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Abstract

Variable ordering heuristics can have a profound effect on the per-
formance of backtracking search algorithms for constraint satisfaction
problems. The smallest-remaining-domain heuristic is a commonly-
used dynamic variable ordering heuristic, used in conjunction with
algorithms such as forward checking which look ahead at the effects
of each variable instantiation on those variables not yet instantiated.
This heuristic has been explained as an implementation of the fail-
first principle, stated by Haralick and Elliott [7], i.e. that the next
variable selected should be the one which is most likely to result in an
immediate failure.

We calculate the probability that a variable will fail when using the
forward checking algorithm to solve a class of binary CSPs. We derive
a series of heuristics, starting with smallest-remaining-domain, based
on increasingly accurate estimates of this probability, and predict that
if the fail-first principle is sound, the more accurate the estimate the
better the performance should be. We describe experiments applying
these heuristics, in conjunction with the forward checking algorithm,
to a large set of randomly-generated problems from the same class.
Our predictions are not borne out by the experimental results: putting
more effort into estimating the probability does not in general pay off.
Our results thus refute the fail-first principle and show that the success
of smallest-remaining-domain and related heuristics must be explained
in some other way.

1 Introduction

A constraint satisfaction problem (CSP) consists of a set of variables, each
of which has a set of possible values, known as its domain, and among which
a set of constraints are imposed. A solution to a CSP is an assignment of
a value to every variable such that no constraints are violated. Many types
of practical problem, including many varieties of scheduling problem, can
be formulated as CSPs, so that algorithms which can solve CSPs, or prove
that no solution exists, are of practical importance. Since the CSP is an
NP-complete problem, techniques which improve the performance of these
algorithms are highly desirable.

CSPs are commonly solved using systematic backtracking search algo-
rithms, which repeatedly choose a variable which is currently unassigned,
attempt to assign a value to it, and then either proceed to choose another
variable or, if a failure occurs, backtrack. The way in which the next variable
is chosen can have a significant effect on the size of the search space explored
by the algorithm. Either the variables can be considered in a predetermined
order (a static variable ordering, or SVO) or the effect of the assignments



already made can be taken into account when choosing the next variable,
giving a dynamic variable ordering, or DVO, strategy, which could poten-
tially lead to a different variable ordering along each branch in the search
tree.

In this paper we are concerned with DVO heuristics. A possible basis
for devising DVO heuristics is the ‘fail-first’ principle, introduced by Haral-
ick and Elliott [7], who in the same paper introduced the forward checking
and full-lookahead algorithms. This style of algorithm, which ‘looks ahead’
after each variable assignment, makes DVO particularly appropriate, since
information on the effects of the past assignments is readily available.

Haralick and Elliott expressed the fail-first principle as ‘To succeed, try
first where you are most likely to fail’. They implemented it, in conjunction
with a lookahead algorithm, by a DVO heuristic which chooses next the
variable with smallest remaining domain. ‘Smallest remaining domain’ is
still a popular variable ordering heuristic, and is often seen as synonymous
with fail-first; we shall term it FF in this paper, but it should be emphasised
that this is not the only way of implementing the fail-first principle as a
DVO, and conversely, as we shall discuss, its success may not necessarily be
due to the fact that it implements fail-first.

The study reported in this paper began as an attempt to find improved
variable ordering heuristics based on the fail-first principle for a class of
binary CSPs. This attempt failed, which lead us to some unexpected con-
clusions about the fail-first principle itself.

2 The Fail-First Principle

Our discussion and experiments are based on the forward checking algo-
rithm: whenever a variable is assigned a value, values of uninstantiated or
future variables which conflict with this assignment are removed from their
domains. The assignment fails if, as a result, some future variable has a
domain wipeout, i.e. the assignment causes its domain to become empty;
the values removed are then restored and an alternative value tried instead.
We shall be concerned solely with binary CSPs, i.e. CSPs in which each
constraint affects two variables. The future variables, with their remaining
domains and the constraints between them, then form a future subproblem
which is itself a binary CSP.

