, products are mounted on a conveyor belt. Operators or installation

teams move along with the belt while working on a product. In general, an operator can work on

a product only when it is at his station. If the operator does not finish work on a product before it

leaves his station, there are two alternative approaches for completing what so far has not been

done. Usually, in the United States, utility workers are employed to finish the work left undone by

A. Drexl (�)
Department of Business Administration, University of Kiel, 24098 Kiel, Germany
e-mail: andreas.drexl@bwl.uni-kiel.de

A. Kimms
Department of Technology and Operations Management, University of Duisburg-Essen,
47048 Duisburg, Germany
e-mail: alf.kimms@uni-duisburg-essen.de

L. Matthießen
Department of Computer Science, University of Kiel, 24098 Kiel, Germany

154 J Sched (2006) 9: 153–176

the primary operator. In Japan, the operator pushes a stop button whenever he is unable to finish

his work. Clearly, the management philosophy behind such distinct approaches is quite different.

Mixed-model assembly lines with negligible change-over between the products enable di-

versified small-lot production. Just-in-Time (JIT) production methods of the ‘pull’ variety can

be used to control such systems. By the use of JIT methods it becomes possible to satisfy cus-

tomers’ demands for several products without holding large inventories and without incurring

large shortages (see, e.g., Kubiak, 1993; Steiner and Yeomans, 1993).

When several models of the same general product have to be assembled on one common line

the underlying design problem has two components: (i) a long-term planning problem called

line balancing and (ii) a short-term planning problem known as model sequencing. In the line

balancing problem, the tasks required to assemble the product have to be allocated to workstations.

Each station has to be designed, tooled and equipped with respect to the tasks assigned to it and,

hence, the allocation is based more on strategic than on operational issues. A discussion of these

topics can be found in, for instance, Scholl (1999). In the model sequencing problem, the shop

floor is the focus of attention where we have to decide about the specific order in which the

different models have to be launched onto the line. Usually, the demand rate of the models varies

and the problem must be solved periodically.

Because of the pull nature of JIT systems, once the sequence of the models is fixed at the

final assembly level, the production schedules at all preceding levels are also inherently fixed.

Therefore, the major problem to be solved as a prerequisite for the effective utilization of JIT

systems is to determine the sequence in which different models have to be scheduled at the final

assembly level. In general, the final assembly level consists of several stations where each is

serviced by a part feeder or one feeder provides parts for several stations (see, e.g., Sumichrast

and Clayton, 1996). In such production environments, we have to take care about the station

loads and about the part usages, both of which are a function of the sequence.

In practice, usually subsequences consisting of, for instance, six copies are used in a cyclic

manner. These subsequences work ‘reasonable good’ and they evolve by experience, not by anal-

ysis. However, problems arise frequently because of negligence of interdependencies between

consecutive subsequences. The methods developed in this paper allow to evaluate subsequences

consisting of about 50 copies. Hence, the contribution of our work shall be to reduce the num-

ber and the amount of problems arising because of not considering interdependencies between

consecutive subsequences.

The exposition of our work is as follows: First, we address in Sections 2 and 3 the question

whether a feasible sequence exists, that is, if the car sequencing problem has a feasible solution

or not. To this end, Section 2 introduces the car sequencing problem mathematically and by

means of an example. Then, Section 3 provides the branching scheme along with bounding

rules for pruning large parts of the search tree. Second, in Section 4, the optimization problem

is dealt with, that is, techniques for computing optimal level schedules taking into account

the car sequencing constraints are proposed. Finally, computational results are presented in

Section 5.

2. The car sequencing problem

The car sequencing problem can be explained easily in the context of car manufacturing. Assume

that some variants of a car have to be produced. Usually, each of the variants requires a specific

set of options such as ‘sun roof’, etc. For each variant, the customer demand is known, that is, we

assume that the number of cars (identical copies) of each variant that have to be manufactured is

given.

J Sched (2006) 9: 153–176 155

Table 1 Alphabetical list of notations

α : branching step or b-step

D : {1, . . . , V } → N; function D maps a variant type v to the demand of that

type, i.e. the number of copies of v requested within the planning horizon T

D(v) : number of copies (demand) to be produced of variant v

δ∗ : schedule with minimal objective value

edd : earliest due date (left interval limit)

Hj : N j : at most Hj of N j successively sequenced copies may require option j

ldd : latest due date (right interval limit)

M : O × T matrix (m j,t)

O : number of options, index j

occ(j) : number of occurrences of option j in σ

opt : {1, . . . , V } → 2{1,...,o}; injective function j ∈ opt(v)
def⇔ variant v needs option j

σ : sequence

σ−1(v) : set of periods, in which variant v is scheduled

T : total production volume (periods, cycles), i.e. T = ∑V
v=1 D(v), index t

Uξ : σ−1(0), the set of non-assigned periods

v̄ : {1, . . . , V } → {−1, 1}, where

v̄(v) j
def=

{
1 if j ∈ opt(v)

−1 otherwise

V : number of variants, index v

ξ : 〈σξ , Mξ 〉, CS-state

� : set of all CS-states

The core problem shall now be explained by means of an example: Assume that 60% of the

cars manufactured on the line require the option ‘sun roof’. Moreover, assume that five cars pass

the station where the sun roofs are installed during the time for the installation of a single copy.

Then, three operators (installation teams) are necessary for the installation of sun roofs. Hence,

the capacity constraint of the final assembly line for the option ‘sun roof’ is three out of five in

a sequence, or ‘3:5’ for short.

Table 1 summarizes our notation. Formulation 1 defines the car sequencing problem mathe-

matically while Example 1 illustrates the problem under consideration.

Formulation 1. The car sequencing problem is to find a sequence σ : {, . . . , T } → {1, . . . , V }
which satisfies conditions (1) and (2):

|σ−1(v)| = D(v) 1 ≤ v ≤ V (1)

t+N j −1∑
τ=t

max{0, v̄(σ (τ)) j } ≤ Hj 1 ≤ j ≤ O, 1 ≤ t ≤ T − N j + 1 (2)

Equations (1) ensure the production of the required number of copies of each variant, while

inequalities (2) restrict the sequences to be feasible only if the ‘Hj : N j ’ constraints are fulfilled.

Additionally, the property of a being a function ensures that one variant is assigned to each cycle.

Example 1. Consider an instance with V = 7 variants and O = 4 options, the number of

requested copies and the option requirements given in Table 2, and the option restrictions

156 J Sched (2006) 9: 153–176

Table 2 Number of requested
copies and option requirements

v 1 2 3 4 5 6 7

opt(v) {2, 3, 4} {3} {4} ∅ {1, 4} {1, 3} {3, 4}
D(v) 1 3 1 3 2 1 1

Table 3 Feasible car sequence period 1 2 3 4 5 6 7 8 9 10 11 12

variant 7 2 4 5 4 1 2 5 4 3 2 6

1:4 × × ×
1:6 ×
2:5 × × × × × ×
1:2 × × × × ×

{1:4, 1:6, 2:5, 1:2}. For this instance, a feasible solution is given in Table 3 where a ‘×’ shows

an option occurrence to be installed to the variant.

The car sequencing model pays attention to the work contents of the products. Similarly, the

part usage rate can be controlled within the same framework of constraints imposed on the

number of options which are required consecutively. Hence, this approach uniquely addresses

two fundamental aspects of mixed-model assembly lines which usually are dealt with separately

(see, e.g., the recent papers by Zeramdini, Aigbedo and Monden, 2000; Zhang et al., 2000).

