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1 Introduction

A discrete optimization problem can be given a declarative or procedural formulation, and

both have their advantages. A declarative formulation simply states the constraints and
objective function. It allows one to describe what sort of solution one seeks without the
distraction of algorithmic details. A procedural formulation specifies how to search for a

solution, and it therefore allows one to take advantage of insight into the problem in order
to direct the search. The ideal, of course, would be to have the best of both worlds, and

this is the goal of constraint programming.
The task seems impossible at first. A declarative formulation is static, and a procedural

formulation dynamic, in ways that appear fundamentally at odds. For example, setting
x = 0 at one point in a procedure and x = 1 at another point is natural and routine, but

doing the same in a declarative model would simply result in an infeasible constraint set.
Despite the obstacles, the artificial intelligence community has developed ways to weave

procedural and declarative elements together. The evolution of ideas passed through
logic programming, constraint logic programming, concurrent constraint programming,
constraint handling rules, and constraint programming (not necessarily in that order).

One idea that has been distilled from this research program is to view a constraint as
invoking a procedure. This is the basic idea of constraint programming.

1.1 Constraints as Procedures

A constraint programmer writes a constraint declaratively but views it as a procedure
that operates on the solution space. Each constraint contributes a relaxation of itself to

the constraint store, which limits the portion of the space that must be searched. The
constraints in the constraint store should be easy in the sense that it is easy to generate

feasible solutions for them. The overall solution strategy is to find a feasible solution of the
original problem by enumerating solutions of the constraint store in a way to be described

shortly.
In current practice the constraint store primarily contains very simple in-domain con-

straints, which restrict a variable to a domain of possible values. The domain of a variable
is typically an interval of real numbers or a finite set. The latter can be a set of any sort
of objects, not necessarily numbers, a fact which lends considerable modeling power to

constraint programming.
The idea of treating a constraint as a procedure is a very natural one for a community

trained in computer science, because statements in a computer program typically invoke
procedures. This simple device yields a powerful tool for exploiting problem structure.

In most practical applications, there are some subsets of constraints that have special
structure, but the problem as a whole does not. Existing optimization methods can deal

with this situation to some extent, for instance by using Benders decomposition to isolate
a linear part, by presolving a network flow subproblem, and so forth. However, most

methods that exploit special structure require that the entire problem exhibit the struc-
ture. Constraint programming avoids this difficulty by associating procedures with highly
structured subsets of constraints. This allows procedures to be designed to exploit the

properties of the constraints.
Strictly speaking, constraint programming associates procedures with individual con-

straints rather than subsets of constraints, but this is overcome with the concept of global
constraints. A global constraint is a single constraint that represents a highly structured

set of constraints. An example would be an alldifferent constraint that requires that a
set of variables take distinct values. It represents a large set of pairwise disequations. A

2



global constraint can be designed to invoke the best known technology for dealing with its
particular structure. This contrasts with the traditional approach used in optimization,

in which the solver receives the problem as a set of undifferentiated constraints. If the
solver is to exploit any substructure in the problem, it must find it, as some commercial
solvers find network substructure. Global constraints, by contrast, allow the user to alert

the solver to portions of the problem that have special structure.
How one can solve a problem by applying special-purpose procedures to individual

constraints? What links these procedures together? This is where the constraint store
comes into play. Each procedure applies a filtering algorithm that eliminates some values

from from the variable domains. In particular, it eliminates values that cannot be part of
any feasible solution for that constraint. The restricted domains are in effect in-domain

constraints that are implied by the constraint. They become part of the constraint store,
which is passed on to the next constraint to be processed. In this way the constraint store

“propagates” the results of one filtering procedure to the others.
Naturally the constraints must be processed in some order, and different systems do

this in different ways. In programs written for the ILOG Solver, constraints are objects

in a C++ program that determines how the constraints are processed. Programs written
in OPL Studio have a more declarative look, and the system exerts more control over the

processing.
A constraint program can therefore be viewed as a “program” in the sense of a computer

program: the statements invoke procedures, and control is passed from one statement
to another, although the user may not specify the details of how this is done. This

contrasts with mathematical programs, which are not computer programs at all but are
fully declarative statements of the problem. They are called programs because of George

Dantzig’s early application of linear programming to logistics “programming” (planning)
in the military. Notwithstanding this difference, a constraint programming formulation
tends to look more like a mathematical programming model than a computer program,

since the user writes constraints declaratively rather than writing code to enforce the
constraints.

1.2 Parallels with Branch and Cut

The issue remains as to how to enumerate solutions of the constraint store in order to find
one that is feasible in the original problem. The process is analogous to branch-and-cut

algorithms for integer programming, as Table 1 illustrates. Suppose that the problem
contains variables x = [x1, . . . , xn] with domains D1, . . . , Dn. If the domains Dj can all

be reduced to singletons {vj}, and if x = v = [v1, . . . , vn] is feasible, then x = v solves
the problem. Setting x = v in effect solves the constraint store, and the solution of the

constraint store happens to be feasible in the original problem. This is analogous to solving
the continuous relaxation of an integer programming problem (which is the “constraint

store” for such a problem) and obtaining an integer solution.
If the domains are not all singletons, then there are two possibilities. One is that

there is an empty domain, in which case the problem is infeasible. This is analogous to

an infeasible continuous relaxation in branch and cut. A second possibility is that some
domain Dj contains more than a single value, whereupon it is necessary to enumerate

solutions of the constraint store by branching. One can branch on xj by partitioning Dj

into smaller domains, each corresponding to a branch. One could in theory continue to

branch until all solutions are enumerated, but as in branch and cut, a new relaxation
(in this case, a new set of domains) is generated at each node of the branching tree.
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Relaxations become tighter as one descends into the tree, since the domains start out
smaller and are further reduced through constraint propagation. The search continues

until the domains are singletons, or at least one is empty, at every leaf node of the search
tree.

The main parallel between this process and branch-and-cut methods is that both in-

volve branch and infer, to use the term of Bockmayr & Kasper (1998). Constraint pro-
gramming infers in-domain constraints at each node of the branching tree in order to create

a constraint store (relaxation). Branch and cut infers linear inequalities at each node in
order to generate a continuous relaxation. In the latter case, some of the inequalities in the

relaxation appear as inequality constraints of the original integer programming problem
and so are trivial to infer, and others are cutting planes that strengthen the relaxation.

Another form of inference that occurs in both constraint programming and integer
programming is constraint learning, also known as the nogood generation. Nogoods are

typically formulated when a trial solution (or partial solution) is found to be infeasible or
suboptimal. They are constraints designed to exclude the trial solution as search continues,
and perhaps other solutions that are unsatisfactory for similar reasons. Nogoods are closely

parallel to the integer programming concept of Benders cuts, which are likewise generated
when solution of the master program yields a suboptimal or infeasible solution. They

are less clearly analogous to cutting planes, except perhaps separating cuts, which are
generated to “cut off” a nonintegral solution.

Constraint programming and integer programming exploit problem structure primarily
in the inference stage. Constraint programmers, for example, invest considerable effort

into the design of filters that exploit the structure of global constraints, just as integer
programmers study the polyhedral structure of certain problem classes to generate strong

cutting planes.
There are three main differences between the two approaches.

• Branch and cut generally seeks an optimal rather than a feasible solution. This is
a minor difference, because it is easy to incorporate optimization into a constraint

programming solver. Simply impose a bound on the value of the objective function
and tighten the bound whenever a feasible solution is found.

• Branch and cut solves a relaxation at every node with little or no constraint propaga-
tion, whereas constraint programming relies more on propagation but does not solve
a relaxation. (One might say that it “solves” the constraint store in the special case

in which the domains are singletons.) In branch and cut, solution of the relaxation
provides a bound on the optimal value that often allows pruning of the search tree.

It can also guide branching, as for instance when one branches on a variable with a
nonintegral value.

• The constraint store is much richer in the case of branch-and-cut methods, because
it contains linear inequalities rather than simply in-domain constraints. Fortunately,

the two types of constraint store can be used simultaneously in the hybrid methods
discussed below.

1.3 Constraint Satisfaction

Issues that arise in domain reduction and branching search are addressed in the constraint

satisfaction literature, which is complementary to the optimization literature in interesting
ways.
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Table 1: Comparison of constraint programming search with branch and cut.

Constraint Programming Branch and Cut

Constraint store
(relaxation)

Set of in-domain
constraints

Continuous relaxation
(linear inequalities)

Branching Branch by splitting a
non-singleton domain,
or by branching on a
constraint

Branch on a variable with
a noninteger value in the
solution of the relaxation

Inference
Reduce variable domains
(i.e., add in-domain
constraints to constraint
store); add nogoods

Add cutting planes to
relaxation (which also
contains inequalities from
the original IP); add
Benders or separating
cuts*

Bounding None Solve continuous relaxation
to get bound

Feasible solution is
obtained at a node. . .

When domains are
singletons and constraints
are satisfied

When solution of relaxation
is integral

Node is infeasible. . . When at least one domain
is empty

When continuous relaxation
is infeasible

Search backtracks. . . When node is infeasible When node is infeasible,
relaxation has integral
solution, or tree can be
pruned due to bounding

*Commercial solvers also typically apply preprocessing at the root note, which can be viewed as a rudi-

mentary form of inference or constraint propagation.