In discussing the effect of changing the order in which the variables are
assigned values, Haralick and Elliott [7] make the assumption that ‘the best
search order is the one which minimizes the expected length or depth of each
branch’. They show that the expected branch depth can be minimized by
choosing at each level the variable which has the smallest probability of suc-
ceeding, and therefore the smallest probability of becoming a parent node.



The fail-first principle therefore says that we should choose next the vari-
able whose success probability is smallest, in order to minimize the expected
branch length and thereby minimize the search cost.

For forward checking, the success probability is the probability that at
least one of the remaining values of a variable does not cause a domain wipe-
out. Haralick and Elliott show that under certain assumptions, the success
probability is minimized by choosing the variable with smallest remaining do-
main. In this paper, we calculate the success probability more precisely for
a class of randomly-generated binary CSPs and hence derive new heuristics
implementing the fail-first principle.

3 Variants of ‘Smallest-Remaining-Domain’

As well as new fail-first heuristics, later in the paper we evaluate a number
of existing variants on the FF heuristic. These variants express the intuitive
idea that a variable which constrains many future variables is also likely to
cause a domain wipeout, so that the degree of the variables should be taken
into account as well as their domain sizes.

e When all variables have the same initial domain size, a variant of the FF
heuristic is used by Frost and Dechter [4] which selects the first variable
to instantiate as the one with the highest degree, i.e. the one constrain-
ing the largest number of other variables. Thereafter, the ‘smallest re-
maining domain’ strategy is used. We term this DVO heuristic FFdeg,
for fail-first with initial degree ordering?.

e A DVO heuristic originally developed for graph colouring problems
by Brélaz [2] can also be applied to CSPs. The Brélaz heuristic (BZ)
selects the variable with the smallest remaining domain and breaks
ties by selecting the variable with the highest future degree, i.e. the one
constraining the largest number of future variables.

e Bessiere and Régin [1] show that the SVO which considers variables
in descending order of degree gives good results in comparison with FF
when the constraints are sparse, but performs very badly on complete
constraint graphs, when it degenerates to lexicographic ordering. Con-
versely, FF does much better when the constraints are dense, since the
fact that it ignores the degrees of the variables becomes less important.
They proposed a heuristic, dom/deg, which combines the two and min-
imizes the ratio of current domain size to (original) degree. Here we

!Frost and Dechter referred to this heuristic simply as DVO.



consider a variant of this which minimizes the ratio of current domain

size to future degree.?

4 New Fail-First Heuristics

In deriving the ‘smallest-remaining-domain’ heuristic (FF) as an implemen-
tation of the fail-first principle, Haralick and Elliott [7] assume that the
probability that the assignment of a value to a variable fails (in the context
of forward checking, results in a domain wipeout) is the same for all available
values of all unassigned variables. On that assumption, the probability that
the variable chosen will fail (i.e. the probability that every value will lead
to a domain wipeout) is maximized by choosing the variable with smallest
domain. However, it is clear that other factors, such as the number of future
variables which each variable constrains, also affect this probability. The
variants of FF already discussed take some account of the future degree of
each variable. However, if we want to follow the fail-first principle, it would
be better to incorporate these other factors when calculating the probability
of failure.

We calculate the failure probability for a class of binary CSPs. We as-
sume that there are n variables, that the set of pairs of variables which have
constraints between them is known, and that each variable has m possible
values. When there is a constraint between two variables, the constraint
tightness, i.e. the probability that two values are inconsistent, is a constant
pe for all constraints. Suppose that after a number of successful past as-
signments, we have a future subproblem consisting of a set F' of unassigned
variables, each variable v; € F' having current domain size m;. If there is a
constraint between two of these variables, v; and v;, then due to the values
which have been removed from their domains by the past instantiations, the
current tightness of this constraint is p;;, measured by the proportion of the
remaining pairs of values which are not allowed.

The fail-first principle says that we should choose next the variable in F
which is most likely to fail, i.e. which maximizes the probability that every
one of its possible values will result in a domain wipeout.