The car sequencing model does not require to define upstream and downstream station limits

explicitely. In other words, it is not necessary to state whether the problem setting confines to what

is called an open or closed station. This is advantageous because, in practice, there is generally

some degree of freedom in this aspect which sometimes makes a clear distinction between open

and closed difficult. Furthermore, it is not necessary to model the upstream and downstream

movements of the operators explicitely in order to control the risk of conveyor stoppage or the

cost for utility work (see, e.g., Yano and Rachamadugu, 1991; Bard, Shtub and Josh, 1994; Tsai,

1995; Bolat, 1997; Kim, Hyun, and Kim, 1996).

So far, only few papers deal with the car sequencing model which is known to be NP-

hard in the strong sense (see Kis, 2004). Constrained logic programming approaches have been

proposed by Parello, Kabat and Wos (1986), Dincbas, Simonis and van Hentenryck (1988),

Parello (1988) and (Drexl and Jordan, 1995). Unfortunately, the performance of these approaches

in general is totally disappointing. Drexl and Jordan (1995) provide limited computational results

on the basis of an implementation in the constraint programming language, CHARME. The

result is that even very small instances might take minutes on a workstation. As shown in this

reference also, to use standard MIP-solvers is impractical too. Drexl and Kimms (2001) show

how to combine the car sequencing and level scheduling problem within an integrated model

(see also Section 4).

3. An algorithm for solving the car sequencing problem

In this section, we present an algorithm for deciding whether a feasible solution exists for a

given instance of the car sequencing problem (CS for short) and how it looks like. To this end

we describe in Section 3.1 a branching mechanism for the construction of a (feasible) sequence.

Then we present in Section 3.2 bounding techniques which are able to prune large parts of the

search tree in early stages of the branching process.

J Sched (2006) 9: 153–176 157

3.1. Branching

The basic idea for the construction of a sequence σ is to assign successively each period t ∈
{1, . . . , T } to a variant copy of type v. Doing so, we handle σ as a function σ : {1, . . . , T } →
{1, . . . , V } ∪ {0}. The zero is added to avoid partial sequences by the assumption that any yet

non-assigned period is mapped onto the void variant 0. This simplifies further definitions without

constraining them.

According to the construction of σ , the idea for branching the problem CS considered here is

to find an assignment for the least non-assigned period t to a variant copy of type v, i.e. to the

leftmost period t where σ (t) = 0. Because there exist at most V possible assignments for such

a period t, the problem is branched into at most V subproblems, each with domain’s cardinality

decreased by one.

All subproblems not being fully explored are kept in the candidate list. The well-known

last-in-first-out (LIFO) principle is used for guiding the search. By definition, a subproblem is

explored, if (i) it has an empty solution space or if (ii) it represents a feasible solution. (An

additional condition (iii) which relates to the calculation of bounds for the objective function is

described in Section 4.2.)

Any subproblem is a problem CS like in Formulation 1, additionally restricted by the current

state of construction of a sequence σ arising from branching. Because, in that way, any subprob-

lem corresponds to a partial sequence σ , it is fully described by the definition of σ . A formal

description of a subproblem as well as of branching a subproblem is given in the definitions

given later.

A sequence σ induces an O × T -matrix M which represents the periods of the planning

horizon T, and each row of M is incident with an option j. The interpretation of M is as follows:

m j,t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if option j is planned in period t, respecting restriction Hj : N j

0 if option j may be planned in period t

−1 if option j is not planned in period t or, if planned, it would

violate restriction Hj : N j

Because of the requirement of feasibility we derive the following.

Definition 1. A row r j of matrix M is called admissible, if

i+N j −1∑
i=t

max{0, m j,i } ≤ Hj for all 1 ≤ t ≤ T − N j + 1.

A row r j of matrix M is said to be complete, if r j is admissible and

T∑
t=1

max{0, m j,t } =
∑

{v∈{1,...,V }| j∈opt(v)}
D(v)

additionally holds.

The next definition contains the description of a subproblem, consisting of its corresponding

sequence σ and the matrix M induced by σ .

158 J Sched (2006) 9: 153–176

Definition 2. Let s and r denote a column and a row of M , respectively. A state of con-

struction of a sequence σ , referred to as CS-state, is given by a tuple ξ = 〈σξ , Mξ 〉,
where

(i) ∀t ∈ {1, . . . T }(σξ (t) = 0 ⇒ s(ξ)
t = v̄(σξ (t))

)
and

(ii) ∀ j ∈ {1, . . . , O}
(

T∑
t=1

max{0, m(ξ)
j,t } ≤

∑
{v∈{1,...,V }| j∈opt(v)}

D(v)

)
.

Let the set of all CS-states be denoted by �.

As already mentioned, a CS-state is identical to a subproblem of CS, hence we will refer to

CS-states instead of subproblems of CS. In fact, this definition allows a CS-state to contain more

information than that we can obtain from simple branching, because m(ξ)
j,t = 0 in case of σξ (t) = 0

is not demanded.

Definition 3. Let ξ, ξ ′ ∈ �. Both CS-states are equivalent if and only if the corresponding sub-

problems have the same solution space.

Remark 1. In particular, the CS-state ξI = 〈σ, M〉 with σ (t) = 0, 1 ≤ t ≤ T , and m j,t = 0, 1 ≤
j ≤ O, 1 ≤ t ≤ T , is called initial state.

Obviously, as a consequence of the general description of a CS-state ξ , it is allowed that some

coefficients of a certain column s(ξ)
t of Mξ with σξ (t) = 0 are fixed to 1, others to −1, and some

are not fixed at all, i.e. they have value 0. For that reason, the choice of an assignment of the

period corresponding to column s(ξ)
t is not arbitrary. The next definition points out which variants

are allowed to be assigned to column s(ξ)
t .

Definition 4. Let ξ ∈ �. A variant v is called compatible with a column s(ξ)
t of Mξ , denoted by

v�sξ
t , by

∀ j ∈ {1, . . . , O}(v̄(v) j = 1 ⇒ (
s(ξ)

t

)
j
= −1 ∨ v̄(v) j = −1 ⇒ (

s(ξ)
t

)
j
= 1

)
.

Furthermore, the definition of CS-states does not prevent any option restriction Hj : N j to be

violated. Therefore, we introduce

Definition 5. A CS-state ξ is said to be allowed if the following conditions hold:

(i) All rows of M are admissible.

(ii) ∀t ∈ {1, . . . , T }(σξ (t) = 0 ⇒ {
v ∈ V | v�s(ξ)

t

} ∩ {v ∈ V | |σ−1
ξ (v)| < D(v)} = ∅).

While the first condition relates to feasibility, the second one ensures that at least one

subproblem exists for any non-assigned period t. Conversely, a CS-state being not al-

lowed provides a very weak condition for the corresponding subproblem to be fully

explored.

J Sched (2006) 9: 153–176 159

In case the problem CS has a non-empty solution space, the following is obvious:

Remark 2. The initial state is allowed.

There are several possible definitions for a CS-state ξ to be a solution. As they are all equivalent,

we will spot the following

Definition 6. A problem ξS is a solution if all rows of Mξ are complete and σ−1
ξ (0) = ∅ holds.

Finally, we give a formal definition of branching with respect to the notation of CS-states.

Definition 7. Let ξ, ξ ′ ∈ �, ξ be allowed. Branching the CS-state ξ is performed by a transfor-

mation

α : � × {1, . . . , T } × {1, . . . , V } → �, (ξ, t0, v) �→ ξ ′

where v�s(ξ)
t0 and t0 = min{1 ≤ t ≤ T |σξ (t) = 0}.

In analogy of branching a subproblem, we will refer to a transformation α as branching step or

b-step. Instead of α(ξ, t, v) = ξ ′ we write ξ
→
v ξ ′ and ξ → ξ ′ in case of unknown v. Then ξ

→∗ ξ ′

denotes a sequence of b-steps of arbitrary length.