Perhaps the fundamental idea of constraint satisfaction is that of a consistent constraint
set, which is roughly parallel to that of a convex hull description in integer programming.

In this context, “consistent” does not mean feasible or satisfiable. It means that the
constraints provide a description of the feasible set that is so explicit that a feasible solution
can be found without backtracking.

If an integer/linear programming constraint set is a convex hull description, it in some
sense provides an explicit description of the feasible set. Every facet of the convex hull

of the feasible set is explicitly indicated. One can solve the problem easily by solving its
continuous relaxation. There is no need to use a backtracking search such as branch and

bound or branch and cut.
In similar fashion, a consistent constraint set allows one to solve the problem easily with

a simple greedy algorithm. For each variable, assign to it the first value in its domain that,
in conjunction with the assignments already made, violates no constraint. (A constraint

cannot be violated until all of its variables have been assigned.) In general one will reach
a point where no value in the domain will work, and it is necessary to backtrack and try
other values for previous assignments. However, if the constraint set is consistent, the

greedy algorithm always works. The constraint set contains explicit constraints that rule
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out any partial assignment that cannot be completed to obtain a feasible solution.
Thus consistency, like integrality, allows one to solve the problem without backtracking.

The idea of consistency does not seem to have developed in the optimization literature,
although cutting planes and preprocessing techniques serve in part to make a constraint
set more nearly consistent. Since perfect consistency is as hard to achieve as integrality,

weaker forms of consistency have been defined, including k-consistency, arc consistency,
generalized arc consistency, and bounds consistency. These are discussed in Section 2

below.
The concept of consistency is closely related to domain reduction. A constraint set is

generalized arc consistent if for every v ∈ Dj, the variable xj takes the value v in some
feasible solution. Thus if a filtering algorithm for some constraint reduces domains as

much as possible, it achieves generalized arc consistency with respect to that constraint.
A filtering algorithm that operates on domains in the form of numeric intervals achieves

bounds consistency if it narrows the intervals as much as possible.
The constraint satisfaction literature also deals with search strategies, variable and

value selection in a branching search, and efficient methods for constraint propagation.

These are discussed in Section 3.

1.4 Hybrid Methods

Constraint programming and optimization have complementary strengths that can be

profitably combined.

• Problems often have some constraints that propagate well, and others that relax
well. A hybrid method can deal with both kinds of constraints.

• Constraint programming’s idea of global constraints can exploit substructure in the
problem, while optimization methods for highly structured problem classes can be

useful for solving relaxations.

• Constraint satisfaction can contribute filtering algorithms for global constraints,
while optimization can contribute relaxations for them.

Due to the advantages of hybridization, constraint programming is likely to become es-
tablished in the operations research community as part of a hybrid method, rather than

as a technique to be used in isolation.
The most obvious sort of hybrid method takes advantage of the parallel between con-

straint solvers and branch-and-cut methods. At each node of the search tree, constraint
propagation creates a constraint store of in-domain constraints, and polyhedral relaxation

creates a constraint store of inequalities. The two constraint stores can enrich each other,
since reduced domains impose bounds on variables, and bounds on variables can reduce

domains. The inequality relaxation is solved to obtain a bound on the optimal value,
which prunes the search tree as in branch-and-cut methods. This method might be called

a branch, infer and relax (BIR) method.
One major advantage of a BIR method is that one gets the benefits of polyhedral

relaxation without having to express the problem in inequality form. The inequality

relaxations are generated within the solver by relaxation procedures that are associated
with global constraints, a process that is invisible to the user. A second advantage is

that solvers can easily exploit the best known relaxation technology. If a global constraint
represents a set of traveling salesman constraints, for example, it can generate a linear

relaxation containing the best known cutting planes for the problem. Today, much cutting
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plane technology goes unused because there is no systematic way to apply it in general-
purpose solvers.

Another promising approach to hybrid methods uses generalized Benders decomposi-
tion. One partitions the variables [x, y] and searches over values of x. The problem of
finding an optimal value for x is the master problem. For each value v enumerated, an

optimal value of y is computed on the assumption that x = v; this is the subproblem.
In classical Benders decomposition, the subproblem is a linear or nonlinear programming

problem, and its dual solution yields a Benders cut that is added to the master problem.
The Benders cut requires all future values of x enumerated to be better than v. One keeps

adding Benders cuts and re-solving until no more Benders cuts can be generated.
This process can be generalized in a way that unites optimization and constraint pro-

gramming. The subproblem is set up as a constraint programming problem. Its “dual” can
be defined as an inference dual, which generalizes the classical dual and can be solved in

the course of solving the primal with constraint programming methods. The dual solution
yields a generalized Benders cut that is added to the master problem. The master problem
is formulated and solved as a traditional optimization problem, such as a mixed integer

programming problem. In this way the decomposition scheme combines optimization and
constraint programming methods.

BIR and generalized Benders decomposition can be viewed as special cases of a general
algorithm that enumerates a series of problem restrictions and solves a relaxation for each.

In BIR, the leaf nodes of the search tree correspond to restrictions, and their continuous
relaxations are solved. In Benders, the subproblems are problem restrictions, and the

master problems are relaxations. This provides a basis for a general scheme for integrating
optimization, constraint programming and local search methods (Hooker 2003).

1.5 Performance Issues

A problem-solving technology should be evaluated with respect to modeling power and
development time as well as solution speed.

Constraint programming provides a flexible modeling framework that tends to result
in succinct models that are easier to debug than mathematical programming models. In
addition, it quasi-procedural approach allows the user to provide the solver information

on how best to attack the problem. For example, users can choose global constraints that
indicate substructure in the model, and they can define the search strategy conveniently

within the model specification.
Constraint programming has other advantages as well. Rather than choose between

two alternative formulations, the modeler can simply use both and significantly speed the
solution by doing so. The modeler can add side constraints to a structured model without

slowing the solution, as often happens in mathematical programming. Side constraints
actually tend to accelerate the solution by improving propagation.

On the other hand, the modeler must be familiar with a sizeable lexicon of global
constraints in order to write a succinct model, while integer programming models use only
a few primitive terms. A good deal of experimentation may be necessary to find the right

model and search strategy for efficient solution, and the process is more an art than a
science.

The computational performance of constraint programming relative to integer pro-
gramming is difficult to summarize. Constraint programming may be faster when the

constraints contain only two or three variables, since such constraints propagate more ef-
fectively. When constraints contain many variables, the continuous relaxations of integer
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programming may become indispensible.
Broadly speaking, constraint programming may be more effective for scheduling prob-

lems, particularly resource-constrained scheduling problems, or other combinatorial prob-
lems for which the integer programming model tends to be large or have a weak continuous
relaxation. This is particularly true if the goal is to find a feasible solution or to optimize

a min/max objective, such as makespan.
Integer programming may excel on structured problems that define a well-studied poly-

hedron, such as the traveling salesman problem. Constraint programming may become
competitive when such problems are complicated with side constraints, such as time win-

dows in the case of the traveling salesman problem, or when they are part of a larger
model.

It is often said that constraint programming is more effective for “highly-constrained”
problems, presumably because constraint propagation is better. Yet this can be misleading,

since one can make a problem highly constrained by placing a tight bound on a cost
function with many variables. Such a maneuver is likely to make the problem intractable
for constraint programming.

The recent trend of combining constraint programming and integer programming
makes such comparisons less relevant, since the emphasis shifts to how the strengths of

the two methods can complement each other. The computational advantage of integration
can be substantial. For example, a hybrid method recently solved product configuration

problems 300 to 600 times faster than either mixed integer programming (CPLEX) or
constraint programming (ILOG Solver) (Ottosson & Thorsteinsson 2000). The problems

required selecting each component in some product, such as a computer, from a set of
component types; thus one might select a power supply to be any of several wattages. The

number of components ranged from 16 to 20 and the number of component types from 20
to 30.

In another study, a hybrid method based on Benders decomposition resulted in

even greater speedups for machine scheduling (Jain & Grossmann 2001, Hooker 2000,
Thorsteinsson 2001). Each job was scheduled on one of several machines, subject to time

windows, where the machines run at different speeds and process each job at a different
cost. The speedups increase with problem size and reach five to six orders of magnitude,

relative to CPLEX and the ILOG Scheduler, for 20 jobs and 5 machines. Section 4.3 dis-
cusses this problem in detail, and Section 4.5 surveys other applications of hybrid methods.

2 Constraints

In this section, we give a more detailed treatment of the declarative and procedural aspects
of constraint reasoning.

2.1 What is a Constraint?

A constraint c(x1, . . . , xn) typically involves a finite number of decision variables x1, . . . , xn.
Each variable xj can take a value vj from a finite set Dj, which is called the domain of xj.