If we consider a variable v; € F' with current domain size m;,

Pr{every assignment of v; fails} = (Pr{v; = « fails})™

where x is any value in the current domain of v;, assuming that the failure
of the assignment v; = z is independent of the failure of any other value for
v;.

2Bessiére and Régin considered this heuristic and found its performance roughly similar
to that of dom/deg.



If there is a constraint between v; € F' and v; and the current tightness
of this constraint is p;;,

Pr{v; = x; is consistent with at least one value of v;}
= 1 — Pr{v; = z; is inconsistent with every value of v;}

=(1—p;")

approximately, if we take the current constraint tightness p;; as a probabil-
ity applying independently to each pair of values. If there is no constraint
between v; and v; then p;; = 0.

Using the above,

Pr{v; = z; fails}
=1- H Pr{v; = x; is consistent with at least one value of v;}
vj el #1

=1-— H (1—p;’) (1)

vj el #1

Therefore, to choose the variable that is most likely to lead to failure in the
future subproblem, we should choose the variable v; which maximizes

(1= T a-pipm (2)

vj el #1

Depending on how much we estimate versus how much we accurately measure
in the environment of each variable v;, this gives us a series of heuristics.

First, if we assume, as Haralick and Elliott did, that the term (1) is the
same for every value of every variable v;, then to maximize (2) we should
minimize the number of such terms (since they are all < 1) and hence mini-
mize m;. Thus, we choose the variable that has the smallest current domain,
giving the FF heuristic.

Secondly, we could estimate the current tightness of the constraints be-
tween v; and the other future variables by their original tightness (i.e. 0 or
p2) and use the initial domain size, m, as the estimate for the current domain
size of each future variable. Then, to maximize (2), we maximize:

(1= (=)

where d; is the degree of v; in the future subproblem, i.e. the number of
future variables that it constrains. This gives a heuristic that, like BZ and
DD, chooses the next variable to instantiate on the basis of both its domain
size and its future degree.



Thirdly, we could use the true current domain size of all future variables,
but estimate the current constraint tightness by p,. Then we want to maxi-
mize:

a- I a-s

vj EF,v; constrains v;

If two variables have the same current domain size, this leads us to prefer
the one which minimizes [[(1 — p,”). As well as maximizing the number of
terms in the product, maximizing this expression will tend to maximize p,”,
for each j, and hence minimize m;. Thus, we favour variables adjacent to
future variables with small domains.

Finally, we can also measure the current tightness of the constraints, and
calculate (2) accurately for each variable. Then to maximize p:?]
maximize p;; (as well as minimizing m;). This chooses a variable involved in
tight constraints, other things being equal.

It is intuitive that if we want to choose a variable such that all of its
available values are likely to cause a domain wipeout in some future variable

we should

we should look for a variable which has few remaining values and which is
involved in many tight constraints with future variables which themselves
have few remaining values. The final heuristic will choose such a variable if
there is one.

We term the second, third and fourth heuristics FF2, FF3 and FF4 respec-
tively, and in the following sections we present experimental evidence on their
performance relative to FF.

Since FF, FF2, FF3 and FF4 are based on incorporating successively more
information about the current subproblem into the estimate of the probability
that a variable will fail, we should expect, if the fail-first principle is sound,
to see this reflected in decreasing search effort on the part of the forward
checking algorithm for CSPs of the type on which the probabilities are based.
The heuristics are, of course, also increasingly expensive to apply (and we
have ignored this cost in the experiments reported below) but we might
hope that FF2 or FF3 provides good performance without the necessity of
recalculating the tightness of every constraint after each instantiation, as
required for FF4, which is particularly time-consuming.

We might also expect to see FF2, for instance, perform better than the
variants of FF (FFdeg, BZ and DD) which take into account the same charac-
teristics of the future variables, but from the point of view of the fail-first
principle are less accurate approximations to maximizing the failure proba-
bility.