As seen in the next example, a b-step ξ → ξ ′ might lead to a CS-state ξ ′ which is not allowed.

In connection with the construction of feasible sequences, those steps shall be called destructive.

To be more general, we define

Definition 8. Let ξ, ξ ′ ∈ �, ξ be allowed. A b-step ξ → ξ ′ is destructive, if there does not exist

any solution ξS which can be obtained by ξ ′ →∗ ξS .

Example 2. Recall Example 1 and assume that a sequence of b-steps ξI
→∗ ξ

→
6 ξ ′ has produced

the CS-state given in Table 4. By definition, ξ ′ is not allowed, because none of the variant types

{2, 6, 7}, which are the only ones with non-assigned copies, offers a feasible assignment for

period 10. ξ
→
6 ξ ′ is a destructive step.

Identifying b-steps to be destructive as early as possible is of major significance in view of

the vast search space. To reduce this search space, in Section 3.2 we concentrate on detecting

destructive steps in early stages of the construction of a sequence σ .

3.2. Pruning the search tree

The techniques presented now are based on information which can be deduced from a CS-state

ξ . To this end, first we present in Section 3.2.1 a polynomial algorithm for the specification of the

matrix Mξ using state-inherent information. Second, a necessary condition for the construction

Table 4 Destructive step Period 1 2 3 4 5 6 7 8 9 10 11 12

Variant 2 4 5 2 3 4 1 4 6 0 0 0

1:4 × ×
1:6 ×
2:5 × × × ×
1:2 × × ×

160 J Sched (2006) 9: 153–176

of an allowed completion of σ is given in Section 3.2.2. Third, we show in Section 3.2.3 how

to learn from failure steps. Overall this information will be used to design an algorithm which

explores a whole subtree in polynomial time. The following definitions are prerequisites of what

follows.

Definition 9. Let ξ, ξ ′ ∈ �. A matrix M ′
ξ is said to be a specification of Mξ , if

∀ j ∈ {1, . . . , O}, ∀t ∈ {1, . . . , T }(m(ξ)
j,t = m(ξ ′)

j,t ⇒ m(ξ)
j,t = 0

)
.

If M ′
ξ is a specification of Mξ , we say that M ′

ξ is more specified than is Mξ and denote this by

Mξ �s M ′
ξ .

Definition 10. Let ξ ∈ �. We say that there exists a completion of ξ , if ξ
→∗ ξS and ξS is a solution.

If completion of ξ exists, we denote this by the predicate compl(ξ).

Each of the three steps outlined above is explained in the subsequent sections.

3.2.1. Specification method

Each allowed CS-state ξ carries some state-inherent information. This information can be used

to formulate a method for the specification of Mξ . The core functions of such a method arise

from the fact that all the occurrences of an option j have to take place in a row r j of Mξ without

violating the restriction Hj : N j . More precisely, for each option occurrence, a range of periods

exists within which it must be sequenced.

In a totally unspecified matrix MξI , an option range is an interval of the planning horizon with

an earliest due date as left limit and a latest due date as right limit. Let

occ(j) =
∑

{v∈V | j∈opt(v)}
D(v)

denote the number of occurrences of option j in the sequence. Then the earliest due date is

calculated by the function

edd : {1, . . . , O} × N → N where (3)

(j, i) �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� i

Hj
� · N j + (i mod Hj) if i mod Hj = 0 and i ≤ occ(j)

� i

Hj
− 1� · N j + Hj if i mod Hj = 0 and ≤ occ(j)

undefined otherwise.

Because of symmetry the right interval limit is calculated by

ldd : {1, . . . , O} × N → N where (4)

(j, i) �→
{

T − edd(occ(j) − i + 1) + 1 if i ≤ occ(j)

undefined otherwise.

J Sched (2006) 9: 153–176 161

Remark 3 follows immediately.

Remark 3. An empty interval [edd(j, i), ldd(j, i)] verifies non-existence of a solution.

Definition 11. The allowed option ranges are determined for an arbitrary CS-state ξ by

range : {1, . . . , O} × N × � −→ N
{1,...,T } where (5)

(j, i, ξ) �→
{

t ∈ [edd(j, i), ldd(j, i)]|σ (t) = 0 ∧ m j,t = −1 ∧

∀ max{1, t − N j + 1} ≤ t ′ ≤ t :

t ′+N j −1∑
τ=t ′

max{0, m j,τ } < Hj

}
.

Remark 4. Whenever range(j, i, ξ) = θ , the solution space of ξ is empty.

The function range is a reduction of the interval given by the earliest and the latest due dates to

a subset of periods in which an option occurrence can be planned without violating the option

restriction while paying attention to the current specification of Mξ . It is easy to see that range
is a monotonous function in the sense of

Remark 5. Let ξ, ξ ′ ∈ �. Then

Mξ �s M ′
ξ ⇒ range(j, i, ξ) ⊇ range(j, i, ξ ′)

holds for all 1 ≤ j ≤ O, 1 ≤ i ≤ occ(j).

By means of option ranges, first a specification of Mξ is performed by the following rules:

R1 if range(j, i, ξ) contains exactly one element t0 with σξ (t0) = 0 (i.e. an occurrence i of option

j must be installed in period t0), mark this in Mξ by setting mξ

j,t0
= 1;

R2 if σξ (t0) = 0 ∧ t0 /∈ ⋃
1≤i≤occ(j) range(j, i, ξ) holds for a period 1 ≤ t0 ≤ T (i.e. an occur-

rence i of option j planned in period t0 would violate the option restriction), mark this in Mξ

by setting m(ξ)
j,t0

= −1;

R3 for a remaining period t0 with σ (t0) = 0 we set m(ξ)
j,t = 0.

Such a specification of Mξ effects the possible assignments of all non-assigned periods to variant

copies, and consequently the possibilities of branching not only in state ξ , but also in the whole

subtree with root ξ . Because the number of copies of each variant type v is limited by its demand

D(v), we can calculate these possibilities by

possV : {1, . . . , T } × � −→ 2{1,...,V } where (6)

(t, ξ) �→
{

possV (t, ξ ′) if σξ (t) = 0{
v ∈ V

∣∣v�s(ξ)
t ∧ ∣∣σ−1

ξ (v)
∣∣ < D(v)

}
otherwise

162 J Sched (2006) 9: 153–176

Here it is assumed that the CS-state ξ has been reached by a b-step ξ ′ → ξ . Whenever αξ (t) =
0 ∧ |possV (t, ξ) > 1 holds for a CS-state ξ , the construction of σξ can proceed alternatively.

Therefore, the elements of possV (t, ξ) shall be called alternatives.

Of course, the more Mξ is specified, the more the sets of possible assignments are restricted.

It is easy to see that a further specification of Mξ monotonously decreases the cardinality of the

sets of alternatives obtained from possV , formally stated as

Remark 6. Let ξ, ξ ′ ∈ � Then

Mξ �s M ′
ξ ⇒ possV (t, ξ) ⊇ possV (t, ξ ′)

holds for all 1 ≤ t ≤ T .