The constraint c defines a relation Rc ⊂ D1 × · · · ×Dn. It is satisfied if (v1, . . . , vn) ∈ Rc.
A constraint satisfaction problem is a finite set C = {c1, . . . , cm} of constraints on

a common set of variables {x1, . . . , xn}. It is satisfiable or feasible if there exists a tuple
(v1, . . . , vn) that satisfies simultaneously all the constraints in C. A constraint optimization

problem involves in addition an objective function f(x1, . . . , xn) that has to be maximized
or minimized over the set of all feasible solutions.
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Many constraint satisfaction problems are NP-complete.

2.2 Arithmetic versus Symbolic Constraints

The concept of “constraint” in constraint programming is very general. It includes classical

mathematical constraints like linear or nonlinear equations and inequalities, which are
often called arithmetic constraints. A crucial feature of constraint programming, however,

is that it offers in addition a large variety of other constraints, which may be called symbolic
constraints. In principle, a symbolic constraint could be defined by any relation R ⊂
D1 × · · ·×Dn. However, in order to be useful for constraint programming, it should have

a natural declarative reading, and efficient filtering algorithms (see Sect. 2.6). Symbolic
constraints that arise by grouping together a number of simple constraints, each on a small

number of variables, into a new constraint involving all these variables together, are called
global constraints. Global constraints are a key concept of constraint programming. On

the declarative level, they increase the expressive power. On the operational side, they
improve efficiency.

2.3 Global Constraints

We next give an overview of some popular global constraints.

Alldifferent The constraint alldifferent([x1, . . . , xn]) states that the variables
x1, . . . , xn should take pairwise different values (Régin 1994, Puget 1998, Mehlhorn &

Thiel 2000). From a declarative point of view, this is equivalent to a system of disequa-
tions xi 6= xj, for all 1 ≤ i < j ≤ n. Grouping together these constraints into one global

constraint allows one to make more powerful inferences. For example, consider the system
x1 6= x2, x2 6= x3, x1 6= x3, with 0-1 variables x1, x2, x3. Each of these constraints can be
satisfied individually, they are locally consistent in the terminology of Sect. 2.4. However,

given a global view of all constraints together, one may deduce that the problem is in-
feasible. A variant of this constraint is the symmetric alldifferent constraint (Régin

1999b).

Element The element constraint element(i, l, v) expresses that the i-th variable in a
list of variables l = [x1, . . . , xn] takes the value v, i.e., xi = v. Consider an assignment

problem where m tasks have to be assigned to n machines. In integer programming, we
would use mn binary variables xij indicating whether or not task i is assigned to machine j.

If cij is the corresponding cost, the objective function is
∑m

i=1

∑n
j=1 cijxij. In constraint

programming, one typically uses m domain variables xi with domain Di = {1, . . . , n}.
Note that xi = j if and only if xij = 1. Using constraints element(xi, [ci1, . . . , cin], ci),
with domain variables ci, the objective function can be stated as

∑m
i=1

ci.

Cumulative The cumulative constraint has been introduced to model schedul-

ing problems (Aggoun & Beldiceanu 1993, Caseau & Laburthe 1997, Baptiste,
Pape & Nuijten 2001). Suppose there are n tasks. Task j has starting

time sj, duration dj and needs rj units of a given resource. The constraint
cumulative([s1, . . . , sn], [d1, . . . , dn], [r1, . . . , rn], l, e) states that the tasks have to be exe-
cuted in such a way that the global resource limit l is never exceeded and e is the end of

the schedule
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Figure 1: a) Cumulative constraint b) Diffn constraint

Diffn The constraint diffn([[o11, . . . , o1n, l11, . . . , l1n], . . . , [om1, . . . , omn, lm1, . . . , lmn]])
states that m rectangles in n-dimensional space should not overlap (Beldiceanu & Conte-

jean 1994, Beldiceanu & Carlsson 2001). Here, oij gives the origin and lij the length of the
rectangle i in dimension j, see Fig. 1b). Applications of this constraint include resource
allocation and packing problems. Beldiceanu, Qi & Thiel (2001) consider non-overlapping

constraints between convex polytopes.

Cycle The cycle constraint allows one to define cycles in a directed graph (Beldiceanu
& Contejean 1994, Caseau & Laburthe 1997, Bourreau 1999). For each node in the graph,

one introduces a variable
si whose domain contains the nodes that can be reached from node i. The constraint

cycle(k, [s1, . . . , sn]) holds if the variables si are instantiated in such a way that precisely
k cycles are obtained. A typical application of this constraint are

vehicle routing problems.

Cardinality The cardinality constraint restricts the number of times a value is taken
by a number of variables (Beldiceanu & Contejean 1994, Régin 1996, Régin & Puget 1997,

Régin 1999a). Application areas include personnel planning and sequencing problems. An
extension of cardinality is the sequence constraint that allows one to define complex

patterns on the values taken by a sequence of variables (Beldiceanu, Aggoun & Contejean
1996).

Sortedness The sort constraint sort(x1, . . . , xn, y1, . . . , yn) expresses that the n-tuple

(y1, . . . , yn) is obtained from the n-tuple (x1, . . . , xn) by sorting the elements in non-
decreasing order (Bleuzen-Guernalec & Colmerauer 2000, Mehlhorn & Thiel 2000). It was
introduced in (Older, Swinkels & van Emden 1995) to model and solve job-shop scheduling

problems. Zhou (1997) considered a variant with 3n variables that makes explicit the
permutation linking the x’s and y’s.

Flow The flow constraint can be used to model flows in generalized networks (Bock-

mayr, Pisaruk & Aggoun 2001). In particular, it can handle conversion nodes that arise
when modeling production processes. A typical application area is supply chain optimiza-

tion.

This list of global constraints is not exhaustive. Various other constraints have been
proposed in the literature, e.g. (Régin & Rueher 2000, Beldiceanu 2001). A classification

scheme for global constraints that subsumes a variety of the existing constraints (but not
all of them) is introduced in Beldiceanu (2000).

2.4 Local Consistency

From a declarative point of view, a constraint c(x1, . . . , xn) defines a relation on the Carte-
sian product D1×· · ·×Dn of the corresponding domains. In general, it is computationally

prohibitive to determine directly the tuples (v1, . . . , vn) that satisfy the constraint. Typi-
cally, constraint programming systems try to filter the domains Dj, i.e., to remove values

vj that cannot occur in a solution.
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A constraint c(x1, . . . , xn) is generalized arc consistent (Mohr & Masini 1988) if for
any variable xi, i = 1, . . . , n, and any value vi ∈ Di, there exist values vj ∈ Dj, for all

j = 1, . . . , n with j 6= i, such that c(v1, . . . , vn) holds.
Generalized arc consistency is a basic concept in constraint reasoning. Stronger notions

of consistency have been introduced in the literature, like path consistency, k-consistency,

or (i, j)-consistency. Freuder (1985) introduced (i, j)-consistency for binary constraints.
Given values for i variables, satisfying the constraints on those variables, and given any

other j (or fewer) variables, there exist values for those j variables such that the i + j

values taken together satisfy all constraints on the i + j variables. With this definition,

k-consistency is the same as (k − 1, 1)-consistency. Path consistency corresponds to 3-
resp. (2, 1)-consistency, and arc consistency to 2- resp. (1, 1)-consistency.

A problem can be made arc consistent by removing inconsistent values from the vari-
able domains, i.e. values that cannot appear in any solution. Achieving k-consistency for

k ≥ 3 requires to remove tuples of values (instead of values) from D1 × · · · × Dn. The
corresponding algorithms become rather expensive. Therefore, their use in constraint pro-
gramming is limited. Recently, consistency notions have been introduced that are stronger

than arc consistency, but still use only domain filtering (as opposed to filtering the Carte-
sian product), see (Debruyne & Bessière 2001, Prosser, Stergiou & Walsh 2000).

Bound consistency is a restricted form of generalized arc consistency, where we rea-
son only on the bounds of the variables. Assume that Dj is totally ordered, typically

Dj ⊂ Z. A constraint c(x1, . . . , xn) is bound consistent (Puget 1998) if for any vari-
able xi, i = 1, . . . , n, and each bound value vi ∈ {min(Di), max(Di)}, there exist values

vj ∈ [min(Di), max(Di)], for all j = 1, . . . , n with j 6= i, such that c(v1, . . . , vn) holds.
Most work on constraint satisfaction problems in the artificial intelligence community

has been done on binary constraints. However, the non-binary case has been receiving
more and more attention during the last years (Bessière 1999, Stergiou & Walsh 1999b,
Zhang & Yap 2000). Bacchus, Chen, van Beek & Walsh (2002) study two transformations

from non-binary to binary constraints, the dual transformation and the hidden (variable)
transformation, and formally compare local consistency techniques applied to the original

and the transformed problem.

2.5 Constraint Propagation

In general, a constraint problem contains many constraints. When achieving arc consis-

tency for one constraint through filtering, other constraints, which were consistent before,
may become inconsistent. Therefore, filtering has to be applied repeatedly to constraints

that share common variables, until no further domain reduction is possible. This process
is called constraint propagation.

The classical method for achieving arc consistency is the algorithm AC 3 (Mackworth
1977b). Consider a constraint satisfaction problem C with unary constraints ci(xi) and

binary constraints cij(xi, xj), where i < j. Let arc(C) denote the set of all ordered pairs
(i, j) and (j, i) such that there is a constraint cij(xi, xj) in C.

