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COMPUTING

= DCIENCE

CAN'T GeT NO SATISFACTION

Brian Hayes

Y::-u are chiefl of pml:.::-n::-] for the embassy
ball. The crowm prince irstructs you ei-
ther to invite Peru or to exclude Qatar.
The queen asks you to invite either Catar or Ko-
mania or both. The king, in a spiteful mood,
wants to snub either Komania or Peru or both. ]u.
there a guest list that will satisfy the whims of
the entire royal family?

This contrived hitle puzzle is an instance of a
problem that lies near the oot of theorstical com-
puter science. It is calked the satsfiabiliby problem,
cr'SAT, and it was the first member of the notonows
class known & NP-complete problems, Thess are
computational tasks that seem intrirsically bard,
but after 25 years of effort no one has 'l.r:t J:In::m:u:l
'H'l.:’r'lh&\r.:rc recessarily difficult b remaires possi-
ble I:I']'u.'luE;h unlikehy] that e are simply attacking
them by clumsy methods, and if we could dream
up a clever :'lhu::rll:hm ﬂ'E'l.r wonld all turn ouk bo e
masy Setiling this q_uesl:u::rl is the mimst corspicuous
open challenge in the theory of computation,

SAT also has practikal importance, In artificial
intelligence vanous methods of legical deduction
and ‘|:|'|=|.1n.-n'|-J:|n.11.rinEl are related to SAT. And
similar issues arise In computer software for
scheduling, such as assigrning flight crews to air-
craft or planning the produchon run of an auto-
mobile factory.

In recent years SAT has attracted further atten-
tion for ancther reason. Fn]l:l'luuhh the hardest
SAT Fm]:ll.emﬂ. dio we=s=m very hard, many p.rl.'ll:!-
lem instances yield sasily ko e'lemen’r.:nr meth-
ods. 1f you make up thousands of SAT J:ln::-'bli:mu.
at r.:ndn::-m, simple algorithms quickly sclve all
but a few of them. L.u::-u::-lunEI at these results more
Cli:ﬂ.E']".l; Jn\rﬂ.‘l:lﬁ.:h::-ru discoverad a curious Pﬂ‘l‘-
tern. The hard and masy irstances ar= not mixed
up haphazardly; as a certain parameter is varisd,
the problems go from easy to hard and back fo
easy again. A physicist looking at this pattern
would note a resemblance to the critical behavior
observed near J:lh.:ne transitiors 10 fluids and
magnetic materials, And indesd there is a corne
sponding phase transition n the SAT system: [n
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one phass almest all the propositions can be sat-
isfied, but in ancther phass almest none can. The
cases that are hardest to resolve lie near the tran-
sition between these regimes.

The connechion betwesn SAT and the physics
of phase transibions strikes me as a surprsing
one—a classic who'd-have-thunk-it result. We
are accustomed to using mathematics & a tool
for interpreting the physical world, but not the
other way around. And yet the h.ne—tm n=ibon
model of SAT works so well 'H-l.:t it cannet be a

mere n'|n:'|:.:|]:||'||::-rll much les a coinadence.

P and NP
The problem of the embassy ball is small enough
to be solved by even the mest plodding of meth-
ods. The F-n::-'l:flzm 15 I'|.‘FIE"'|EI'I‘|E|:| '|:|1,r the formula:

(P O —if] AND (i OR F) AND(=F OR —F]

Here 2, § and r are Boolean variables, whoss only
possible values are frue or f2ise. The - symbol indi-
cates negation, so that - & read “not p.7 The Logi-
cal or |.1|:r|=r.:||:i|::r| 15 defined so that I:P OR q’:l has the
value i if either P or § is B, whereas (P asao )
evaluates to B only if both pand g are e

With thres vanables, each of which can take on
either of bwo values, thene are 27 = 8 posible label-
ings, or ways of assigning values o the variables
T'rl,rjnﬁ =ach of Hae '|a'|:le'|inﬁ:|. in turm reveals that
ey of them H-!l'lt'.f".l' the formula n.:lm=|1.r|l:' = fraie,
g = true, r = filse .:ndiu = false, q = false, 7 = Fue. ]n
other words, you can stther irvite both Peru and
Latar or you can invite Komania alone, Every oth-
er labdlirg viclates at least one of the moyal edicts,