Second the monotonicity of possV justifies to continue the specification of Mξ by the following

rules:

R4 if possV (t0, ξ) contains exactly one variant type compatible to column s(ξ)
t0 , assign a copy

of this variant type to period t0:

∀t0 ∈ {1, . . . , T }(|possV (t0, ξ)| = 1 ∧ σξ (t0) = 0 ⇒ s(ξ)
t0 = v̄(v)

)
R5 if all variant types in possV (t0, ξ) need an option of type j to be installed, insert this option

in period t0:

∀t0 ∈ {1, . . . , T }(∃ j0 ∈ {1, . . . , O}(∀v ∈ possV (t0, ξ))(
j ∈ opt(v) ∧ σξ (t0) = 0 ⇒ m(ξ)

j0,t0
= 1

)
,

R6 vice versa, if none of the variant types in possV (t0, ξ) need an option of type j to be installed,

reject this option in period t0:

∀t0 ∈ {1, . . . , T }(∃ j0 ∈ {1, . . . , O}(∀ v ∈ possV (t0, ξ))(
j ∈ opt(v) ∧ σξ (t0) = 0 ⇒ m(ξ)

j0,t0
= −1

)
,

R7 if there are exactly n non-assigned periods which variant type v0 can be assigned to, and

there are exactly n copies of v0 left-over for assignment, then assign those periods to variant

type v0:

let Av := {t ∈ {1, . . . , T }|σ (t) = 0 ∧ v0 ∈ possV (t, ξ)}; then

∃v0 ∈ {1, . . . , V }(|Av0| = D(v0) − ∣∣σ−1
ξ (v0)

∣∣ ⇒ (∀t ∈ Av0)
(
s(ξ)

t = v̄(v0)
))

.

The specification rules R4–R7 can be formulated as polynomial operations on a matrix Mξ .

Applied to Mξ , the operations may lead to a more specified M ′
ξ �s Mξ which incurs the necessity

of a repeated application of range and possV . Consequently, the specification of Mξ is an iterative

process which can be expressed in pseudo code as follows:

1 repeat

2 calculate function range
3 apply rules R1–R3

4 calculate possV

J Sched (2006) 9: 153–176 163

Table 5 Value of the function
range in the initial CS-state

Occurrence ranges

Option 1 2 3 4 5 6

1 [1:4] [5:8] [9:12]

2 [1:12]

3 [1:1] [2:2] [6:6] [7:7] [11:11] [12:12]

4 [1:4] [3:6] [5:8] [7:10] [9:12]

Table 6 First-level specification of the initial state

t 1 2 3 4 5 6 7 8 9 10 11 12

σ (t) 0 0 0 0 0 0 0 0 0 0 0 0

possV 1,2 1,2 3,4 3,4 3,4 1,2 1,2 3,4 3,4 3,4 1,2 1,2

6,7 6,7 5 5 5 6,7 6,7 5 5 5 6,7 6,7

1:4

1:6

2:5 × × – – – × × – – – × ×
1:2

5 apply rules R4–R7

6 until none of the rules R4–R7 effects Mξ

This iteration runs until none of the matrix elements changed its value, i.e. some kind of fix

point M∗
ξ has been reached. Because, as aforementioned, possV decreases monotonously in the

cardinality of its image by specification of Mξ , such a fix point exists.

A CS-state ξ = 〈σξ , Mξ 〉 is equivalent to the state ξ ′ = 〈σξ ′ , M∗
ξ 〉 obtained from a specification

of ξ . However, ξ ′ provides a smaller search space than ξ .

Example 3. The effect of rules R1–R7 can be seen in Example 1. First, we calculate the option

ranges in the initial state ξI , according to (5) (see Table 5). From this we derive the possible

assignments for each period according to (6), and we obtain the sequence provided in Table 6.

The row representing the third option type is already fixed, according to rules R1 and R2.

Having performed branching ξI �2ξ1
�1ξ2 which produces a sequence with initial part σ (1) = 2 and

σ (2) = 1, the iterative process continues (see Table 7). After branching only twice and three

iterations of the specification method a solution is found. From periods 3 to 12, all assignments

leading to destructive steps are skipped.

3.2.2. A condition on compl(ξ)

A CS-state ξ with M∗
ξ being obtained from the specification method can be used in order to decide

whether it is worth continuing σξ constructed so far or to drop ξ from further consideration. To

do so, we use a condition �(ξ) which is necessary for the completion of σξ , that is,

compl(ξ) ⇒ �(ξ). (7)

The idea is that, once ¬�(ξ) holds, by contradiction no solution ξS exists which can be obtained

by further exploration of ξ . Being not allowed, as a predicate on CS-states, is a rather poor

164 J Sched (2006) 9: 153–176

Table 7 Problem solved by specification

it t 1 2 3 4 5 6 7 8 9 10 11 12

σ (t) 2 1 4 0 0 0 0 0 0 0 0 0

possV 1,2 1,2 4 3,4 3,4 2,6 2,6 3,4 3,4 3,4 2,6 2,6

6,7 6,7 5 5 7 7 5 5 5 7 7

1 1:4 – – –

1:6 – × – – – – – – – – – –

2:5 × × – – – × × – – – × ×
1:2 – × –

σ (t) 2 1 4 5 0 0 0 5 0 0 0 6

possV 1,2 1,2 4 5 3,4 2,7 2,7 5 3,4 3,4 2,7 6

6,7 6,7

2 1:4 – – – × – – – × – – – ×
1:6 – × – – – – – – – – – –

2:5 × × – – – × × – – – × ×
1:2 – × – × × –

σ (t) 2 1 4 5 4 7 2 5 4 3 2 6

possV 1,2 1,2 4 5 4 7 2 5 4 3 2 6

6,7 6,7

3 1:4 – – – × – – – × – – – ×
1:6 × – – – – – – – – – – –

2:5 × × – – – × × – – – × ×
1:2 – × – × – × – × – × – –

example for such a condition. The problem is to find a condition �(ξ) strong enough to predict

an empty solution space in early stages of the construction of σ . This is the topic of what

follows.

From Remarks 3 and 4 and the definition of allowed CS-states we know that a solution of σ

cannot be obtained from state ξ , if one of the following two conditions is valid:

C1 (∃ j ∈ {1, . . . , O})(∃i ∈ {1, . . . , occ(j)})(range(j, i, ξ) = ∅)

there exists an option occurrence of type j which cannot be inserted into M without violating

the Hj : N j constraint,

C2 (∃t ∈ {1, . . . , T })(possV (t, ξ) = ∅)

there is a yet non-assigned period no variant type is compatible with.

C2 is only a consequence of the fact that there were less periods a variant type v could be assigned

to than the number of copies of type v still to assign in some state ξ ′, where ξ → ξ . So we modify

this condition to

C2′ (∃v ∈ {1, . . . , V })(
D(v) − ∣∣σ−1

ξ (v)
∣∣ > |{t ∈ {1, . . . , T }|σξ (t) = 0 ∧ v ∈ possV (t, ξ)}|)

which is able to predict occurrences of C2.

First, we derive a condition �(1)(ξ) as follows: Let r (v, ξ) be used in order to abbreviate

D(v) − |σ−1
ξ (v)| and let # j,ξ denote the number of occurrences already inserted into Mξ , that is,

j,ξ =
T∑

t=1

max{0, m j,t }.

J Sched (2006) 9: 153–176 165

Then we define

�(1)(ξ) = (∀v ∈ {1, . . . , V })
(|{t ∈ {1, . . . , T }|σξ (t) = 0 ∧ v ∈ possV (t, ξ)}| ≥ r (v, ξ))

∧ (∀ j ∈ {1, . . . , O})(∀# j,ξ + 1 ≤ i ≤ occ(j))

(# j,ξ ≤ occ(j) ⇒ range(j, i, ξ) = ∅).

To evaluate �(1)(ξ), we introduce the set of non-assigned periods

Uξ = σ−1(0)

in state ξ and the sets of non-assigned periods

U v
ξ = {t ∈ Uσ |v ∈ possV (t, ξ)}, 1 ≤ v ≤ V

in which a variant copy of type v is an alternative.