On the other hand, should the proposed heuristics not perform well on
this class of problem, this would call into question the fail-first principle itself.
Our experiments will therefore not just give us a ranking of the heuristics
under investigation, an approach criticized by Hooker [8] since it tells us



“which algorithms are better, but not why”. Instead, we have been able to
make predictions about the relative performance of the heuristics, which we
can now put to the test; the result will either tend to confirm, or will refute,
the fail-first principle.

5 The Random Generation Model

The experiments reported here use randomly-generated binary CSPs. Fach
set of problems is defined by the 4-tuple (n,m, p1, p2), where n is the num-
ber of variables; m is the size of each variable’s domain; p;, the constraint
density, is the proportion of pairs of variables which have a constraint be-
tween them; and p,, the constraint tightness, is the probability that a pair of
values is inconsistent, given that there is a constraint between a pair of vari-
ables. This is the same model as used for the derivation of the new fail-first
heuristics. The problem generator ensures that all problems are generated
with connected constraint graphs, so that the resultant problem cannot be
decomposed into smaller components.

We use the 3-tuple (n,m,p;) to denote a problem class in which p, is
allowed to vary. Each of the experiments reported below is carried out on
a (20,10, p;) problem class, with p; = 0.2,0.5 or 1.0. For each problem
class, we vary the constraint tightness, py, in steps of 0.01 over the range
[0.01..1] and generate 1,000 random CSPs with each tuple of (20,10, py, p2)
parameters. This ensures that we see problems from the under-constrained
‘easy-soluble’ region when py is small, the over-constrained ‘easy-insoluble’
region when p, is large, and the hard phase transition region corresponding
to intermediate values of p;. The phenomenon of the phase transition in
NP-complete problems was discussed by Cheeseman, Kanefsky and Taylor
[3], and studies of the phase transition in binary CSPs have been carried out
[11, 13]. In comparing the performance of heuristics, it is important to make
the comparison across the three regions defined by the phase transition; it
is conceivable, for instance, that a heuristic could perform relatively well in
one region but not in another. It is also vital that problems from the phase
transition are fully represented in the experiments, since for these problems
the median cost is highest.

Each problem is solved using the forward checking algorithm combined
with each of the DVO heuristics under test in turn. The cost of each search is
measured in terms of the number of consistency checks made by the algorithm
in either finding a solution or proving that none exists. As already stated,
this measure ignores the cost of implementing the DVO heuristic, which for
some of the heuristics under investigation can be considerable. The chief aim
is not to test the implementation efficiency of the heuristics, but only their
effect on the search process.



For each problem class and each value of p; we calculate the median cost
of solving each problem in the ensemble or proving that it has no solution.
We plot the cost against the general constrainedness parameter, r, introduced
in [6], rather than against p;. x generalizes the specific parameters defining
constraints in several classes of NP-complete problem, such as CSPs, SAT
and graph colouring. The phase transition is predicted to occur when the
expected number of solutions is 1, corresponding to k = 1, and this prediction
has been shown to be reliable for many random binary CSP problem classes,
with the exception of those with low constraint density [11, 13]. Plotting
the cost against x rescales the horizontal axis and simplifies the comparison
between problem classes with phase transitions at different values of p,.

The software used to perform the experiments is implemented in C and
runs over a network of 75 Silicon Graphics Indigo workstations under a UNIX
environment. The next section presents the experimental results for the new
fail-first heuristics presented in section 4.

6 Results for the New Heuristics

In section 4, we predicted that we should see successive improvements in
performance from the heuristics FF2, FF3 and FF4 compared to FF: FF4, which
puts the greatest effort into accurately calculating the probability of failure
for each variable, should give the greatest improvement in search cost. Figure
1 shows the actual results for the four heuristics, used in conjunction with the
forward checking algorithm and applied to three problem classes, each with
20 variables and 10 values per variable. In each plot, we show the median cost
for each heuristic for a range of values of p, centred on the phase transition.
The key indicates the ranking of each heuristic at the phase transition.