The brute-force= enumeration of '|a'|:||:'|in|_.:_h.-t 15 nest
a practical approach to larger SAT problems. For
a formula with 1 variables, the number of possi-
ble labelings 15 2%, a funchon that grows so fast
the search becomes exhaushing rather than ex-
haustive when # 1= no more than 40 or 50, The
presence of such exponential growth in a com-
pu tational task 1= a telltale siﬁn of a hard p.rl.'lblem
or an inefficient algorithm,

Algorithmic performance is measured as a
furction of problem size 7. To compare two alge-
rithms, you observe how their execution times
change as # becomes arbitrarily large. For exam-
Pl loganthmic, licear, quadratic and cubic alge-



rithms have running times proportional o log 1,
n, Mt and n3 rﬂpn.-cl:l'l.rehl: All of thes= .:]EI::-rJI:hrru.
:|I'ECL:|"I-EH fied as polynomial-ime methods; so are
thises deseribed I:ﬂ.r ary hlE,'hr.-r power of @, such
as A5 or even A

Ancther group of algorithms have running
time characterized by an exponential funchion—
that 15, a Funchion whers the vanable 7 appears in
the= =:-|.J:n::u1&n|: as In .I?k"li'| 2" oran®. The |:||::-unn:'|.:|rl.r
bebu=en FI.1|.'||I'I'I|::-I'I'II.:|] .:nd EH.FH.I'IE'!'II:I.J] alaurl'lhm:
i5 a kind of continental divide in computabional
complexity theory All exponential algorithms are
slonwsr than all Fn::-'|1.l11::-m|.:|'| ores for large encugh
values of 7. For this reason polynomial alge-
rithms tend to be seen as fast and practical,
whereas exponential ones are dismissed as hope-
lesshy inefficient.

The same scheme that rates the efficiency of
algerithms can also evaluate the -:]lffli:u]hr af
F-n::b]zms A le:ﬂem i==aid ko be in the class P if
there i= a polynomial-ime algorithm for solving
it. Unfortunately, the converss assertion is not so
simple to establish. [ust because no one has
found a polynomial-time .:l.;jl_,l.'lrlt'l'lm for a prob-
lem doe=nt mean the problem is not in 2 Per-
|'|.:||:u. some afficient alh::-rll:hm E:II:IHJ:"I- but we
hawven't been smart EI'Ii:-IJBI'l o fiElurE- it out. Hur-
dreds of problems remain suspended in such a
computational limbo, Mo polynomial-time algo-
rithm 1= known for them, but neither 15 a proof
that efficient algorithms do not exist, SAT is
among thewe unsettled and un:l.-el.'|:|.ir|,'|.:| Frublemu.

Specifically, SAT is included in the class of prob-
lems desigrated MU, which stands for “nondeter-
miriztic J:ll.'l]'l.mrlml.:ﬂ These are problems that
cannot be solved in polynomial time (as far as
amyone knows), but if you could guess the answer,
yui could Effn:lenl:l\r check ibs correctness, For SAT
the checking p.rn:edun.- is easy. Given a proposed
L:I:-EhnE_, mere'hr substitute the H.FE\:I.er.'\d tr1ee and
Jalse values for all 7 variables and make sun= the
resulting formula is trne. The time nesded for this

computation is a linear funchon of i,

SAT 15 a member not only of M but also of the
more exclusive club called NP-complete. An M-
coam p]r:l:e p.rl.'ll:!]em 1% a masber 'Le:.r to the entire
set of MI* problems. IF a polynomial-time alge-
rithm could be found for any one MlP-complets
pn1|:11|:m then it could ]:lt"ﬂd.:lj:ltt"d to all problems
in ME SAT was the first problem shown bo have
this property (by Stephen Cook in 1971). Among
other MP-complete problems are some celebrated
ores such as graph colorng and the traveling-
salesman problem. Significantly, evidence of
phase trarsitiors and crbical points has turned
up in some of these problems as well,

