Joranl of Artificial Intelligence Hessarch 14 (30000 ) 305- 2350 Hubmitred 12000 pubdished 5000

Domain Filtering Consistencies

Romuald Debruyne RoMuaLn DERRUYNEGEMN FR
Member of the Coconur group

Ereols des Mines de Nanles,

Lo Chantrerde, §, Rue Alfred Rastier, {307 Nantes Ceder 5« Frincs

Christian Bessiore BESSIEREDLIRMM FR

Member of the Coconur group
LIRMM - ONES UMB 5506, 161 rwe Ada, 34592 Monipellier Ceder § - Frunes

Abstract

Enforcing local romsistencies = one of the main features of constraint reasoning  Which
level of loscal comsistensy should be used when searching for solotions ina constraint network
15 a basic question. Are consistency and partial forms of arc consistency hawve been widely
stiudied, and have besn known for sometime through the forward checking or the MAC
segreh algorithmes, Until recently stronger formes of local consisteney remained lmited to
those that change the strocture of the constraint graph, amd thos could pot be wsed in
praciice, especially on large networks, This paper focuses on the local sonsistencies that
are stronger than are consistency, without changing the structure of the network e only
removing inconsistent values from the doemains, In the last five years, several sach local
conalstencies have bean proposed by us or by others We make an overview of all of them,
amd highlight some relations betwesn them.  We compare them both theoretically amd
experimentally considering their proning efficiency amd the thme required o anfores them,

1. Introduction

There are more and more applications in artificial intelligence that use constraint networks
(C'Na) to solve combinatorial problems, ranging from design to diagnosis, resource allocation
to car sequencing, natural language understanding to machine vision. Finding a solution in
a constraint network involves looking for a set of value assignments, one for each variable,
s0 that all the constraints are simultaneously satisfied (Meseguer, 198%: Taang, 19493). This
task ia NP-hard and many exponential time algorithma have been proposed to solve this
problem. These algorithms, which make a systematic exploration of the search space, all
have backtracking as a basis. As long as the unassigned variables have values consistent
with the partial instantiation, they extend it by assigning values to variables. Otherwise,
a dead-end is reached and some previous assignments have to be changed before going on
with the partial instantiation extension. The explicit constraints of the network together
induce some implicit constrainta. Since basic search algorithms do not record these implicit
conatraints, they waste time by repeatadly detecting the local inconsistencies cansed by
them. Filtering techniques are essential to reduce the size of the search space and so to
improve the efficiency of search algorithms. They can be used during a preprocessing step to
remove once and for all some local inconsistencies that otherwise would have been repeatedly
found during search {Dechier & Meiri. 1994). Thay can also be maintained during search.

2l Al Acesse Feandatkon and Morgnn Knafmann Publizhers. A1 rlghes peserved.



DERruYNE & BESSIRRE

Search algorithmas differ in the kind of local consistency they achieve after each choice
of a value for a variable. Most of them enforce partial are consistency, going from forward
checking (FC, Golomb & Baumert. 1965; Haralick & Elliott, 1930). which only removes the
walues directly arc inconsistent with the last assignment, to really full look-ahead [RFL,
Craschnig, 1974). which achieves full arc consistency. Arc consistency (AC) and partial
forma of arc consistency are widely used for two reasons. First, they have low space and
time complexities, while path consistency and higher levals of k-consistency, which were
for a long time the only other options, are prohibitive and can change the atrocture of the
network. Moreover, until 1995, more pruningful local consistencies seemed uninteresting
sinee exparimental evaluations of search algorithma showed that the limited local consistency
nsed by forward checking was the best choice (Nadel, 1983: Komar, 1992; Bacchus & van
Run, 1995). This conclusion is not surprising since the comparisons were made on very
amall and easy constraint networks. On such problems, the additional eost of proning more
values could not be outweighed by the search savings.