Algorithm AC-3 (Mackworth 77)

for i← 1 to n do Di ← {v ∈ Di | ci(v)};
Q← {(i, j) | (i, j) ∈ arc(C)};
while Q not empty do

select and delete any arc (i, j) from Q;

if revise(i, j) then Q← Q ∪ {(k, i) | (k, i) ∈ arc(C), k 6= i, k 6= j};
end while
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end

The procedure revise(i, j) removes all values v ∈ Di for which there is no corresponding
value w ∈ Dj such that cij(v, w) holds. It returns true if at least one value can be removed

from Di , and false otherwise. If e is the number of binary constraints and d a bound on
the domain size, the complexity of AC 3 is O(ed3).

Various extensions and refinements of the original algorithm AC 3 have been proposed.
Some of these algorithms achieve the optimal worst case complexity O(ed2), others have

an improved average case complexity.

• AC 4 (Mohr & Henderson 1986),

• AC 5 (van Hentenryck & Graf 1992),

• AC 6 (Bessière 1994),

• AC 7 (Bessière, Freuder & Régin 1999),

• AC 2000 and AC 2001 (Bessière & Régin 2001), see also (Zhang & Yap 2001).

Again these papers focus on binary constraints. Extensions to the non-binary case, i.e.
generalized arc consistency, are discussed in (Mackworth 1977a, Mohr & Masini 1988,
Bessière & Régin 1997, Bessière & Régin 2001).

2.6 Filtering Algorithms for Global Constraints

Local consistency for linear arithmetic constraints looks similar to preprocessing in integer
programming. Symbolic constraints in constraint programming, however, come with their

own filtering algorithms. These are specific to the constraint and therefore can be much
more efficient than the general techniques presented in the previous section. Efficient

filtering algorithms are a key reason for the success of constraint programming. They make
it possible to embed problem-specific algorithms, e.g. from graph theory or scheduling, into

a general purpose solver. The goal of this section is to illustrate this on two examples.

2.6.1 Alldifferent

First we discuss a filtering algorithm for the alldifferent constraint (Régin 1994). Let
x1, . . . , xn be the variables and D1, . . . , Dn be the corresponding domains. We construct
a bipartite graph G to represent the problem in graph-theoretic terms. For each vari-

able xj we introduce a node on the left, and for each value vj ∈ D1 ∪ · · · ∪ Dn a node
on the right. There is an edge between xi and vj iff vj ∈ Di. Then the constraint

alldifferent([x1, . . . , xn]) is satisfiable iff the graph G has a matching covering all the
variables.

Our goal is to remove redundant edges from G. Suppose we are given a matching M

in G covering all the variables. Matching theory tells us that an edge (x, v) 6∈M belongs

to some maximum matching iff it belongs either to an even alternating cycle or an even
alternating path starting in a free node. A node is free if it is not covered by M . An

alternating path or cycle is a simple path or cycle whose edges alternately belong to M

and its complement. We orient the graph by directing all edges in M from right to left,
and all edges not in M from left to right. In the directed version of G, the first kind of

edge is an edge in some strongly connected component, and the second kind of edge is an
edge that is reachable from a free node. This yields a linear-time algorithm for removing
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redundant edges. If no matching M is known, the complexity becomes O(m
√

n), where
m is the number of edges in G. Assuming that the domain size is bounded by d, this can

also be stated as O(dn
√

n). If filtering has to be applied several times due to constraint
propagation, the overall complexity can be bounded by O(m2) or O(d2n2).

Puget (1998) devised an O(n logn) algorithm for bound consistency of alldifferent,

a simplified and faster version was obtained in (Mehlhorn & Thiel 2000). Stergiou & Walsh
(1999a) compare different notions of consistency for alldifferent, see also (van Hoeve

2001).

2.6.2 Cumulative

Next we give a short introduction to constraint propagation techniques for resource con-

straints in scheduling. There is an extensive literature on this subject. We consider here
only the simplest example of a one-machine resource constraint in the non-preemptive

case. For a more detailed treatment and a guide to the literature, we refer to the recent
monograph by Baptiste et al. (2001).

We are given a set of activities {A1, . . . , An} that have to be executed on

a single resource R. For each activity, we introduce three domain variables,
start(Ai), end(Ai), proc(Ai), that represent the start time, the end time, and the pro-

cessing time, respectively. The processing time is the difference between the end and the
start time, proc(Ai) = end(Ai)− start(Ai). Given an initial release date ri and a deadline

di, activity Ai has to be performed in the time interval [ri, di − 1]. During propagation,
these bounds will be updated so that they always denote the current earliest starting time

and latest end time of activity Ai.
Different techniques can be applied to filter the domains of the variables start(Ai) and

end(Ai) (Baptiste et al. 2001):

Time tables. Maintain bound consistency on the formula
∑n

i=1 x(Ai, t) ≤
1, for any time t. Here x(Ai, t) is a 0-1 variable indicating whether or not activity Ai

executes at time t.

Disjunctive constraint propagation. Maintain bound consistency on the formula

[end(Ai) ≤ start(Aj)] ∨ [end(Aj) ≤ start(Ai)]

Edge finding. This is one of the key techniques for resource constraints. Given a set

of activities Ω, let rΩ, dΩ, and pΩ, respectively, denote the smallest earliest starting time,
the largest latest end time, and the sum of the minimal processing times of the activities
in Ω. Let Ai ≪ Aj mean that Ai executes before Aj, and Ai ≪ Ω (resp. Ai ≫ Ω) that

Ai executes before (resp. after) all activities in Ω. Then the following inferences can be
performed:

∀Ω, ∀Ai 6∈ Ω [dΩ∪{Ai} − rΩ < pΩ + pi]⇒ [Ai ≪ Ω]

∀Ω, ∀Ai 6∈ Ω [dΩ − rΩ∪{Ai} < pΩ + pi]⇒ [Ai ≫ Ω]

∀Ω, ∀Ai 6∈ Ω [Ai ≪ Ω] ⇒ [ end(Ai) ≤ min∅6=Ω′⊆Ω(dΩ′ − pΩ′) ]

∀Ω, ∀Ai 6∈ Ω [Ai ≫ Ω] ⇒ [ start(Ai) ≥ max∅6=Ω′⊆Ω(rΩ′ + pΩ′) ]

Edge-finding reasons on sets of activities. Given n activities, a priori O(n2n) pairs (Ai, Ω)

have to be considered. Carlier & Pinson (1990) present an algorithm that improves the
time bounds in O(n2).
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Not-first, not-last. The previous techniques try to determine whether an activity Ai

must be the first (or the last) within a set of activities Ω ∪ {Ai}. Alternatively, one may

try to find out whether Ai can be the first (or last) activity in Ω∪ {Ai}. If this is not the
case, one may deduce that Ai cannot start before the end of at least one activity in Ω (or
that Ai cannot end after the start of at least one activity in Ω) which leads to another set

of inference rules.

2.7 Modeling in Constraint Programming : An Illustrating Example

To illustrate the variety of models that may exist in constraint programming, we consider
the reconstruction of pictures in discrete tomography (Bockmayr, Kasper & Zajac 1998).

A two-dimensional binary picture is given by a binary matrix X ∈ {0, 1}m×n. Intuitively,
a pixel is black iff the corresponding matrix element is 1. A binary picture X is

• horizontally convex, if the set of 1’s in each row is convex, i.e. xij1 = xij2 = 1 implies

xij = 1, for all 1 ≤ i ≤ m, 1 ≤ j1 < j < j2 ≤ n.

• vertically convex, if the set of 1’s in each column is convex, i.e. xi1j = xi2j = 1 implies

xij = 1, for all 1 ≤ i1 < i < i2 ≤ m, 1 ≤ j ≤ n.

• connected or a polyomino, if the set of 1’s in the matrix is connected with respect to

the adjacency relation where each matrix element is adjacent to its two vertical and
horizontal neighbours.

Given two vectors h = (h1 . . . , hm) ∈ Nm, v = (v1, . . . , vn) ∈ Nn, the reconstruction

problem of a binary picture from orthogonal projections consists in finding X ∈ {0, 1}m×n

such that

• ∑n
j=1 xij = hi, for i = 1, . . . , m (horizontal projections)

• ∑n
i=1 xij = vj, for j = 1, . . . , n (vertical projections)

The complexity of the reconstruction problem depends on the additional properties that

are required for the picture (Woeginger 2001).

v + h convex v convex h convex no restriction

connected P NP-complete NP-complete NP-complete

no restriction NP-complete NP-complete NP-complete P

2.7.1 0-1 Models

The above properties may be modeled in many different ways. In integer linear pro-
gramming, one typically uses 0-1 variables xij. The binary picture X ⊆ {0, 1}m×n with

horizontal and vertical projections h ∈ Nm, v ∈ Nn is horizontally convex iff the following
set of linear inequalities is satisfied:

hi · xik +

n
∑

j=k+hi

xij ≤ hi, for all 1 ≤ i ≤ m, 1 ≤ k ≤ n.