Backtracking

Althoug hh we have no Pt:-l.".l'nl::-l'l'll.!.l-’tll'l'le alh::-
rithm for SAT, we can do better than exhaustive
search. One popular method of solving SAT
problems is called backtrackiog, The basic strate-
BY 1= to r.'.'-cj:!lun: a brandh of the tres of FI.HB.“:'IE
solutions untl Yo come to a dead EI'IC] then
back up to some =a rli=r chioice J:h::unt and I:rl.r ar-
other branch. If that path also faik, you hack up
further =tll, to an even earlier deciion point, ure
kil E\I'EJ'II:IJJ"_'I.I' yvou either find a solution or run
out of brarmches.

SAT algorithmes are usually designed to work
on Boolean expressions writhen in a format called
conjunchve normal form (CRF) InCNF emls are
grouped together to form dmses, which are as-
sembled into a forsoda, A literal is just a vanablein
either affirmatve or I'IE'.I.Fti\l'E form:; ‘l:huu.P.:n:] -p
are both literals. A clauses 1= a s=t of Literals jL'liJ'Il.'d
by ok (p ok —if) & a dawse of length 2. [n a formula,
clauses are linked by ann, as in (] amD (f Ok 7).
Mote that the formula Ei\ren abowve for the em-
bassy-ball problem is in conjunctive normal form.,
.r"u.rn,r Boolean e:l-:l:hn.-xuun can be corverted Into a
sem.:n'l:l:.:l”:.r eq_unr:]nnl: CMF fL1rmu1a w0 there 15
nes Joes of generality in focusing on I:hjs one kind
of expression.

The orderly structure of a CNF formula stream-
liness the search for a labding, Because all the con-

3,000

oo mpLiaia nal cosi
M
B
o

B
L=
|

rafio of clacess b vaniabk=s

Figure 1. Salisflability problemn, SAT, undergmes a phase iramsition. Each of the 5000 dots represents asingle instance
of the problem; blue dots ame satisflable instances and md dots wnsatisfiable. Height on the graph indicabes the cost of
finding a solution. The mst reaches a peak where the instances change from mosily satisflable ko most unsatisfiable.
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nectives irside each clause are OR operators, any
drue literal in a clause makes the entire clause fre.
On the other |'|.:|n|:| becauses the clauses ar=linked
'bn.r AN .:n1.r‘|'|"!|'5£' cl.: Lees i ke thes sntines formu-
'|.:_I|"E|"i£' Ter put it ancther way, a frue formula is
any CNF expression that has no fals clauses;
note that this definition includes the empty for-
mu].:l with no clauses at all. Curnrr.-r'uzhl; a brue
i:|.:|u5.e must have at least one e literal, so that
an empty clause & false.

The backtracking algorithm for CAF formulas
can be imagined as a contest bebween bao play-
ers, the Optimist and the Pessaimzt, The Optimist
strives o find a Mt"'hr"-ﬁ |a|:|r:1|nh|:-\r ||::-|::-'|-unﬁ i
each clause for at l=ast one frae literal. 1f she finds
one, she stnkes out the entire clause. If she can
eliminate all the clauses in this way, then the orig-
inal formula is satisfiable. Meanwhile the Pes-
simist searches fn::-r‘|"ﬂl"i£' literals and remeves them
from the clauses in which they appear. If she can
shimar that E'UEI'F]E]:EI.II‘IE ".l'leln:]!i at least one em]:!l:'l.r
clauses, then the formula 1= ureatsfiable.