However, the harder a constraint network is, the more wseful filtering techniques are.
More recent works [Bessiére & Régin, 1046: Sabin & Freoder, 19094; Grant & Smith, 1996)
testing aearch algorithms at the threshold {Cheeseman, Kanefsky, & Taylor, 19491). where
most, of the hard problems are expected to be, show that using more proningful local
conalstencies can be worthwhile. Their conclusion is that maintaining arc consistency during
search (MAC), namely achieving AC both after the choice of a value for & variable and after
the refutation of such a choice, outperforms forward checking on hard problems. The good
behavior of MAC is even more significant on large problems, especially when domains are
large. It is conceivable that on very difficult instances, maintaining an even more pruningful
local consigtency may pay off. Obviously, such an algorithm would waste seconds on easy
C'Na but it would save many minutes (hours 7} on very hard problems, reducing the set of
pathological CNa on which search is really prohibitive.

In this paper we study the local consistencies as preprocessing filtering techniques. Thia
ia & preliminary work before trying to determine which local consistency s the most advan-
tageous to be maintained during search. In the last five years, many new local consistencies
have been proposed. In the remaining of this paper, we focus our attention on those that
leave unchanged the atrocture of the network ginca they are the only able to be wsed on large
CMa. In addition to an overview of these local consistencies that only remove inconsistent
walues, we both compare, theoretically and experimentally, their pruning efficiency and the
Lime neaded to enforce them.

2. Definitions and Notations

A nelwork of binary conalrinla P = (A, D, () is defined by aset ' = {i, 7, ...} of n
variables, each taking value in its respective finite domain Iy, I3, ... elements of T, and a
set C of e binary constraints. d is the size of the largest domain. A binary constraint C;
is a subsst of the Cartesian product By » 1) that denotes the compatible pairs of values
for ¢ and j. We denote 7 (a. b} = frue to specify that ({1, a], (7, bj) € ;. Wa then say
that (. &) is a suppert for (i, a) on ;. Checking whether a pair of values is allowed by
a constraint i5 called a consbraind check. With each ON we associate a conslraind graph
in which nodes represent. variables and ares connect pairs of variables that are constrained

206



Domarw Fivrering CoNSISTEMCIES

explicitly. e ia the number of 3-cliques in the constraint graph and g 18 the maximum degres
of a node in the constraint graph. The neighborhood of ¢ is the sot of variables adjacent. tod
in the constraint graph. A domain ' = {I¥, j}; ...} is & sub-domain of D' = {D;, D,... .}
il Wi, Df € Dy, An instantfalion T of a set of variables § is a set of value assignments
{1;}ics. one for each variable belonging to 5. 8.6, ¥j € 5. I, € [, An instantiation I of
5 aatisfies a constraint O if {é, 7} & 5 or Oyl 1) B8 troe. An instantiation is conaistent
if it satisfies all the constraints. A pair of values ({1, a). (7. 8)) 5 path consiatent if for all
ke Xat j+# k#4# 3, this pair of values can be extended to a consistent inatantiation
of {i.j.k}. (4,0) s a polh consistent support for (i a) if (o, b) € O and ((i.a). (7, 0)) is
path conaistent. A salution of P = (A", D) s & consistent instantiation of A A value
(2.a] s consistent il there is a solution | such that I; = a, and a ON is consisfent if it has
at least one solution. We denote by Plp, <14} the CN obtained by restricting I to {a} in
F. If L7 15 a local consistency, a ON P s not L -consistent T L does not. hold on F.
A CN P is Lil-inconsiatent il we cannot obtain a L -consistent constraint network by
deletion of some local inconsistencies in P, Il a local consistency L s used o detect the
inconaistency of instantiations no longer than 1, we can say that a CN P = (', D, () s
L -inconsiatent iff there is no sub-domain T of T auch that LC holds on (A, T, C).