Example 4. Consider a state ξ with Uξ ⊃ {ti1
, ti2

, ti3
, ti4

},

possV (ti1
, ξ) ⊇ {1, 2}, possV (ti2

, ξ) ⊇ {1, 2},
possV (ti3

, ξ) ⊇ {1, 2}, possV (ti4
, ξ) ⊇ {2},

and ∀t /∈ {ti1
, ti2

, ti3
, ti4

} : 1 /∈ possV (t, ξ), 2 /∈ possV (t, ξ). Moreover, let r (1, ξ) = 3 and

r (2, ξ) = 2.

Provided the fact that C1 does not hold, the condition �(1)(ξ) is valid, because

U 1
ξ = 3 ≥ 3 = r (1, ξ) ∧ U 2

ξ = 4 ≥ 2 = r (2, ξ),

though there does not exist any completion of the sequence. In the worst case, having scheduled

σ (ti1
) = σ (ti2

) = σ (ti3
) = 1, �(1)(ξ ′) becomes invalid after having performed three more b-steps,

reaching state ξ ′. Consequently, �(1)(ξ) is too weak.

In Example 4, the invalidity of compl(σξ) could have been noticed in an earlier state by calculating

r (1, ξ) + r (2, ξ) = 5 ∧ ∣∣U 1
ξ ∪ U 2

ξ

∣∣ = 4,

showing that the set of non-assigned periods U 1
ξ ∪ U 2

ξ shared by both variants is not capable

to pick up the remaining copies of those variants. In view of the monotonicity of possV, this

capability is necessary for all subsets of variants, so C2′ is modified to

C2′′(∃K ∈ 2{1,...,V }) (∣∣∣∣∣
⋃
k∈K

U k
ξ

∣∣∣∣∣ <
∑
k∈K

r (k, ξ)

)

166 J Sched (2006) 9: 153–176

and, second, we strengthen the condition � by the negation of C2′′

�(2)(ξ) = (∀K ∈ 2{v∈V |r (v,ξ)>0}) (8)

(K = ∅ ⇒
∣∣∣∣∣
⋃
k∈K

U k
ξ

∣∣∣∣∣ ≥
∑
k∈K

r (k, ξ)) (9)

∧ (∀ j ∈ {1, . . . , O})(∀i ∈ {# j,,ξ + 1, . . . , occ(j)}) (10)

(# j,ξ ≤ occ(j) ⇒ range(j, i, ξ) = ∅). (11)

Once ¬�(2)(ξ) holds, ξ is fully explored, even in case further branching is possible. Unfortunately,

validating �(2)(ξ) requires exponential effort. Nevertheless, �(2)(ξ) can be used partially to predict

destructive steps. For example, �(2)(ξ) can be evaluated for singletons and pairs of variants with

complexity O(V) and O(V 2), respectively. The question whether �(2)(ξ) is also sufficient for

compl(ξ) is answered negative, as shown in the following example.

Example 5. Consider an instance of CS with T = 5, V = 3, D(v) = (3, 1, 1) and O = 3. Fur-

thermore, we have the option restrictions {1 : 3; 1 : 3; 1 : 4} and the option sets opt(1) =
{1}, opt(2) = {2, 3} and opt(3) = 2. Then the option ranges are

range(1, 1) = [1], range(2, 1) = [1, 2],

range(1, 2) = [3], range(2, 2) = [4, 5],

range(1, 3) = [5], range(3, 1) = [1, 5].

It follows

possV (1, ξI) = 1, possV (3, ξI) = 1, possV (5, ξI) = 1,

possV (2, ξI) = 2, 4, possV (4, ξI) = 2, 4,

and it is easy to see that

∀K ∈ 2{1,...,3}
∣∣∣∣∣
⋃
k∈K

U k
ξI

∣∣∣∣∣ ≥
∑
k∈K

D(k)

holds. However, there exists no solution, because the copies of variant 1 must be scheduled in

periods 1, 3 and 5, and variants 2 and 3 must be scheduled in periods 2 and 4 (violating the option

restriction 1:3, because both request option 2).

Hence, we see this instance to be unsolvable by one application of the specification method.

3.2.3. Learning from failure steps

The methods presented so far help to detect and exclude destructive steps during the construction

of σ . Additionally, learning from failure steps can be used in order to avoid repeat failures,

once they have been done. Whenever �(2)(ξ) helps to identify that the construction runs into a

J Sched (2006) 9: 153–176 167

destructive step, such that a completion of σ cannot be obtained from state ξ , this state can be

dropped and we track back according to the LIFO principle.

Consider a state ξ for which �(2)(ξ) does not hold, and assume an occurrence of option j with

range(j, i, ξ) = ∅. Further, let ξ ′ be the latest state with at least one alternative not yet explored.

The set of non-explored alternatives in ξ ′ may be denoted by A and the assignment performed

in ξ ′ by σ (t ′) = v.

Now we have to differentiate between two cases:

(1) j ∈ opt(v)

Though an occurrence of option j has been inserted into Mξ in period t′, an empty option

range for another occurrence of j results from specification of Mξ ′ ; hence, it is useless to try

an alternative in period t′, since any of the alternatives would lead to the same result because

of the monotonicity of range. Therefore, we set possV (t ′, ξ ′) = ∅ and choose the next step

from the candidate list immediately.

(2) j /∈ opt(v)

Then there may be a solution only when inserting an occurrence of option j in period t′;
therefore, we set possV (t ′, ξ ′) = possV (t ′, ξ ′) − {v ∈ V | j /∈ opt(v)} and proceed from ξ ′

with a variant of the updated smaller set of alternatives.

Here, the incapability to schedule an option occurrence is utilized to cut branches of the search

tree which, otherwise, would have been recognized as destructive only later.

4. Computing optimal level schedules

The topic of leveling scheduling is to keep the quantity of each product manufactured per time

unit as close as possible to the demand for that product. Monden (1998) attached to his de-

scription of Toyota’s production system, published in 1983, two scheduling algorithms named

Goal Chasing I and Goal Chasing II. The first one considers the minimal mean squared de-

viation between expected and actual accumulated component usage while the second one is a

simplification of the first one aiming at reducing computation time. Miltenburg (1989) presents

a nonlinear integer programming formulation with the objective of minimizing the deviation

between current and desired production rates. Kubiak and Sethi (1991) introduce a variant,

which reduces the scheduling algorithm to an assignment problem. Inman and Bulfin (1991)

give a formulation of the problem as a minimization problem in which the objective is to min-

imize the sum of deviations between current positions of the copies from the ideal ones in the

sequence.

Usually, leveling scheduling does not take care of the line’s workstations loads, that is, the

constraints of the car sequencing problem are not taken into account. By contrast, it is shown

in the following how to efficiently compute optimal level schedules without relaxing the car

sequencing constraints.

4.1. Objective function

In the sequel, we will adopt the approach of Inman and Bulfin (1991). They proposed a

formulation which can be solved to optimality in polynomial time—at the price of relax-

ing the car sequencing constraints—by ordering the copies according to the earliest due date

(EDD) rule.

Formally, the formulation of Inman and Bulfin (1991) can be described by the following:

168 J Sched (2006) 9: 153–176

Formulation 2. Let the ideal position be given by a function

dd : {1, . . . , V } × N → R where

(v, i) �→
⎧⎨
⎩

(i − 1
2
) · T

D(v)
if i ≤ D(v)

∞ otherwise.

Then the level scheduling model is

min
V∑

v=1

D(v)∑
i=1

‖δ−1(v, i) − dd(v, i)‖

s.t. δ : {1, . . . , T } �→ {1, . . . , V } × N .

Apparently, this formulation is different from, but equivalent to the formulation given by Inman

and Bulfin (1991). The objective minimizes the sum of deviations of the scheduled periods from

the optimal ones given by dd, using an arbitrary l p-norm. If not mentioned otherwise, we will

consider the absolute norm. Hence, it is clear that in an optimal solution (function δ) none of

the periods of the planning horizon is mapped onto a variant copy with index greater than D(v).