The :]bl.‘lrl'H'l m is stated a5 a recurive procedure
in Figure 2. Here 15 how it might be applied to the
embasy-ball formula (p or =] axe g ok 7) ann
(—r of —p). First, choose the variable pand assign it
a provisional value of frie. The assignment makes
thes clauss l::llJl’."P. —q:l brue, 50 you can erass it; also,
in the clause (—r c& —pj, remove the —p. These ac-
tions leave the reduced formula (§ oR 1l aso (-],
o which you can now recursively apply the same

rocedure. 5-=|:+an q tes Frize eliminates the first
clause and leaves (—r] as the enbire formula. Con-
tinuing in the same way, you s=t 7 to e, buk now
you encounter a conflick: =ris false, and strking it
leaves the empty clause (). You must therefore
backtrack to the mest recent decision point—
ia n're-]'l,r the F-u::-ln'l: wrhe=re yi st 7 bo brus—and |:rl,r
the= c:-FFnu::u..lI:e chioice. Blow with the variable 7 f.:he
the literal —r becomes true, and you srase the en-
tire clause (—r). The form uL:l is empty. You have
found the labeling p = trie, g = true, r = false.

The backtracking algorithm works ne magic;
like all other known solutiors to EJ'-'LT it has ex-
J:ln::nenl:l.:] runrunEI hme 1n the worsk cass= [f you
are= unluchr, bacL‘h‘:cL.lnﬁ can take ]usl: az ||::q.nh
as exhaustive search, but in practice it often runs
much faster because it can prune whole limbs

precedure Backrack|brme, wvanablss, hbeing

H formada is empty, rsburn Ashefing.

Ebe if formuia induds=s an smpty clause, report failurs.

Eke chonss an unassigned variable, say x, and ghvs il the vals
=, Throughout fommsa, il a dause includes the lik=al x,
=rEe the erlire clause if a dases ndudss -y, erase the
~¥. Repor the result of:

Backirack|iormuda, [varables — &), [labefing + (= i)
Ebe set x40 fals=. Throughout farmala, Fa clauss incldss the
literal x, =rass= the = if a dauss ndud=s -, erase the

=ntire davse. Aeport the resull of:
Backirack|iormuda, [varabes — x), [labeling + (x = fals=j]).

Flgure 2. Backimcking algorithm For satisfiability has exponential
performance in the worst case bul aften does belier in practice.
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from the search tree without exploring their
leaves. Performance is sometimes improved by
heurnistic rules for choosing which vanable to la-
b=l re=xct, & F.!I'tli.'uh r11.r strong Fe=uristic was not-
ed by Martin Davis and Hilary Putnam as early
as 1960, Tt nugﬂcsts attending fi first to army variable
that appears in a singleton clause—a clause with
_|IJ!'I-‘|' one literal. The Davis-FPutnam version of the
h:i:kl:r.:ckinﬁ :|E|.1ri'|'|-|m has become a standard
against which other methods are judged.

Phase Transitions

The classification of problems as [P or NF is based
entirely onworst-case analysis; a problem is ban-
isbe=d from [P if there is even ore instance that e
quires an exponential solution time. But clearly
the average case 15 also of interest. Recent statis-
tical studies of SAT have focused on desenbing
the distribution of hard and easy instances
‘l:'|'|n::-u5'|'||.1 ut the J:l:ul:!lem space. The= Famdiﬁm i=
s Br.-ner.:ll:e a fewr thousand random CNFE formu-
las, then set an algorithm churning away on
them. ¥ou collect records of how many formulas
can be satisfied, and how much effort 15 nesded
to find the solutions.

Most such studies are done with formulas
made up of clauses that are all the same IE"E-H-"
SAT problems with just one literal ineach clause
(knowen as 1-8AT problems) are not very inter-
esting: a trivial hinear-time algorithm solwves
them. 2-3AT problems alse have a linear-time
method, although it is less obvicous, But 3-5AT—
thes st of Formulas with three liberals F=r clause—
ie MP-complete, and so it is just as hard as the
more gereral SAT problem without restrichions
on clause length.

To generate a clause in random 3-5AT, choose
threes distinct variables from the total set of # vari-
ables, then either negate each one or leave itaffic-
mative with p.rc:-'l:l.:bil.H'_l.r Y. Tos build a 3-54T for-
mula with m clauses, repeat the prooess m imes.