Unfortunately, the ranking is almost the reverse of what we predicted; FF4
is particularly bad, being always worse than FF2 and FF3. For the (20, 10, 1.0)
problems, FF4 is hugely expensive compared to the other heuristics®. The
original heuristic, FF, does relatively badly when the constraints are sparse,
since 1t ignores the degrees of the variables; when p; = 1, it is identical
to FF2, since all variables then always constrain the same number of future
variables. FF3 should in theory be identical to FF and FF2 when p; = 1,
but when there are several variables with the same minimum domain size, it
occasionally chooses a different variable from the other two heuristics, due
to the imprecision of floating point arithmetic.

FF4 does out-perform FF on the easiest problems, in all three problem
classes, as can be seen at the left edge of each of the plots in Figure 1. If the

3.. and remember that Figure 1 shows only the search cost, not the cost of estimating

the probability of failure for each variable. Because FF4 is so expensive for the (20, 10, 1.0)
problems, we have not completed the experiments.
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Figure 1: The new fail-first heuristics on (20, 10) problems.



constraints are very loose, a solution can be found without ever backtracking
to a previous variable; in this region, the cost of forward checking decreases
as K increases, since more pruning of the domains of future variables can be
done. FF4 is the best of the four heuristics (by a narrow margin) so long as
it can find a solution without backtracking, but it has to start backtracking
at smaller values of k, as shown by the fact that its cost is increasing while
that of the others is still decreasing. Moreover, a slight reduction in the cost
of solving the easiest problems is not very helpful.

A possible, though hopefully wrong, explanation for the poor performance
of the new heuristics, which would still leave the fail-first principle intact,
might be that they do not in fact increase the probability of failure. All the
heuristics are for various reasons only approximations to equation (2): FF,
FF2 and FF3 because they use limited information about the current sub-
problem and FF4 because it treats p;; as the probability that a value for v,
is inconsistent with a value for v; when in fact it is the proportion of incon-
sistent pairs of values, so that the independence assumption is not strictly
valid. It is therefore conceivable that we are not increasing the probability of
failure in our successive heuristics, and therefore not decreasing the average
branch length.

To test this possibility, we looked at the depth in the search tree at
which failures occur, for the four heuristics. (For this purpose, we used
FFdeg rather than FF, because, as will be seen in the following section, simply
making a better choice for the first variable improves the performance of FF
considerably, and provides a better comparison with FF4). Figure 2 shows
the mean number of failures at each depth in the search tree for the four
heuristics at the crossover point for (20,10,0.5) problems, i.e. when p, =
0.37. This is the point where the probability that a problem has a solution is
0.5; the median cost of solving the problems is highest; and the differences in
cost between the four heuristics are greatest. A failure is counted whenever a
variable domain is exhausted and the algorithm moves back to the previous
variable; hence a failure does not necessarily occur at the end of a branch,
but could occur when the algorithm has backtracked to this variable and
there are no other values which have not already been tried.

Figure 2 suggests that the new heuristics do result in successively smaller
average branch depth; FF4, for instance, fails most often at depth 5 or 6, and
has fewer failures at depth 8 or below than the other heuristics, whereas FFdeg
has its maximum number of failures at depth 7, and has many more failures
than FF4 further down the tree. However, the fact that FF4 fails earlier is
outweighed by the fact that it fails much more often, so that its overall cost
is higher.

Figure 3 gives a different view of the work done by FFdeg and FF4 at
different depths. It shows the mean consistency checks for the (20,10,0.2)
problem class for a range of values of the constraint tightness, p,, across

10
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Figure 4: Four DVO heuristics on (20, 10) problems.

the phase transition at po = 0.66. The two heuristics do the same amount of
work at the top level of the tree, since they choose the same starting variable.
FF4 does almost all its work in the top levels of the tree, and virtually no
work at depths 10 or below, whereas around the phase transition, FFdeg does
significant work at lower depths. Again, however, FF4 is doing much more
work than FFdeg at the top levels of the tree, and this outweighs the benefit
of rarely creating long branches.