As mentioned previously, there exists a construction method for an optimal solution which is

performed in polynomial time. This method is explained now.

4.2. Lower bound

In addition to conditions (i) and (ii) introduced in Section 3.1 a subproblem is explored, if (iii)

the expected value of the objective function is worse than the best one known so far. To estimate

the objective value of any feasible completion of σξ in an arbitrary CS-state ξ , lower bounds

are calculated for a partial sequence σξ by using a relaxation of CS. The relaxation considered

here is to drop constraints (2). The objective value of any feasible sequence σξS is an upper

bound for the optimal objective. We calculate lower bounds lb(ξ) in a CS-state ξ by solving the

level scheduling problem given in Formulation 2 with input data restricted to T ′ = σ−1
ξ (0) and

D′(v) = D(v) − |σ−1
ξ (v)| for all v ∈ V , and add the obtained value to the current objective of σξ

lb(ξ) =
T∑

t=1

‖t − dd(v0, i)‖

where for each period tv0 is either obtained from σξ in case σξ (t) = 0, or v0 is the variant deter-

mined by the method of Inman and Bulfin (1991), otherwise. Now, we present the construction

method for the level scheduling model.

Copy (v, i) causes objective cost only if it is produced at a period t which is not equal to the

ideal position calculated by dd(v, i). Let us consider the difference between ideal position and

planning period as cost measure, that is

c : {1, . . . , T } × {1, . . . , V } × N −→ R ∪ {∞} where

(t, v, i) �→
{

dd(v, i) − t if dd(v, i) = ∞
∞ otherwise

J Sched (2006) 9: 153–176 169

For illustrative purposes, let us look at the following.

Example 6. Recall Example 1, where the demand D(v) for the variants is given by (1, 3, 1, 3, 2,

1, 1) for v = 1, . . . , 7. Because one copy is produced in each period, the overall demand equals

the amount of periods within the planning horizon, that is,

T =
V∑

v=1

D(v) = 12.

The ideal positions are

dd : (v, i) �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 ∞ ∞ ∞ . . .

2 6 10 ∞ . . .

6 ∞ ∞ ∞ . . .

2 6 10 ∞ . . .

3 9 ∞ ∞ . . .

6 ∞ ∞ ∞ . . .

6 ∞ ∞ ∞ . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to the construction method, we obtain the sequence given in Table 8.

The construction of δ∗ as the schedule with minimal objective value is as follows: map each

period t consecutively onto that copy of a variant with least c-value. Formally, it is denoted by

δ∗(t) := (v0, io), where

c(t, v0, i0) = min{c(t, v, i)|(v, i) /∈ δ([1, . . . , t − 1]).

Let � denote the set of all sequences {1, . . . , T } −→ {1, . . . , V } × N . The objective value of

a sequence is the sum of the norm of the c-values, i.e.

C� : � → R ∪ {∞}, δ �→
T∑

t=1

‖c(t, δ(t))‖.

Similar to the study by Inman and Bulfin (1991), optimality of δ∗ can be shown by proving the

nonexistence of another sequence δ′ the objective value of which is less than the objective of δ∗.

Table 8 Sequence obtained from level scheduling

Period 1 2 3 4 5 6 7 8 9 10 11 12

Variant 2 4 5 1 2 3 4 6 7 5 2 4

Deviation 1 0 0 2 1 0 1 2 3 1 1 2

objective function value: 14.00

170 J Sched (2006) 9: 153–176

4.3. Overall algorithm

The performance of the algorithm for computing optimal sequences on the one hand depends on

how fast a feasible solution is found, and on the other hand, on the quality of its objective value

related to the optimal sequence’s objective. As part of the specification method for a CS-state ξ ,

the function possV calculates the set of alternatives ξ can be branched into. The suitable choice

of an alternative to proceed from ξ allows to lead the construction of σ into a certain direction,

for instance in order to obtain a feasible solution fast. Therefore, we need an evaluation of the

alternatives for ordering them into a priority queue before adding them to the candidate list.

Three priority rules are suggested here. Assume ξ to be an allowed CS-state with least non-

assigned period t; then let possV (t, ξ) = {vi1
, . . . , vik } be the set of alternatives which can be

assigned to period t ; p(v) denotes the priority value of v.

PR-1 The first idea for ordering the alternatives {vi1
, . . . , vik } arises from the goal to minimize

the objective value of σ . Consequently, the next variant copy to assign should be the one

which increases the overall objective value of σ least, as done by the level scheduling

method by Inman and Bulfin (1991). Therefore, the priority values of the alternatives are

calculated by

∀1 ≤ q ≤ k : p
(
viq

) =
∥∥∥∥t −

((|σ−1
(
viq

)|{1,...,t−1}| + 1
) − 1

2

)
· T

D
(
viq

)∥∥∥∥.

A mapping of t to v∗
iq

with minimal value p(viq) takes care that branching the state ξ results

in lowest objective cost. Nevertheless, because of the restriction to the variant set given by

possV this assignment is to be considered as locally cheapest; there may be a permutation

of σ with σ (t) = v∗
iq

and smaller sequence objective.

Intending to find a feasible solution fast, the following priority rules are derived from condition

�(2)
ξ .

PR-2 The rule is based on the idea to insert option occurrences as early as possible, so the risk

for an occurrence to have an empty range is reduced. This is done by

∀1 ≤ q ≤ k : p
(
viq

) = ∣∣opt
(
viq

)∣∣.
The next variant to assign is v∗

iq
with maximal value p(viq). The rule corresponds to the

second clause of condition �(2)(ξ).

PR-3 The third rule evaluates an alternative v by the relation between the number of columns v

that can be assigned to and the number of its copies to be assigned yet:

∀1 ≤ q ≤ k : p
(
viq

) = |{t ≤ t ′ ≤ T |viq ∈ possV (t ′, ξ)
}|

D
(
viq

) − ∣∣σ−1
(
viq

)∣∣
If �(2)(ξ) holds, then p(iq) ≥ 1. Choose v∗

iq
to be assigned to t with minimal value p(viq).

This rule corresponds to the first clause of condition �(2)(ξ), reducing the risk to run in a

CS-state where there are lesser columns a variant type v can be assigned to than the number

of copies of v still to be scheduled.

J Sched (2006) 9: 153–176 171

While the first rule is expected to lead to a solution of reasonable good quality, the other branching

criteria may prevent unnecessary branching which may provide a feasible solution to be found

faster. A description of the algorithm can be given as follows:

1 ξ ∗ := 〈〉
2 candidateList:= 〈ξI 〉
3 while candidateList = 〈〉 do

4 ξ := getFirstCandidateFromList

5 apply specification method

6 if ¬�(ξ) or lb(ξ) ≥ value (ξ∗) then

7 drop ξ from candidateList

8 else

9 if σ−1(0) = ∅ then

10 if lb(ξ) < value (ξ ∗) or ξ ∗ = 〈〉 then

11 ξ ∗ = ξ

12 endif

13 else

14 t0 = min σ−1(0)

15 Aξ = possV(t0, ξ)

16 sort Aξ → (vil , . . . , vik)

17 candidateList:= 〈ξ−→vi1
ξi1

, . . . , ξ−→vik ξik ; candidateList〉
18 endif

19 endif

20 end while

When initiating the computation, the candidate list of yet non-explored CS-states consists of

the initial state only. The best solution known so far is denoted by ξ ∗. As long as there are

CS-states still to explore, we consider the first one from the candidate list and specify it by the

method described in Section 3.2. In case the condition �(ξ) predicts that the solution space of ξ

is empty, or in case ξ can be bounded by its objective value, the CS-state is dropped from further

consideration. If ξ is not dropped, then it may be a solution and is eventually stored as the best

new solution, otherwise the alternatives of ξ are sorted by their priority values and, according

to the LIFO principle, added to the candidate list as being the next CS-states to explore. The

algorithm stops when every branch of the search tree either is explored or cut off by bounding.