X is vertically convex iff

vj · xkj +

m
∑

i=k+vj

xij ≤ vj , for all 1 ≤ k ≤ m, 1 ≤ j ≤ n.
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The connectivity of a horizontally convex picture can be expressed as follows:

k+hi−1
∑

j=k

xij −
k+hi−1
∑

j=k

xi+1j ≤ hi − 1, for all 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− hi + 1.

This leads to O(mn) variables and constraints.

2.7.2 Finite Domain Models

In finite domain constraint programming, 0-1 variables are usually avoided. For each row
resp. column in the given m× n-matrix, we introduce a finite domain variable

• xi ∈ {1, . . . , n}, for all i = 1, . . . , m, resp.

• yj ∈ {1, . . . , m}, for all j = 1, . . . , n.

If h = (h1, . . . , hn) and v = (v1, . . . , vm) are the horizontal and vertical projections, then
xi = j says that the block of hi 1’s for row i starts at column j. Analogously, yj = i

expresses that the block of vj 1’s for column j starts in row i.

Conditional propagation. To ensure that the values of the variables xi and yj are
compatible with each other, we impose the constraints

xi ≤ j < xi + hi ⇐⇒ yj ≤ i < yj + vj, for all i = 1, . . . , m, j = 1, . . . , n.

Such constraints may be realized by conditional propagation rules of the form if C then P ,
saying that, as soon as the remaining values for the variables satisfy the condition C, the

constraints P become active. This models horizontal/vertical projections and convexity.
To ensure connectivity, we have to forbid that the block in row i+ 1 ends left of the block

in row i or that the block in row i + 1 starts right of the block in row i. Negating this
disjunction yields the linear inequalities

xi ≤ xi+1 + hi+1 − 1 and xi+1 ≤ xi + hi, for all i = 1, . . . , m− 1.

The above constraints are sufficient to model the reconstruction problem. However, we
may try to improve propagation by adding further constraints, which are redundant from

the declarative point of view, but provide additional filtering techniques on the procedural
side. Adding redundant constraints is a standard technique in constraint programming.

Again, there is a problem-dependent tradeoff between the cost of the
filtering algorithm and the domain reductions that are obtained.

Cumulative. For example, we may use the cumulative constraint. We identify each

horizontal block in the image with a task (xi, hi, 1), which starts at time xi, has duration
hi, and requires 1 resource unit. For each column j, we introduce an additional task

(j, 1, m− vj + 1), which starts at time j, has duration 1, and uses m − vj + 1 resource
units. These complementary tasks model vertical projections numbers. The capacity of

the resource is m + 1 and all the tasks end before time n + 1. Thus, the constraint

cumulative( [ x1, . . . , xm, 1, . . . , n ],

[ h1, . . . , hm, 1, . . . , 1 ],
[ 1, . . . , 1, m− v1 + 1, . . . , m− vn + 1 ],

m + 1 , n + 1 )

models horizontal/vertical projection numbers, and horizontal convexity, see Fig. 2.
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Figure 2: Cumulative constraint in discrete tomography

Diffn. Another possibility is to use the diffn constraint. Here, we look at polyomino

reconstruction as packing of two-dimensional rectangles. We model the problem by an
extended version of the diffn constraint (Beldiceanu & Contejean 1994), involving four

arguments. In the first argument, we define the rectangles. For each black horizontal block
in the picture, we introduce a rectangle

Ri = [xi, i, hi, 1],

with origins (xi, i) and lengths (hi, 1), i = 1, . . . , m. To model vertical convexity, we

introduce 2n additional rectangles

S1,j = [j, 0, 1, lj,1], S2,j = [j, m + 1− lj,2, 1, lj,2],

which correspond to two white blocks in each column. The variables ljk define the height

of these rectangles. To ensure that each white block has a nonzero surface, we introduce
two additional rows 0 and m + 1, see Fig. 3 for an illustration.

The second argument of the diffn constraint says that the total number of rows and
columns is m+2 resp. n. In the third argument, we express that the distance between the

two white rectangles in column j has to be equal to vj. To model connectivity, we state
in the fourth argument that each pair of successive rectangles has a contact in at least
one position. This is represented by the list [ [1, 2, c1], ..., [m− 1, m, cm−1] ], with domain

variables ci ≥ 1. Thus, the whole reconstruction problem can be modeled by a single
diffn constraint:

diffn( [R1, . . . , Rm, S1,1, . . . , S1,n, S2,1, . . . , S2,n],
[n, m + 2],

[ [m + 1, m + n + 1, v1], . . . , [m + n, m + 2 ∗ n, vn] ],
[ [1, 2, c1], . . . , [m− 1, m, cm−1] ] )

Note that this model involves only the row variables xi, not the column variables yj . It is
also possible to use row and column variables simultaneously. This leads to another model

based on a single diffn constraint in 3 dimensions, see Fig. 3. Here, the third dimension
is used to ensure that row and column variables define the same picture.
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Figure 3: Two- and three-dimensional diffn constraint in discrete tomography

3 Search

Filtering algorithms reduce the domains of the variables. In general, this is not enough to
determine a solution. Therefore, filtering is typically embedded into a search algorithm.

Whenever, after filtering, the domain D of a variable x contains more than one value, we
may split D into non-empty subdomains D = D1 ∪ · · · ∪ Dk, k ≥ 2, and consider k new

problems C ∪ {x ∈ D1}, . . . , C ∪ {x ∈ Dk}. Since Di ( D, we may apply filtering again
in order to get further domain reductions. By repeating this process, we obtain a search

tree. There are many different ways to construct and to traverse this tree.
The basic search algorithm in constraint programming is backtracking. Variables are

instantiated one after the other. As soon as all variables of some constraint have been
instantiated, this constraint is evaluated. If it is satisfied, instantiation goes on. Otherwise,
at least one variable becomes uninstantiated and a new value is tried.

There are many ways to improve standard backtracking. Following (Dechter 1992), we
may distinguish look-ahead and look-back schemes. Look-ahead schemes are invoked before

extending the current partial solution. The most important techniques are strategies for
selecting the next variable or value and maintaining local consistency in order to reduce

the search space. Look-back schemes are invoked when one has encountered a dead-end
and backtracking becomes necessary. This includes heuristics how far to backtrack (back-

jumping) or what constraints to record in order to avoid that the same conflict rises again
later in the search (no-goods). We focus here on the look-ahead techniques that are widely

used in constraint programming. For possible combinations with look-back schemes, we
refer to (Jussien, Debruyne & Boizumault 2000, Chen & van Beek 2001).

3.1 Variable and Value Ordering

In many cases, the domains D1, . . . , Dk are singleton sets that correspond to the different

values in the domain D. The process of assigning to the variables their possible values
and constructing the corresponding search tree is often called labeling. During labeling,

17



two important decisions have to be made:

• In which order should the variables be instantiated (variable selection) ?

• In which order should the values be assigned to a selected variable (value selection) ?

These orderings may be defined statically, i.e. before starting the search, or dynamically

by taking into account the current state of the search tree.
Value orderings include:

• Try first the minimal value in the current domain.

• Try first the maximal value in the current domain.

• Try first some value in the middle of the current domain.

Dynamic variable selection strategies may be the following:

• Choose the variable with the smallest domain (”first fail”).

• Choose the variable with the smallest domain that occurs in most of the constraints
(”most constrained”).

• Choose the variable which has the smallest/largest lower/upper bound on its domain.

Variable and value selection strategies have a great impact on the efficiency of the
search, see e.g. (Gent, MacIntyre, Prosser, Smith & Walsh 1996, Prosser 1998). Finding

good variable or value ordering heuristics is often crucial when solving hard problems.

3.2 Complete Search

Whenever we reach a new node of the search tree, typically by assigning a value to a

variable, filtering and constraint propagation may be applied again. Depending on the
effort we want to spend at the node, we may enforce different levels of consistency.

Forward checking (FC) performs arc consistency between the variable that has just
been instantiated and the uninstantiated variables. Only those values in the domain of

an uninstantiated variable are maintained that are compatible with the current choice for
x. If the domain of a variable becomes empty, backtracking becomes necessary. Forward-

checking for non-binary constraints is described in (Bessière, Meseguer, Freuder & Larrosa
1999), while a general framework for extending forward checking is developed in (Bacchus
2000).

Full lookahead or Maintaining Arc Consistency (MAC) performs arc consistency for all
pairs of uninstantiated variables (in addition to forward checking), see (Sabin & Freuder

1997) for an improved version. Partial lookahead is an intermediate form, where only one
direction of each edge in the constraint graph is considered.

Again there is a tradeoff between the effort needed to enforce local consistency and
the corresponding pruning of the search tree. For a long time, it was believed that FC or

FC with Conflict-Directed Backjumping (CBJ) (Prosser 1993), together with the first-fail
heuristics, is the most efficient strategy for solving constraint satisfaction problems. (Sabin

& Freuder 1994, Bessière & Régin 1996) argued that MAC is more efficient than FC (or
FC-CBJ) on hard problems and justified this by a number of empirical results.

18



3.3 Heuristic Search

For many practical problems, complete search methods may be unable to find a solution.

In such cases, one may use heuristics in order to guide the search towards regions of the
search space that are likely to contain solutions.