7 Heuristics Using Future Degree

The only one of our proposed heuristics which merits further consideration
is FF2, since, as well as being the cheapest of them to implement, it is the
best of the heuristics shown in Figure 1, except when p; = 1. In this section
we compare this heuristic with FFdeg, BZ and DD, the other heuristics in our
study which use both the domain size and future degree in selecting the next
variable.

Figure 4 compares FF2, FFdeg, BZ and DD; we plot the median cost of
solving (20,10,0.2) and (20,10,0.5) problems using the forward checking
algorithm with these heuristics. The (20,10, 1.0) class has been omitted since
these heuristics are identical to FF when the constraint graph is complete.
Note that a linear scale is used on the vertical axis, rather than a log scale
as in Figure 1, to show the differences in cost more clearly.

The four heuristics give very similar performance. FF2 is marginally the
best when p; = 0.2, but DD is better when p, = 0.5. It is noteworthy that
the simplest of the heuristics, FFdeg, which uses degree information only in
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selecting the first variable, is competitive with the others. This suggests that
that the poor performance of the plain FF heuristic on sparsely constrained
problems can be explained by the fact that it tends to make a wrong initial
choice. Simply making a better choice initially and thereafter choosing any
variable with smallest remaining domain gives, on these classes of problem,
performance comparable with the more sophisticated algorithms which take
account of the future degree of each variable throughout.

Figures 1 and 4 show that, at least for this class of random binary prob-
lems, taking account of the future degree of variables gives better performance
than just choosing the variable with smallest domain, when the constraints
are sparse. However, exactly how the future degree is incorporated into the
heuristic seems to make very little difference to the search cost; the simplest
heuristic, which only takes account of future degree in selecting the first vari-
able (and which is also the cheapest to implement) is nearly as good as the
more complex heuristics.

8 The Failure of Fail-First

We have developed new variable ordering heuristics by taking the fail-first
principle seriously and calculating the probability that a variable will fail, for
a class of randomly-generated CSPs. The fail-first principle is based on the
assumption that choosing the variable which is most likely to fail will result
in reduced average branch length. We found that our improved heuristics
do seem to result in lower average branch length. The more information
the heuristic uses to estimate the failure probability, the less often the lower
depths of the tree are reached and the greater the proportion of failures that
occur high in the tree. However, although our new heuristics appear to fulfil
the aim of the fail-first principle by reducing average branch length, this is
not reflected in lower search costs. If we ignore the plain FF heuristic, whose
costs are biased by poor initial variable choices when the constraint graph
is sparse, and the very easy problems, then the more accurately we estimate
the failure probability, the greater the search cost.

Reducing the average branch length may not reduce the number of nodes
in the search tree, if the average branching factor increases at the same time.
This seems to be what is happening with our new heuristics: although failures
occur higher in the tree, there are many more of them. The new heuristics
must sometimes choose a variable which does not have the smallest domain,
because it is calculated to have a higher probability of failure than those
which do. If the chosen variable does not fail, more branches are likely to be
created, all of which might need to be explored. Although these branches can
be expected to terminate more quickly than those resulting from choosing
one of the variables with smallest domain, this may not outweigh the fact

13



that there are more of them.

Hence we claim that our experiments have refuted the fail-first principle:
maximizing the failure probability in order to reduce the average branch
length does not result in lower search costs. As a corollary, the success of the
heuristics based on domain size and degree must be explained in some other
way.

We have, of course, only tested our new heuristics on one class of problem,
for which we could calculate the failure probability. This would have been
a serious disadvantage if our heuristics had done well, since they would not
necessarily have done equally well on other classes of problem. However,
the fact that they have done badly on this class of problem proves that the
fail-first principle is not generally applicable, although it does not rule out
the possibility that there might be types of problem for which it pays off to
calculate the failure probability more accurately.