If a feasible solution exists, ξ ∗ contains the solution with minimal objective value.

5. Computational results

The computational evaluation has been performed on a PC with an Intel-350 MHz processor,

64 MB RAM, and operating system WindowsTM 98. The algorithm has been implemented by

the use of the DelphiTM environment, developer’s edition, version 2.01.

To evaluate the algorithms presented previously we used the testbed provided in Drexl and

Kimms (2001). The instances have the characteristics shown in Table 9. Note that because of the

172 J Sched (2006) 9: 153–176

Table 9 Characteristics of the
testbed T O easy hard

10 3 1:2,2:5,7:8 1:8,1:7,2:8

5 1:2,2:5,7:8,3:4,6:7 1:8,1:7,2:8,1:6,2:7

7 1:2,2:5,7:8,3:4,6:7,2:3,5:6 1:8,1:7,2:8,1:6,2:7,3:8,1:5

15 3 1:2,2:5,7:8 1:8,1:7,2:8

5 1:2,2:5,7:8,3:4,6:7 1:8,1:7,2:8,1:6,2:7

7 1:2,2:5,7:8,3:4,6:7,2:3,5:6 1:8,1:7,2:8,1:6,2:7,3:8,1:5

20 3 1:2,2:5,7:8 1:8,1:7,2:8

5 1:2,2:5,7:8,3:4,6:7 1:8,1:7,2:8,1:6,2:7

7 1:2,2:5,7:8,3:4,6:7,2:3,5:6 1:8,1:7,2:8,1:6,2:7,3:8,1:5

30 3 1:2,2:5,7:8 1:8,1:7,2:8

5 1:2,2:5,7:8,3:4,6:7 1:8,1:7,2:8,1:6,2:7

7 1:2,2:5,7:8,3:4,6:7,2:3,5:6 1:8,1:7,2:8,1:6,2:7,3:8,1:5

40 3 1:2,2:5,7:8 1:8,1:7,2:8

5 1:2,2:5,7:8,3:4,6:7 1:8,1:7,2:8,1:6,2:7

7 1:2,2:5,7:8,3:4,6:7,2:3,5:6 1:8,1:7,2:8,1:6,2:7,3:8,1:5

50 3 1:2,2:5,7:8 1:8,1:7,2:8

5 1:2,2:5,7:8,3:4,6:7 1:8,1:7,2:8,1:6,2:7

7 1:2,2:5,7:8,3:4,6:7,2:3,5:6 1:8,1:7,2:8,1:6,2:7,3:8,1:5

construction scheme each of the (non-trivial) instances has at least one feasible solution. Various

planning horizons T were considered each with 3, 5 and 7 different option types and with two

different hardness categories w.r.t. satisfying the restrictions, namely easy and hard.

The algorithm has been applied three times to all problem instances, each with a different

priority rule PR-1, PR-2 and PR-3. As indicated the l p-norm has been used. The performance of

the algorithms has been measured in terms of

� the run-time needed to find a feasible solution, satisfying Formulation 1, together with the

number of failure steps (i.e. the number of boundings induced by an empty solution space of

a subproblem) until such a solution was found;
� the run-time needed to find an optimal solution, together with the total number of failure steps

until the search tree was fully explored;
� the percentage deviation between the objective value of the first solution and the optimal

objective value.

The computational results are given in Tables 10 and 11. The tables cover the results for the

different priority rules distinctly; the first entry in columns find and opt(imize) represents the

number of failure steps while the second denotes the run-time in hrs:min:sec. Entries in the

column % denote the deviation between the first and the best solution found. An entry not
comp indicates that the computation has been aborted because of exceeding the time limit

of 3 h.

At first sight, the distinction between easy and hard problem instances is confirmed when

comparing the results, especially when comparing the run-times needed for optimization. This

can be explained by the fact that the instance generator tends to produce less variety of variant

types with higher demand rates when using easy restrictions than it does by the use of hard