Limited discrepancy search (LDS) (Harvey & Ginsberg 1995) is based on the idea that
a heuristic that normally leads to a solution may fail only because a small number of wrong

choices are made. To correct these mistakes, LDS searches paths in the tree that follow
the heuristic almost everywhere, except in a limited number of cases where a different

choice is made. These are called discrepancies. Depth-bounded discrepancy search (DDS)
is a refinement of LDS that biases search to discrepancies high in the tree (Walsh 1997). It

uses an iteratively increasing depth bound. Discrepancies below this bound are forbidden.
Interleaved depth-first search (IDFS) (Meseguer 1997) is another strategy to prevent

standard depth-first search to fall into mistakes. IDFS searches in parallel several subtrees,

called active, at certain levels of the trees, called parallel. The current active tree is searched
depth-first until a leaf is found. If this is a solution, search terminates. Otherwise, the state

of the current tree is recorded so that it can be resumed later, and another active subtree
is considered. There are two variants of this method. In Pure IDFS, all levels are parallel

and all subtrees are active. Limited IDFS considers a limited number of active subtrees
and a limited number of parallel levels, typically at the top of the tree. An experimental

comparison of DDS and IDFS can be found in (Meseguer & Walsh 1998).

4 Hybrid Methods

Hybrid methods have developed over the last decade in both the constraint programming

and optimization communities.
Constraint programmers initially conceived hybrid methods as double modeling ap-

proaches, in which some constraints are given both a constraint programming and a mixed
integer programming formulation. The two formulations are linked and pass domain re-

ductions and/or infeasibility information to each other. Little & Darby-Dowman (1995)
were early proponents of double modeling, along with Rodošek, Wallace & Hajian (1997)
and Wallace, Novello & Schimpf (1997), who adapted the constraint logic programming

system ECLiPSe so that linear constraints could be dispatched to commercial linear pro-
gramming solvers (CPLEX and XPRESS-MP). Double modeling requires some knowledge

of which formulation is better for a given constraint, an issue studied by Darby-Dowman &
Little (1998) and others. The constraints community also began to recognize the parallel

between constraint solvers and mixed integer solvers, as evidenced by Bockmayr & Kasper
(1998).

In more recent work, Heipcke (1998, 1999) proposed several variations of double mod-
eling. Focacci, Lodi, and Milano (1999a, 1999b, 2000) adapted several optimization ideas

to a constraint programming context, such as reduced cost variable fixing, and Refalo
(1999) integrated piecewise linear modeling through “tight cooperation” between con-
straint propagation and a linear relaxation. ILOG’s OPL Studio (van Hentenryck 1999)

is a commercial modeling language that can invoke both constraint programming (ILOG)
and linear programming (CPLEX) solvers and pass a limited amount of information from

one to the other.
The mathematical programming community initially conceived hybrid methods as gen-

eralizations of branch and cut or a logic-based form of Benders decomposition. Drawing
on the work of Beaumont (1990), Hooker (1994) and Hooker & Osorio (1999) proposed
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mixed logical/linear programming (MLLP) as an extension of mixed integer/linear pro-
gramming (MILP). Several investigators applied similar hybrid methods to process design

and scheduling problems (Cagan, Grossmann & Hooker 1997, Grossmann, Hooker, Raman
& Yan 1994, Pinto & Grossmann 1997, Raman & Grossmann 1991, Raman & Grossmann
1993, Raman & Grossmann 1994, Türkay & Grossmann 1996) and a nonlinear version of

the method to truss structure design (Bollapragada, Ghattas & Hooker 2001).
The logic-based Benders approach was initially developed for circuit verification by

Hooker & Yan (1995) and in general by Hooker 1995, ? and Hooker & Ottosson (2003). As
noted earlier, Jain & Grossmann (2001) found that the Benders approach can dramatically

accelerate the solution of a machine scheduling problem. Hooker (2000) observed that the
master problem need only be solved once if a Benders cut is generated for each feasible

solution found during its solution. Thorsteinsson (2001) obtained an additional order of
magnitude speedup for the Jain and Grossmann problem by implementing this idea, which

he called branch and check. Benders decomposition has recently generated interest on the
constraint programming side, as in the work of Eremin & Wallace (2001).

The double modeling and MLLP methods can, by and large, be viewed as special cases

of branch-infer-and-relax, which we examine first. We then take up the Benders approach
and present Jain and Grossmann’s machine scheduling example. Finally, we briefly discuss

continuous relaxations of common global constraints and survey some further applications.

4.1 Branch, Infer and Relax

Table 2 summarizes the elements of a branch-infer-and-relax (BIR) method. The basic

idea is to combine, at each node of the search tree, the filtering and propagation of con-
straint programming with the relaxation and cutting plane generation of mixed integer

programming.
In its simplest form, a BIR method maintains three main data structures: the original

set C of constraints, a constraint store S that normally contains in-domain constraints,
and a relaxation R that may, for example, contain a linear programming relaxation. The

constraint store is itself a relaxation, but for convenience we refer only to R as the relax-
ation.

The problem to be solved is to minimize f(x, y) subject to C and S. The search

proceeds by branching on the search variables x, and the solution variables y receive
values from the solution of R. The search variables are often discrete, but in a continuous

nonlinear problem they may be continuous variables with interval domains, and branching
may consist of splitting an interval (van Hentenryck, Michel & Benhamou 1998).

The hybrid algorithm consists of a recursive procedure Search(C, S) and proceeds as
follows. Initially one calls Search(C, S) with C the original set of constraints, and S con-

taining the initial variable domains. UB = ∞ is the initial upper bound on the optimal
value. Each call to Search(C, S) executes the following steps.

1. Infer constraints for the constraint store. Process each constraint in C so as to
reduce domains in S. Cycle through the constraints of C using the desired method

of constraint propagation (Section 3). If no domains are empty, continue to Step 2.

2. Infer constraints for the relaxation. Process each constraint in C so as to generate a
set of constraints to be added to the relaxation R, where R is initially empty. The

constraints in R contain a subset x′ of the variables x and all solution variables y,
and they may contain new solution variables u that do not appear in C. Constraints
in R that contain no new variables may be added to C in order to enhance con-
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Table 2: Basic elements of branch-infer-and-relax methods.

Constraint store
(relaxation)

Maintain a constraint store (primarily in-domain
constraints) and create a relaxation at each node
of the search tree.

Branching Branch by splitting a non-singleton domain, perhaps
using the solution of the relaxation as a guide.

Inference Reduce variable domains. Generate cutting planes
for the relaxation as well as for constraint propagation.

Bounding Solve the relaxation to get a bound.

Feasible solution is
obtained at a node. . .

When search variables can be assigned values that
are consistent with the solution of the relaxation,
and all constraints are satisfied.

Node is infeasible. . . When at least one domain is empty or the relaxation
is infeasible.

Search backtracks. . . When a node is infeasible, a feasible solution is found
at a node, or the tree can be pruned due to bounding.

straint propagation. Cutting planes, for instance, might be added to both R and C.
Continue to Step 3.

3. Solve the relaxation. Minimize the relaxation’s objective function f(x′, y, u) subject
to R. Let LB be the optimal value that results, with LB =∞ if there is no solution.
If LB < UB continue to Step 4.

4. Infer post-relaxation constraints. If desired, use the solution of the relaxation to

generate further constraints for C, such as separating cuts, fixed variables based on
reduced costs, and other types of nogoods. Continue to Step 5.

5. Identify a solution. If possible, assign some value x̄ to x that is consistent with the

current domains and the optimal solution (x̄′, ȳ) of the relaxation. If (x, y) = (x̄, ȳ)
is feasible for C, let UB = LB, and add the constraint f(x) < UB to C at all

subsequent nodes (to search for a better solution). Otherwise go to Step 6.

6. Branch. Branch on some search variable xj by splitting its domain Dj into smaller
domains Dj1, . . . , Djp and calling Search(C, Sk) for k = 1, . . . , p, where Sk is S aug-

mented with the in-domain constraint xj ∈ Djk. One can also branch on a violated
constraint.

In Step 3, the relaxationR can depend on the current variable domains. This allows for

more flexible modeling. For example, it is often convenient to use conditional constraints
of the form g(x) → h(y), where → means “implies.” Such a constraint generates the

constraint h(y) for R when and if the search variable domains become small enough to
determine that g(x) is satisfied. If g(x) is not determined to be satisfied, no action is
taken.

One common occurrence of conditional constraints is in fixed charge problems, where
cy1 is the variable cost of an activity running at level y1, and an additional fixed charge d
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is incurred when y1 > 0. If x1 is a boolean variable that is true when the fixed charge is
incurred, a skeletal fixed charge problem can be written

minimize cy1 + y2

subject to x1 → (y2 ≥ d)
not-x1 → (y1 ≤ 0)

x1 ∈ {T, F}, y1 ∈ [0, M ], y2 ∈ [0,∞)

(1)

where x1 is the only search variable and y2 represents the fixed cost incurred. The con-

straint y2 ≥ d is added to R when and if x1 becomes true in the course of the BIR
algorithm, and y1 ≤ 0 is added when x1 becomes false.