Hooker and Vinay [9] report a similar investigation into branching rules
used with the Davis-Putnam algorithm for solving satisfiability problems.
Branching rules are analogous to variable ordering heuristics for CSP algo-
rithms. Hooker and Vinay took the accepted explanation for one branching
rule and using this explanation, derived a new branching rule. Assuming
the explanation was correct, the new rule should have been superior to the
original rule in terms of the number of nodes generated. They carried out an
experiment to test this hypothesis. The new rule proved to be worse than
the original, thus refuting the explanation as the true reason for the success
of the original rule. They then went a stage further than we have done, by
proposing an alternative explanation for the rule, making new predictions on
the basis of this explanation and showing that these predictions were borne
out by experiment, thus providing evidence in favour of the new explanation,
as well as giving a new branching rule which was superior to the original.

9 Explaining Good Heuristics

As we showed in section 7, the heuristics which use both domain size and
future degree when selecting the next variable are the best of those we have
studied. However, the fail-first principle is no longer an adequate explanation
of their performance. We need to understand why these heuristics perform
well, in order to be able to improve them, and to devise different heuristics for
the problems where smallest-remaining-domain does not give good results.
For instance, when the constraint graph is sparse, it is usually a good strategy
to instantiate variables connected to those already instantiated. With the
(n,m, p1,p2) model, the variable with smallest remaining domain tends to
be a variable constrained by the largest number of past variables (because
such a variable has had its domain reduced most often). However, if the
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initial domain sizes are not uniform, then the second variable chosen might
be selected because its initial domain size is small and not because its domain
has been reduced by the instantiation of the first variable; hence the second
variable might not be constrained by the first, and would not be a good
choice?.

A different explanation for the success of heuristics such as BZ is provided
by the most-constrained-variable and most-constraining-variable heuristics,
described by Russell and Norvig [12], for instance: the most constrained vari-
able is the one with smallest remaining domain and the most constraining
variable is the one with maximum future degree. BZ chooses the most con-
strained variable and breaks ties by choosing the most constraining variable.
Russell and Norvig’s justification for these heuristics is that the first tends to
minimize the branching factor at the current node and the second attempts
to reduce the branching factor at future nodes.

By minimizing the branching factor we might hope to minimize the num-
ber of nodes visited in the search tree. Nudel [10] proposes trying to mini-
mize the number of nodes in the search tree directly. In choosing the next
variable to instantiate, we should try to choose the one which will mini-
mize the number of nodes visited in the search tree below this variable. He
gives expressions for N, the expected number of nodes visited at level k
in the tree when finding all solutions to a CSP using the forward check-
ing algorithm. He suggests that the next variable selected should be one
which minimizes Np, the number of nodes at the top level of the new sub-
tree: Ny can then be used as a tie-breaker, and so on. Since N; is equal
to the size of the first variable’s domain, at each level in the tree we should
next choose the variable with smallest remaining domain: this is exactly the
most-constrained-variable heuristic. Although the expression for N, is more
complex, for (n, m, p1, p2) problems, before any assignments have been made,
it reduces to a simpler form which implies that we should choose first the
variable with largest degree. This heuristic would therefore choose the same
starting variable as FFdeg.

Unfortunately, using this idea to generate better heuristics than FFdeg
is not straightforward. Minimizing N; and then N; + N, is only an ap-
proximation to minimizing the expected total number of nodes visited, but
calculating Ny + Ny + .. + N,, can only be done for a specific ordering of all
the variables. In theory we should calculate this quantity for every possible
ordering, assign the first variable in the best ordering, repeat the process for
the remaining n — 1 variables and so on, but clearly this is not practicable.

The fail-first principle and the most-constrained /most-constraining vari-
able heuristics can be seen as complementary attempts to minimize the size

4See also the article by Sunil Mohan on variable ordering heuristics for non-binary
CSPs at http://www.cirl.uoregon.edu/constraints/links/heuristics.html
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of the search tree. The first aims to reduce the average branch length and the
second to reduce the average branching factor. We have suggested that, for
(n,m, p1,p2) problems, heuristics which try to maximize the failure probabil-
ity may do so at the expense of increasing the branching factor at the current
node, so that although the average branch length is reduced, the overall size
of the search tree is not. It might seem that a good compromise would be
to always choose a variable with minimum domain size, and to break ties
by choosing the variable with maximum failure probability. However, al-
though this might give good results for (n,m,p1, p2) problems, it requires
subverting the fail-first principle and would give no guidance in cases where
smallest-remaining-domain is not a good heuristic.