[t turns cut the ratio of clauses to vanables,
i n, 1= the crucial parameter for describing SAT
statetios. SuFFuse vou have classifisd a I:'IJI'IC]'I of
3-5AT fermulas as ether satisfiable or net, and
you E,r.:ph the results a= a funchon of w/ R, One
J:l.:l:l:ern you are sure to observe is that the pro-
Fli:-.l'l:IL'lI'I of satisfiable formulas decreases as min
increases, Formulas with only a few clauses and
mnn:,r variables can almost .:]w.:u,m b H-:|+J!E.h‘:d
sice most of the varables appear only onee or
tarice, and a conflict bebavesn them 1= unll'keln.r, in
this region the formulas are said tobe undercon-
strained. At the other end of the spectrum, with
many clauses and few variables, each varable
can be expected to appear In mary clauses, so
that conflicks are f:eq_u:nt' he=re= the formulas are
cvercorstrained, and few of them ars satisfiable.

Thi= bn.-neml I:rend from usually satisfiable fo
rarely so is easy enl.'lug'h to urnderstand, What is
harder to |='-:J:l|.:||n iz the detailed shape of the curve
{see Figure 3. For small formulas {say i = 10 vari-
ﬂb]ﬂ.:l the= tran=sihon 1= .f.:llr]\r hrﬂd”':'] but it b



comes steeper as i increases, At = 5, the prob-
a'|:||'|1|:1,r of satisfiabili ||:1,r :|.'|:.:|1,r:|. closes o 1 For m /7 ra-
bos up to about 4; |:|'|=n the Frl."bﬂl:'lll':".l' falls
sl:n.-ephr and remaire closs 1o () at all ratics greater
than about 3. In other words, almest any formula
with 51 variables and 200 clauses can be satis-
fiecl, but with 50 variables and 250 clauses, sabis-
fiable formulas are rare. The .:brup'l:nm of this
transition 1s intriguing. And it gets even sharper,
approaching the form of a step funchion as 1 be-
comes arbitrarly large.

The steepness of the crossover is one reason for
describing what happens in 5AT as a phase tran-
sihon. Cl-unhﬂ of state n the F|'|1,r:|.h:.:|| world ars
simila r]'l.r .:l]:!rupl: Water = a |J|:_|un:] atl dzhme Ce=}
sius but a solid at -1 degree. The EI:EEFEJ'III'I"I.J of the
SAT trarsition as the system gets langer 1= also a
charactenistic of phase changes, although a less-fa-
miliar one, When you measure size by counting
atoms, just about anything is enormous, and =0
the :|.|::-.f'|1=r F-ha:l.e tran=ihons of small "|-"|l"'I|:|.'J1'I='. are
seldom .:FF-.::Ent in etrerl.rd.ur EH.F-EFIEI'IEE Mever-
theless, experiments and simulations that vary
the number of partick= in a sample gererate fam-
ihies of curves much like those in Figure 2

-.|'.:||:huL:||:ir|,'|.:| the effort reeded o sobre mach anﬂ:!-
lem instance brinﬁs further illuminabon (=8 .Ff_q—
e 41, At a lonw mbio of cdlavuses to vanables, the
problems are mostly easy. At very high ratios, the
effort FEF P.I'L'lbl.n‘:m 1= L1n1'l.r a litHe greater. In be-
bween i= a hump in the curve whers the average
d.lffli:u]l::,r i= much Hlﬁher thi= Pr.-.:'k in solution
coat EI.'UFEEFI.‘II'IC]H- to the crossover r-=E|.i|.1n n the
probability graph. For amy given value of 0, the
highe=t concentration of hard problems comes at
an M/ % ratio rear the point whers 50 percent of
the formulas are sabisfiable Ao, as 1 increases
and the cressover becomes mores .:I:!rupl:l, the pea k
in the= cost cu rve grows d.r.:m.:hi:a"'l.r taller.