In practice the two conditional constraints of (1) should be written as a single global
constraint that will be discussed below in Section 4.4:

inequality-or

([

x1

not-x1

]

,

[

y2 ≥ d

y1 ≤ 0

])

The constraint signals that the two conditional constraints enforce a disjunction (y2 ≥
d)∨ (y1 ≤ 0), which can be given a simple and useful continuous relaxation introduced by
Beaumont (1990). (The ∨ is an inclusive “or.”) In this case the relaxation is dy1 ≤My2,

which the inequality-or constraint generates forR even before the value of x1 is determined.

4.2 Benders Decomposition

Another promising framework for hybrid methods is a logic-based form of Benders de-
composition, a well-known optimization technique (Benders 1962; Geoffrion 1972). The

problem is written using a partition [x, y] of the variables.

minimize f(x, y)
subject to gi(x, y), all i

(2)

The basic idea is to search values of x in a master problem, and for each value enumerated
solve the subproblem of finding an optimal y. Solution of a subproblem generates a Benders

cut that is added to the master problem. The cut excludes some values of x that can be
no better than the value just tried.

The variable x is initially assigned an arbitrary value x̄. This gives rise to a subproblem

in the y variables:
minimize f(x̄, y)

subject to gi(x̄, y), all i
(3)

Solution of the subproblem yields a Benders cut z ≥ Bx̄(x) that has two properties:

(a) When x is fixed to any given value x̂, the optimal value of (2) is at least Bx̄(x̂).

(b) When x is fixed to x̄, the optimal value of (2) is exactly Bx̄(x̄).

If the subproblem (3) is infeasible, its optimal value is infinite, and Bx̄(x̄) = ∞. If the
subproblem is unbounded, then (2) is unbounded, and the algorithm terminates. How
Benders cuts are generated will be discussed shortly.

In the Kth iteration, the master problem minimizes z subject to all Benders cuts that
have been generated so far.

minimize z

subject to z ≥ Bxk (x), k = 1, . . . , K − 1
(4)
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A solution x̄ of the master problem is labeled xK , and it gives rise to the next subproblem.
The procedure terminates when master problem has the same optimal value as the previ-

ous subproblem (infinite if the original problem is infeasible), or when the subproblem is
unbounded. The computation can sometimes be accelerated by observing that (b) need
not hold until the last iteration.

To obtain a Benders cut from the subproblem (3), one solves the inference dual of (3):

maximize v

subject to (gi(x̄, y), all i)→ (f(x̄, y) ≥ v)
(5)

The inference dual seeks the largest lower bound on the subproblem’s objective function

that can be inferred from its constraints. If the subproblem has a finite optimal value,
clearly its dual has the same optimal value. If the subproblem is unbounded (infeasible),

then the dual is infeasible (unbounded).
Suppose that v̄ is the optimal value of the subproblem dual (v̄ = −∞ if the dual is

infeasible). A solution of the dual takes the form of a proof that deduces f(x̄, y) ≥ v̄ from
the constraints gi(x̄, y). The dual solution proves that v̄ is a lower bound on the value of

the subproblem (3), and therefore a lower bound on the value z of the original problem
(2) when x = x̄. The key to obtaining a Benders cut is to structure the proof so that it is
parameterized by x. Thus if x = x̄, the proof establishes the lower bound v̄ = Bx̄(x̄) on z.

If x has some other value x̂, the proof establishes a valid lower bound Bx̄(x̂) on z. This
yields the Benders cut z ≥ Bx̄(x).

In classical Benders decomposition, the subproblem is a linear programming problem,
and its inference dual is the standard linear programming dual. The Benders cuts take

the form of linear inequalities. Benders cuts can also be obtained when the subproblem is
a 0-1 programming problem (Hooker 2000, Hooker & Ottosson 2003).

When the subproblem is a constraint programming problem, it is normally checked
only for feasibility, and a Benders cut is generated only when the subproblem is infeasible;

otherwise the procedure terminates. Constraint programming provides a natural context
for generating Benders cuts, because it is already a dual method. It checks infeasibility
by trying to construct a proof of infeasibility, which normally takes the form of a proof

that some domain must be empty. One can then identify a minimum set C(x) of premises
under which the proof is still valid. Thus for any given x, the Benders cut z ≥ Bx̄(x) is

defined by setting Bx̄(x) = ∞ if C(x) is true and −∞ otherwise. Equivalently, one can
simply let the Benders cut be not-C(x).

4.3 Machine Scheduling Example

A machine assignment and scheduling problem of Jain and Grossmann (2001) illustrates
a Benders approach in which the subproblem is solved by constraint programming.

Each job j is assigned to one of several machines i that operate at different speeds.
Each assignment results in a processing time dij and incurs a processing cost cij. There is

a release date rj and a due date sj for each job j. The objective is to minimize processing
cost while observing release and due dates.

To formulate the problem, let xj be the machine to which job j is assigned and tj the
start time for job j. It also convenient to let [tj | xj = i] denote the tuple of start times of
jobs assigned to machine i, arranged in increasing order of the job number. The problem
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can be written

minimize
∑

j

cxjj (a)

subject to tj ≥ rj, all j (b)

tj + dxjj ≤ Sj, all j (c)
cumulative([tj | xj = i] , [dij | xj = i] , e, 1), all i (d)

(6)

The objective function (a) measures the total processing cost. Constraints (b) and (c)

observe release times and deadlines. The cumulative constraint (d) ensures that jobs
assigned to each machine are scheduled so that they do not overlap. (Recall that e is a

vector of ones.)
The problem has two parts: the assignment of jobs to machines, and the scheduling

of jobs on each machine. The assignment problem is treated as the master problem and

solved with mixed integer programming methods. Once the assignments are made, the
subproblems are dispatched to a constraint programming solver to find a feasible schedule.

If there is no feasible schedule, a Benders cut is generated.
Variables x go into the master problem and t into the subproblem. If x has been fixed

to x̄, the subproblem is

tj ≥ rj, all j

tj + dx̄jj ≤ Sj, all j

cumulative([tj | x̄j = i] , [dij | x̄j = i] , e, 1), all i

(7)

The subproblem can be decomposed into smaller problems, one for each machine. If a

smaller problem is infeasible for some i, then the jobs assigned to machine i cannot all
be scheduled on that machine. In fact, going beyond Jain and Grossmann (2001), there

may be a subset J of these jobs that cannot be scheduled on machine i. This gives rise
to a Benders cut stating that at least one of the jobs in J must be assigned to another

machine.
∨

j∈J

(xj 6= i) (8)

Let xk be the solution of the kth master problem, Ik the set of machines i in the resulting
subproblem for which the schedule is infeasible, and Jki the infeasible subset for machine
i. The master problem can now be written,

minimize
∑

j

cxjj

subject to
∨

j∈Jki

(xj 6= i), i ∈ Ik, k = 1, . . . , K
(9)

The master problem can be reformulated for solution with conventional integer pro-
gramming technology. Let xij be a 0-1 variable that is 1 when job j is assigned to machine

i. The master problem (9) can be written

minimize
∑

i,j

cijxij (a)

subject to
∑

j∈Jki

(1− xij) ≥ 1, i ∈ Ik, k = 1, . . . , K (b)

∑

j

dijxij ≤ max
j
{sj} −min

j
{rj}, all i (c)

xij ∈ {0, 1}, all i, j (d)
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Constraints (c) are valid cuts added to strengthen the continuous relaxation. They simply
say that the total processing time on each machine must fit between the earliest release time

and the latest deadline. Thorsteinsson (2001) reports that (c) is essential to the success
of the Benders approach. It therefore seems worthwhile to develop relaxations for other
predicates that might appear in the subproblem, such as the full cumulative constraint,

as opposed to the one-machine constraint used here. Such a relaxation is mentioned in
the next section.

4.4 Continuous Relaxations for Global Constraints

Continuous relaxations for global constaints can accelerate solution by exploiting substruc-
ture in a model. Relaxations have been developed for several constraints, although other

constraints have yet to be addressed. Relaxations for many of the constraints discussed
below are summarized by Hooker (2000, 2002); see also (Refalo 2000).

The inequality-or constraint, discussed above in the context of fixed charge problems,
may be written,

inequality-or













x1

...

xk






,







A1y ≥ a1

...

Aky ≥ ak













It requires that xi be true and Aiy ≥ ai be satisfied for at least one i ∈ {1, . . . , k}. A

convex hull relaxation can be obtained by introducing new variables, as shown by Balas
(1975, 1979). The well-known “big-M” lifted relaxation that is weaker than the convex

hull relaxation but requires fewer variables. Hooker & Osorio (1999) discuss how to tighten
the big-M relaxation.

A disjunction of single inequalities

(a1y ≥ α1) ∨ · · · ∨ (ak ≥ αk)

relaxes to a single inequality, as shown by Beaumont (1990). Hooker & Osorio (1999)
provide a closed-form expression for a tighter right-hand side.

Cardinality rules provide for more complex logical conditions:

If at least k of x1, . . . , xm are true, then at least ℓ of y1, . . . , yn are true.