An alternative principle for variable ordering heuristics is proposed by
Gent et al. [5], namely that the next variable should be chosen so as to min-
imize the constrainedness of the future subproblem. The hope is that this
will guide the search towards under-constrained subproblems, since under-
constrained problems tend to have many solutions and be easy to solve. Four
new heuristics using different measures of constrainedness were investigated,
including one based on &, the general measure of the constrainedness of com-
binatorial problems referred to earlier [6]. These heuristics can be seen as
choosing the most constrained variable, but take into account other factors
than just the domain size of each variable. The smallest-remaining-domain
heuristic can be viewed as an approximation to minimizing «, and when
all variables have the same domain size and all constraints have the same
tightness, x is minimized by choosing the variable with largest degree, so
that again this heuristic would choose the same starting variable as FFdeg
for (n,m, p1, p2) problems. The & heuristic is better than BZ for (20, 10,1.0)
problems (it reduces the average number of consistency checks by more than
10% at the phase transition peak). For (20,10,0.2) problems, the four pro-
posed heuristics are considerably more costly than BZ, even ignoring their
implementation cost. However, since most of the other available heuristics
degenerate to FF when the constraint graph is complete (or, in the case of FF4,
are much worse) a heuristic which reduces search in this case is noteworthy.

10 Conclusions

The rationale for the fail-first principle is that by choosing next the variable
with the greatest probability of failing, the average branch depth in the search
tree, and hence the size of the search tree and the cost of finding a solution,
will be minimized.

To put this to the test, we calculated the probability that a variable will
fail when using the forward checking algorithm to solve binary CSPs using
the (n,m, p1, p2) model. From the failure probability, we derived a series of
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heuristics, FF, FF2, FF3 and FF4, which use progressively more information
about the subproblem formed by the currently uninstantiated variables. We
showed that our new heuristics do progressively reduce the average branch
length, and that FF2, which takes into account the future degree of each
variable, is an improvement on FF. However, FF3 and especially FF4 are more
expensive than FF2, even if their implementation costs are ignored.

The fail-first principle is therefore shown to be unsound: reducing the
average branch length does not, in itself, necessarily reduce the size of the
search tree and so should not be the sole aim of variable ordering heuristics.

Although FF2 is much better than FF, our study of other heuristics which
similarly take account of the future degree of each variable in some way
showed that the crucial feature of these heuristics (at least for this class of
problems, where all domain sizes are initially equal) is that the first variable
they choose is the one with maximum degree. Using the future degree of
each variable in making subsequent choices is much less important.

We endorse Hooker and Vinay’s approach to investigating heuristics; in
order to develop better heuristics we should try to explain the performance
of existing heuristics, and test these explanations by deriving new heuristics
from them. If the new heuristics do badly, where the explanation predicts
that they should do well, we know that the explanation is wrong and that
we need to seek a different explanation; if they do well, we have some ev-
idence that the explanation is correct (as well as possibly better heuristics
than before). Our results have been negative in that instead of developing
better heuristics, we have undermined the fail-first principle. In the light of
other explanations for the smallest-remaining-domain heuristic, our experi-
ence suggests that to minimize the size of the search tree we should perhaps
try to reduce the branching factor as well as, or instead of, the average branch
length.

Given a principle for variable ordering which would allow us to make
predictions about the performance of proposed heuristics and which, unlike
the fail-first principle, would prove to be robust, we might then be able to
develop improved variable ordering heuristics. Such heuristics should beat
the existing heuristics, such as FFdeg and BZ, on problems where they do
well: they should also be more generally applicable, and give good results on
problems other than uniform binary CSPs, where existing heuristics often do

badly.
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