J Sched (2006) 9: 153–176 173

Table 10 Computational results—easy instances

T O PR-1 PR-2 PR-3

10 3 0 0 0 1 0 0

0:00:00 0:00:00 0.00 0:00:00 0:00:00 30.77 0:00:00 0:00:00 0.00

5 0 1 0 0 0 1

0:00:00 0:00:00 0.00 0:00:00 0:00:00 18.75 0:00:00 0:00:00 18.75

7 0 0 0 0 0 0

0:00:00 0:00:00 0.00 0:00:00 0:00:00 4.76 0:00:00 0:00:00 0.00

15 3 0 0 0 1 0 1

0:00:00 0:00:00 0.00 0:00:00 0:00:00 52.00 0:00:00 0:00:00 52.00

5 0 33 0 36 0 32

0:00:00 0:00:01 32.14 0:00:00 0:00:01 44.12 0:00:00 0:00:01 26.92

7 3 19 0 7 2 28

0:00:00 0:00:00 15.00 0:00:00 0:00:00 26.09 0:00:00 0:00:00 29.17

20 3 0 6 0 4 0 4

0:00:00 0:00:00 28.00 0:00:00 0:00:00 21.74 0:00:00 0:00:00 14.29

5 0 58 0 52 0 68

0:00:00 0:00:01 0.00 0:00:00 0:00:01 28.57 0:00:00 0:00:01 26.83

7 7 141 0 151 1 104

0:00:00 0:00:02 6.35 0:00:00 0:00:02 20.27 0:00:00 0:00:01 1.64

30 3 0 73 0 57 2 83

0:00:00 0:00:01 17.95 0:00:00 0:00:00 3.03 0:00:00 0:00:01 44.83

5 0 23 0 23 0 28

0:00:00 0:00:01 34.21 0:00:00 0:00:01 25.37 0:00:00 0:00:01 31.51

7 4 101 0 96 7 89

0:00:00 0:00:03 22.40 0:00:00 0:00:03 23.62 0:00:00 0:00:02 16.38

40 3 0 47 0 19 0 31

0:00:00 0:00:02 27.27 0:00:00 0:00:02 19.62 0:00:00 0:00:02 39.62

5 1 788 0 975 4 914

0:00:00 0:00:24 4.40 0:00:00 0:00:24 30.40 0:00:00 0:00:24 5.43

7 55 520 0 381 2 456

0:00:01 0:00:11 16.27 0:00:00 0:00:10 22.60 0:00:00 0:00:11 11.41

50 3 0 223 0 165 0 189

0:00:00 0:00:11 20.34 0:00:00 0:00:10 24.19 0:00:00 0:00:10 18.97

5 7 1144 0 1338 0 1199

0:00:00 0:01:27 29.10 0:00:00 0:01:34 29.10 0:00:00 0:01:28 46.02

7 2 4303 0 15782 2 9867

0:00:00 0:03:15 34.59 0:00:00 0:11:06 32.97 0:00:00 0:08:05 33.92

task find opt % find opt % find opt %

174 J Sched (2006) 9: 153–176

Table 11 Computational results – hard instances

T O PR-1 PR-2 PR-3

10 3 0 0 0 0 0 0

0:00:00 0:00:00 0.00 0:00:00 0:00:00 60.67 0:00:00 0:00:00 60.00

5 0 0 0 0 0 1

0:00:00 0:00:00 0.00 0:00:00 0:00:00 43.48 0:00:00 0:00:00 43.48

7 0 1 2 3 0 1

0:00:00 0:00:00 0.00 0:00:00 0:00:00 19.23 0:00:00 0:00:00 19.23

15 3 0 0 0 0 0 0

0:00:00 0:00:00 0.00 0:00:00 0:00:0 68.75 0:00:00 0:00:00 64.29

5 0 0 0 0 0 3

0:00:00 0:00:00 33.33 0:00:00 0:00:01 52.63 0:00:00 0:00:00 53.85

7 0 19 0 24 0 38

0:00:00 0:00:00 25.00 0:00:00 0:00:01 40.00 0:00:00 0:00:01 35.71

20 3 0 0 0 0 0 0

0:00:00 0:00:00 0.00 0:00:00 0:00:00 72.73 0:00:00 0:00:00 68.42

5 0 0 0 80 1 17

0:00:00 0:00:01 31.43 0:00:00 0:00:05 51.02 0:00:00 0:00:01 47.83

7 1 3382 0 5169 4 2084

0:00:00 0:00:58 21.43 0:00:00 0:01:01 43.59 0:00:00 0:00:57 33.33

30 3 0 0 0 0 0 0

0:00:00 0:00:00 0.00 0:00:00 0:00:01 69.84 0:00:00 0:00:01 65.45

5 0 15765 0 73164 7 9669

0:00:00 0:04:02 25.71 0:00:00 0:16:02 44.68 0:00:00 0:04:07 35.00

7 4 390611 0 not 530 not

0:00:00 2:37:54 15.52 0:00:00 comp 0:00:07 comp 28.37

40 3 0 6 0 0 0 112

0:00:00 0:00:00 0.00 0:00:00 0:00:01 57.50 0:00:00 0:00:05 52.78

5 1 310066 0 126966 22 not

0:00:00 1:58:15 23.23 0:00:00 1:46:16 44.79 0:00:00 comp

7 408 552160 0 not 1728 not

0:00:10 4:32:37 16.84 0:00:00 comp 0:00:45 comp

50 3 0 14271 0 5963 0 9608

0:00:00 0:03:53 23.94 0:00:00 0:05:47 0:00:00 0:03:55

5 0 415981 0 not 0 not

0:00:00 2:52:44 37.82 0:00:00 comp 0:00:00 comp

7 28862 not 33 not 11864 not

0:10:16 comp 0:00:01 comp 0:05:26 comp

task find opt % find opt % find opt %

restrictions which typically result in a broad variety of variant types with small demand rates. In

view of the huge number of potential sequences, problems arising from easy instances induce a

search tree with smaller size. Implicitly, the characteristics of the option restrictions have great

influence on the run-time.

It is generally noticed that a feasible solution is found quite fast when using the priority rule

PR-2, even for larger-sized problems (compare the results of T = 50, O = 7, category hard).

Here the effect the criterion aimed at has been reached, in contrast to the rule PR-3 which failed

to fulfill the expectations.

J Sched (2006) 9: 153–176 175

With respect to optimizing the sequence the priority rule PR-1, choosing an alternative with

locally cheapest value is of some advantage compared to the others. Here the deviation between

the first and the best solution value is rarely worse than 33%, while the other rules result in much

greater deviation. On the basis of these observations it can be concluded that by using PR-1,

finding a feasible sequence fast through the algorithm is fast and the value of the first sequence

is an upper bound close to the optimal objective value.

Apparently, in general, the run-time gap between the first and the best solution is large for

larger problems. This seems to be due to a poor lower bound on partly constructed sequences. A

bound regarding the variant ranges given by the function possV would probably result in a much

better run-time performance. However, a comparison between the amount of failure steps and

the huge number of potential sequences shows that the solution procedure is quite powerful in

decreasing the search space. This is due to the specification method which succeeds in bounding

the problem in early stages of the construction of a sequence σ .

Acknowledgment The authors are indebted to two anonymous referees for their comments and suggestions which
greatly improved the readibility of the paper. Thanks also to Nils Boysen for pointing to some flaws in a previous
version of the manuscript.

References

Bard, J. F., A. Shtub, and S. B. Josh, “Sequencing mixed-model assembly lines to level parts us-
age and minimize line length,” International Journal of Production Research, 32, 2431–2454
(1994).

Bolat, A., “Efficient methods for sequencing minimum job sets on mixed model assembly lines,” Naval Research
Logistics, 44, 419–437 (1997).

Dincbas, M., H. Simonis, and P. van Hentenryck, “Solving the car-sequencing problem in constraint logic pro-
gramming,” pp. 290–295, in Proceedings of the European Conference on Artificial Intelligence (ECAI-88),
München, (1988).

Drexl, A. and C. Jordan, “Materialflußorientierte Produktionssteuerung bei Variantenfließfertigung,” Zeitschrift
für betriebswirtschaftliche Forschung, 47, 1073–1087 (1995).

Drexl, A. and A. Kimms, “Sequencing JIT mixed-model assembly lines under station-load and part-usage con-
straints,” Management Science, 47, 489–491 (2001).

Inman, R. R. and R. L. Bulfin, “Sequencing JIT mixed-model assembly lines,” Management Science, 37,
901–904 (1991).

Kim, Y. K., C. J. Hyun, and Y. Kim, “Sequencing in mixed model assembly lines: A genetic algorithm approach,”
Computers & Operations Research, 23, 1131–1145 (1996).

Kis, T., “On the complexity of the car sequencing problem,” Operations Research Letters, 32, 331–335 (2004).
Kubiak, W., “Minimizing variation of production rates in just-in-time systems: a survey,” European Journal of

Operational Research, 66, 259–271 (1993).
Kubiak, W., S. Sethi, “A note on ‘Level schedules for mixed-model assembly lines in just-in-time production

systems’,” Management Science, 37, 121–122 (1991).
Miltenburg, G. J., “Level schedules for mixed-model assembly lines in just-in-time production systems,” Manage-

ment Science, 35, 192–207 (1989).
Monden, Y., Toyota Production System—An Integrated Approach to Just-in-Time. Chapman & Hall, Cheriton

House/UK, 3rd edition (1998).
Parello, B. D. “CAR WARS: The (almost) birth of an expert system,” AI Expert, 3, 60–64 (1988).
Parello, B. D., W. C. Kabat, and L. Wos, “Job-shop scheduling using automated reasoning: A case study of the

car-sequencing problem,” Journal of Automated Reasoning, 2, 1–42 (1986).
Scholl, A. Balancing and Sequencing of Assembly Lines. Physica, Heidelberg, 2. edition, 1999.
Steiner, G.and J. S. Yeomans, “Level schedules for mixed-model, just-in-time processes,” Management Science,

39, 728–735 (1993).
Sumichrast, R. T. and E. R. Clayton, “Evaluating sequences for paced, mixed-model assembly lines with JIT

component fabrication,” International Journal of Production Research, 34, 3125–3143 (1996).
Tsai, L.-H. “Mixed-model sequencing to minimize utility work and the risk of conveyor stopping,” Management

Science, 41, 485–495 (1995).

176 J Sched (2006) 9: 153–176

Yano, C. A. and R. M. V. Rachamadugu, “Sequencing to minimize work overload in assembly lines with product
options,” Management Science, 37, 572–586 (1991).

Zeramdini, W., H. Aigbedo, and Y. Monden, “Bicriteria sequencing for just-in-time mixed-model assembly lines,”
International Journal of Production Research, 38, 3451–3470 (2000).

Zhang, Y., P. B. Luh, K. Yoneda, T. Kano, and Y. Kyoya, “Mixed-model assembly line scheduling using the
Lagrangian relaxation technique,” IIE Transactions, 32, 125–134 (2000).