Here 15 a qualitative expla nation of the cost
curves In the underconstrained region (at a low
mSn oratic] a l".rl:ili:ﬂ] formula has many possible
solutiors, and =o it takes Little effort to find cne.
For E':I-:.!II'I'IFI.'E the Davis-Putnam .:|'|E'|::-r1|:|'| m ol
procesds straight to a sabisfying assignment, with
little or no backtracking, Chwverconstrained for-
mulas, on the other hand, are almost all unsahs-
fiable, with dozens of Iiterals in conflict; an alge-
rithm will usually expose a fatal JI'IcI."I'I:I.I'I-"EI'IC'.I'
after checking .::-.n|.1,r a small fraction of the possi-
ble labelings. The middle of the curve is whers
problems are hard because this is the realm of
Just-barely-satizfiable and almeost-sabisfiable for-
mulas. Here many partial labelings can be ex-
tended almest fo completion before an nconsis-
|:|:n|:1,r app=ars Thus few branches of the solution
tree are pruned away =arly.

Liks the p.r|.1'|:la'|:||'||1:l.r curve, the SAT cost curve
will look familiar to studerts of phase trarsibions
and critical phenomena. The canonical system for
the study of critical behaviorisa .ﬁ=rn::-rn.:|E,net near
it Curie Fl.'llnl: which 15 the ‘l:em]:ler.:'l:ure where

the material loses all I'I'I.JEI'IEEIMEIHI'I Aboore the
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Curie temperature, the skectron spirs that give rse
to ferromagnetism ars randomly onented, and so
|:|'|El|l' cancel out and leave no nst m.:hnel:l.a..:ll:n:m
As the material cooks toward the Curke point, clus-
ters of spire line up in parallel, and at the Curne
|_:n::-||'||: itsell thess clusters become effectnrely infr-
nibe in extent: A magnet & bom. The Curie J:II.'III'IIZ
also marks a sharp peak in the magnetic suscepti-
bi]i{'_l,r—l:hn.- matenal’s Mn:ﬁ‘l:iﬁi:_l,r tev a small external
field. At high temperature, an applied field has Lit-
He effect because thermal agitation dsrupts amy
incipient rruﬂrleh..m:] ret._'il.'lns At low EEmperaturs
the suscephbility 1= low again, but for a different
reason: A weak extermal field cannot overcomes the
e=tablizhed I'I'I.!hl'lel:l.."ﬂ‘l:ll."rl Mear the Cure J:!|.1| nk
the matenal = ﬂq_umlh.-hr snathive; the smallet
imposed field can reverse vast numbers of spirs.
A graph of the suscephbility rear the Curie tem-
p-cr.:ll:u re looks just like the SAT cost curve, includ-
ing a tendency for the peak to become steeper and
b shift to -ﬂlE;hl:l\r lower I:empemture. as the size
of the ‘i}r‘i-‘h.‘l'l'l ITCren sess,

DhamatisFach ons=
The idea of interpreting events ina purcl.'l.r math-
ematical nvsl:em as Fh.:w: transthons 15 not new.
The =arliest irstance [ know of was in the conbext
of Elrﬂph |:|'|i=|.1r:.l;, and u.]:u.-q:|f|:.:||.|:.r in the :I:uc]:.r of
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graphs grown by randomly adding edges tocon-
niect a set of vertices, This was a fi=ld Fiuneenzd
'I:r_l.r the late Paul Erdos: in 1960 Erd s and & lbert
Hé'rl.ri 1l et fied "u.harj:l threshiolds” in the con-
necl:l'l.rl'l'l.r of random graphs.

Later, in fhe 1980k, phase transitiors in van-
ous computational systems (including SAT) were
discussed by Richard Karp and Judea Pearl, by
Paul W. |.:'un:'||::-.n'|ll Ir., by Scott Kirkpatrick .!I'IC] <.
H. Swendsen and by Bernardo A Huberman and
Tad Hogg. In 1991 a parbicularly influential paper
was published by Peter Cl'remm.:ln, Bob Kanef-
sky and William M. Taylor. Titled “"Where the
Rﬂil'_l; Hard Problems ﬁm:, it reviewed evidence
i:-rFI'I.!IHE trarsitiors and critical Fu::-inl:s n several
MP-complete problems. Chesseman and his col-
leagues offered a conjecturs that phase transi-
tions are not merely a commen feature of MNIEP-
complete problems but in fact are a defining
characteristic of all such F-n::-H:mm

The pa sk =six years hawve se=r further =:-|.|_:r-||.1-
ration of thess themes. Much of the recent work
is summed up n a special issue of the journal
Artificinl Intelligerce, edited by Hogg, Huberman
and Colin Williams, titled Frontiers in Problem
Solving: Mhase Transitions and Complexity.