Yan & Hooker (1999) describe a convex hull relaxation for such rules. Their result has

been generalized by Balas, Bockmayr, Pisaruk & Wolsey (2002).
Piecewise linear functions can easily be given a convex hull relaxation that, when

properly used, can result in faster solution than mixed integer programming with specially

ordered sets of type 2 (Ottosson, Thorsteinsson & Hooker 1999). Refalo (1999) shows how
to use the relaxation in “tight cooperation” with domain reduction to obtain maximum

benefit.
The all-different constraint can be given a convex hull relaxation described by Hooker

(2000) and Williams & Yan (2001).
The element constraint is particularly useful for implementing variable indices. An

expression of the form uy can be encoded by replacing it with the variable z and adding
the constraint element(y, (u1, . . . , un), z). Here u1, . . . , un may be constants or variables.

Hooker, Ottosson, Thorsteinsson & Kim (1999) present various relaxations of the element
constraint, including a convex hull relaxation when the variables u1, . . . , un have the same
upper bound (Hooker 2000).
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The important cumulative constraint has been given three relaxations by Hooker &
Yan (2001). One relaxation consists of facet defining inequalities in the special case in

which some jobs have identical characteristics.
Lagrangean relaxation can be employed in a hybrid setting. Sellmann & Fahle (2001)

use it to strengthen propagation of knapsack constraints in an automatic recording prob-

lem. Benoist, Laburthe & Rottembourg (2001) apply it to a traveling tournament problem.
It is unclear whether this work suggests a general method for integrating Lagrangean re-

laxation with constraint propagation.

4.5 Other Applications

Hybrid methods have been applied to a number of problems other than those already men-

tioned. Transportation applications include vehicle routing with time windows (Caseau,
Silverstein & Laburthe 2001, Focacci, Lodi & Milano 1999b), vehicle routing combined with

inventory management (Lau & Liu 1999), crew rostering (Caprara & et al. 1998, Junker,
Karisch, Kohl, Vaaben, Fahle & Sellmann 1999), the traveling tournament problem

(Benoist et al. 2001), and the classical transportation problem with piecewise linear costs
(Refalo 1999).

Scheduling applications include machine scheduling (Heipcke 1998, Raman & Gross-
mann 1993), sequencing with setups (Focacci, Lodi & Milano 1999a), hoist scheduling
(Rodošek & Wallace 1998), employee scheduling (Partouche 1998), dynamic scheduling

(Sakkout, Richards & Wallace 1998), and lesson timetables (Focacci et al. 1999a). Produc-
tion scheduling applications include scheduling with resource constraints (Pinto & Gross-

mann 1997) and with labor resource constraints in particular (Heipcke 1999), two-stage
process scheduling (Jain & Grossmann 2001), machine allocation and scheduling (Lustig &

Puget 1999), production flow planning with machine assignment (Heipcke 1999), schedul-
ing with piecewise linear costs (Ottosson et al. 1999), scheduling with earliness and tardi-

ness costs (Beck 2001), and organization of a boat party (Hooker & Osorio 1999, Smith,
Brailsford, Hubbard & Williams 1996).

Other areas of application include inventory management (Rodošek et al. 1997), office
cleaning (Heipcke 1999), product configuration (Ottosson & Thorsteinsson 2000), gen-
eralized assignment problems (Darby-Dowman, Little, Mitra & Zaffalon 1997), multidi-

mensional knapsack problems (Osorio & Glover 2001), automatic recording of television
shows (Sellmann & Fahle 2001), resource allocation in ATM networks (Lauvergne, David

& Boizumault 2001), and assembly line balancing (Bockmayr & Pisaruk 2001).
Benders-based hybrid methods provide a natural decomposition for manufacturing and

supply chain problems in which resource assignment issues combine with scheduling issues.
Recent industrial applications along this line include automobile assembly (Beauseigneur &

Noiré 2003), polypropylene manufacture (Timpe 2003), and paint production (Constantino
2003).

5 Constraint Programming Languages and Systems

In constraint programming, the term “programming” has two different meanings (Lustig
& Puget 1999), see also Sect. 1.1:

• Mathematical programming, i.e. solving mathematical optimization problems.

• Computer programming, i.e. writing computer programs in a programming language.
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Constraint programming makes contributions on both sides. On the one hand, it provides a
new approach to solving discrete optimization problems. On the other hand, the constraint

solving algorithms are integrated into a high-level programming language so that they
become easily accessible even to a non-expert user.

There are different ways of integrating constraints into a programming language. Early

work in this direction was done by Laurière (1978) in the language ALICE. Constraint pro-
gramming as it is known today first appeared in the form of constraint logic programming,

with logic programming as the underlying programming language paradigm (Colmerauer
1987, Jaffar & Lassez 1987). In logic programming (Prolog), search and backtracking

are built into the language. This greatly facilitates the development of search algorithms.
Constraint satisfaction techniques have been studied in artificial intelligence since the early

70’s. They were first introduced into logic programming in the CHIP system (Dincbas, van
Hentenryck, Simonis, Aggoun & Graf 1988, van Hentenryck 1989). Puget (1994) showed

that the basic concepts of constraint logic programming can also be realized in a C++ en-
vironment, which lead to the development of ILOG Solver. Another possible approach is
the concurrent constraint programming paradigm (cc) (Saraswat 1993), with systems such

as cc(FD) (van Hentenryck, Saraswat & Deville 1998) or Oz (Smolka 1995).

5.1 High-level Modeling Languages

The standard way to develop a constraint program is to use the host programming language

in order to build the constraint model and to specify the search strategy. In recent years,
new declarative languages have been proposed on top of existing constraint programming

systems, which allow one to define both the constraints and the search strategy in a very
high-level way. Examples include OPL (van Hentenryck 1999), PLAM (Barth & Bockmayr

1998), or more specifically for search SALSA (Laburthe & Caseau 1998).
Both OPL and PLAM support high-level algebraic and set notation, similarly to alge-

braic modeling languages in mathematical programming. In addition to arithmetic con-
straints, OPL or PLAM also support the different symbolic constraints that are typical for

constraint programming. Furthermore, they allow the user to specify search procedures
in a high-level way. While PLAM relies on logic programming, OPL provides a set of
high-level constructs to specify complex search strategies.

As an example, we present an OPL model for solving a job-shop scheduling problem
(van Hentenryck, Michel, Perron & Régin 1999), see Fig. 4. Part 1of the model contains

various declarations concerning machines, jobs, tasks, the duration of the tasks, and the
resources they require. Part 2 declares the activities and resources of the problem, which

are predefined concepts in OPL. In Part 3, symbolic precedence and resource constraints
are stated. Finally, the search strategy is specified in Part 4. It uses limited discrepancy

search and a ranking of the resources.
While high-level languages such as OPL provide a very elegant modeling and solution

environment, particular problems that require specific solution strategies and heuristics
may not be expressible in this high-level framework. In that case, the user has to work
directly with the underlying constraint programming system.

5.2 Constraint Programming Systems

We finish this section with a short overview of constraint programming systems that are
currently available, see Tab. 3. For a more detailed description, we refer to the corre-

sponding web sites.
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int nbMachines = ...

range Machines 1..nbMachines;

int nbJobs = ...;

range Jobs 1..nbJobs;

int nbTasks = ...;

range Tasks 1..nbTasks;

Machines resource[Jobs,Tasks] = ...;

int+ duration[Jobs,Tasks] = ...;

int totalDuration = sum(j in Jobs, t in Tasks) duration[j,t];

scheduleHorizon = totalDuration;

Activity task[j in Jobs, t in Tasks](duration[j,t]);

Activity makespan(0);

UnaryResource tool[Machines];

minimize

makespan.end

subject to {

forall(j in Jobs)

task[j,nbTasks] precedes makespan;

forall(j in Jobs)

forall(t in 1..nbTasks-1)

task[j,t] precedes task[j,t+1];

forall(j in Jobs)

forall(t in Tasks)

task[j,t] requires tool[resource[j,t]];

};

search {

LDSearch() {

forall(r in Machines ordered by increasing localSlack(tool[r]))

rank(tool[r]);

}

}

Figure 4: A Job-Shop Model in OPL (van Hentenryck et al. 99)
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System Availability Constraints Language Web site

B-prolog commercial Finite domain Prolog www.probp.com

CHIP commercial Finite domain, Prolog, www.cosytec.com

Boolean, C, C++
Linear rational

Hybrid

Choco free Finite domain Claire www.choco-constraints.net

Eclipse free for Finite domain, Prolog www.icparc.ic.ac.uk/eclipse/

non-profit Hybrid

GNU Prolog free Finite domain Prolog gnu-prolog.inria.fr

IF/Prolog commercial Finite domain Prolog www.ifcomputer.co.jp
Boolean,

Linear arithmetic

ILOG commercial Finite domain, C++, www.ilog.com
Hybrid Java

NCL commercial Finite domain www.enginest.com

Mozart free Finite domain Oz www.mozart-oz.org

Prolog IV commercial Finite domain, Prolog prologianet.univ-mrs.fr
Linear/nonlinear

interval arithmetic

Sicstus commercial Finite domain, Prolog www.sics.se/sicstus/
Boolean, linear

real/rational

Table 3: Constraint programming systems
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