En.r nowr 1t s=ems well sstablished that F-h.:lse
transiticns in SAT are intrinsic to the problem it-
self; they are not an artifact of any particular al-
EI.‘IFIH'IITI Furthermiore, phase transitions exisk not
just in SAT but alss in many other MP<complete
J:ln::-]:!l-:mm And \re-‘l' the connection behwsen BP-
i:|.1m|_:r-|=I:enE'1.= and Fh.:*u.- transitions 1= not a sim-
ple one. One might ke o declare that if a prob-
lem has a phase transition, it must be in ME, but
that is not so. There are problems in [? that un-
derge phase changes and show the characterstic
Eﬂ!'lf‘-.l'lﬂl'\:]-tﬂ!'lf Fa‘l:l:e-m A5AT 1= among, thiem.
Cumremehr, there a re problems in M whose hard
iretamce== are not clustered at a FI‘I.:H-E bounda ry;
the traveling salesman problem is an example.

[n nature, phase trarsibions are cdassified as con-
tinuous or disconbinuous;, for example, the onset
of rruﬁmﬁml:in::n i= conhin LI, whereas the fres:-
inﬁ and |:n::-i|.in,!.:| of water are decontinuous, What
about transitiors in SAT? Eecert work by Kemi
Monasson and [Hiccardo fecchina has shown that
the 2-5AT transition & continuous, but the 35AT
transition is discontinuows, Moreover, Monasson
and Een:l'lin.: 'h::-ﬁr.-thzr with Scedtt ]{irl\-.p.:tricl-.
Bart Selman .-.m.:l Lidror Trovareky, have devied a
w.:1.r|::qf |nt=rFL1L:|h ng u.m.::-::-l']'ll.'l.r behwesn thee b
regimes. Working with a model they call (Z4p-
AT, they generate formulas as a random mixture
of clauses that have either two or three literals, in
J:ln::-]:!m‘l:n:m determined |:n,r the P.!Irﬂl'l'lEI:ErP T|'|e1,r
find that their formulas rfain the comtinuous fran-
sibion characterstic of Z25AT up to about p = 04,
and ther=after act more like 3-5AT, wath a discon-
tinuous phase trarsition. This crossover point is
quite different from the boundary betwesn 2-5AT
ard 3SAT in :n::-mpu'l'.:lh onal i:n::-mp]z:-l.lhr |:|'|i=|.1n,r
Given the worst-cass assu mp‘l:n:m of that disci-

Aomerican Soentist, Volune B5

plire, (24p)-5AT is necesarily in M for any value
of [4 Ell'r.'ﬂhﬂ' than zero. ﬂ'le.:\r\eraﬁe-cau.e behavior
1% E\Hd.l!l'll!l.\l' differert: .I""I."J'lfmﬁﬂ runnlnEI Hmie B
FL111.rn::-.M|.:|11.r fesr waluess |.1f.,.l les= than about (14,
and exporentially for langer p.

But what &5 the average case of SAT, and how
difficult is it? These questiors have not yielded
EasY ArEVErs, Thm,r e req |]1,r |:|_IJE.'I.+JI.'II'I"|- riot about
how to solve SAT Fil'l.'lbli:I'I'IH. but about honwr ke
generate representative sets of SAT instances.
And even given a well-defined distnbution of in-
stances, measuring the average difficulby is not
straightforward. The obvious measure is the
mean djfﬁcu“’_l,l; but mean values are so shewed
]:!:.r a fewr i::l-:‘l:re-mzl}r hard formulas that most
aralysis has been done with mediares.

Even if the measure is imperfect, knowing
where the raallly hard problems are fums out to be
ussful, whether your aim is to find them (as in test-
ing algorithms] or o avoid them (as in formulating
real-world problems in meed of solubion).
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