3. The Loecal Consistencies Studied

Filtering technigues can be wsed to detect the inconsistency of a CN, and under some
assumptionsa, they can ensure a backtrack-free scarch (Freuder, 1982, 1985}, However,
their usual purpose is not to find & solution in a constraint network. They remove some
local inconsistencies and so delete some regions of the search space that do not contain
any solution. The resulting CN is equivalent to the initial one since the set of solutions
ia unchanged. but if subatantial reductions are made the search becomes easier. In this
section we review the basis of arc consistency, k-consistency, restricted path consistency,
and inverse consistencies. Furthermore, we extend the idea of restricted path consistency
Lo k-restricted path consistency and Max-restricted path consistency. We propose a new
class of local consistencies callad singleton consistencies. We also show a property of path
inverse consistency that can be used to have an optimal worst case time complexity in &
path inverse consistency algorithm (Debruyne, 2000).

Arc consistency The most widely used local consistency is arc consistency, It is based
on the notion of support. A value is viable as long as it has at least one compatible value in
the domain of each neighboring variable. An AC algorithm has to remove the values that
have no support on a constraint. As in most of the filtering techniques, the value deletions
have to be propagated through the network since they can lead to the arc inconsistency of
mome values that were previously viable.

k-consistency A consistent instantiation of length k-1 18 k-consistent (ie., (k-1 1]-
conaistent in the formalism of Freader, 19385) if it can be extended to any additional ko
wariable. The time and space complexities of enforcing k-consistency are polynomial with
the exponent dependent on k. I k& > 3, the constraints have to be represented in extension
to store the (k-1j-tuples deleted. and the structure of the network can be changed. This
leads to huge space requirements and subsequently important cpu time costs. In practice,

207



DERruYNE & BESSIRRE

only 2-consistency, which s arc consistency in binary CNs, can be used. Although path
conaistency (PC, namely 3-consistency) cannot be used on large CNa, our experiments will
involve strong path consistency (namely enforcing both arc and path consistency] because
P has been widely studied.

Restricted path consistency The aim of Berlandier when he propossd restricted path
conaistency (RPC.  Berlandier, 1995) was to remove more inconsistent values than AC
while avoiding the drawbacks of path consistency. Even the most efficient PC algorithms
hava to try to extend all the paira of values [even those between two variables that are
not neighbora) to any third variabla. The basis of RPC is to avoid most of this prohibitive
work. RPC performs only the most pruningful path consistency checks, namely those able
to directly delete a value. In addition to AC, an RPC algorithm checks the path consistency
of the pairs of values ({1, a), (.5)] such that {7. b} is the only support for (i, a)in 0. If such
a pair is path inconsistent. its delation would lead to the arc inconsistency of (i, a). Thus
(2.a) can be removed. These few additional path consistency checks allow detecting more
inconsistent values than AC without having to delete any pair of values, and so leaving
unchanged the structure of the network.

k-restricted path consistency We can extend the idea of RPC to a more proningful
local consistency. If KPC holds, the values that have only one support on a constraint are
auch that this support is path consistant. Checking the path consistancy of more supports
can remove even more values without falling into the traps of PC. k-restricted path con-
aistency (k-RPC. Debruyne & Bessiere, 1997a) looks for a path consistent support on a
conatraint for the values that have at most k supports on this conatraint. RPC s 1-RPC
and AC corresponds to -RPC. If &-RPC holda, to achisve (k+1)-RPC we only have to
check the values that have exactly (k+1] supports on a constraint and to propagate their
possible deletion. So, it is possible to achieve AC, RPC, 2-RPC and 80 on, each time reusing
previous filtering effort. This adaptive enforcement can be stopped as soon as each value
has at least one path consistent support on each constraint. the constraint network being
d-RPC where d is the size of the largest domain. Indeed. if after achieving &-RPC all the

values have at most k supports on each constraint, K'-RPC holds for all &' = k.

Max-restricted path consistency A constraint network is Max-restricted path consis-
tent (Max-RPC!, Debruyne & Bessiere, 1%7a) if all the values have at least one path
conaistent support on each constraint, whatever is the number of supports. From the prun-
ing efficiency point of view, Max-RPC is an upper bound for k-RPC. Achieving Max-RPC
involves deleting all the k-restricted path inconsistent values for all k. However, achieving
Max-RPC can be less expensive than enforcing & high level of E-RPC. As opposed to Max-
REPC. to achieve E-RPC we have to look for the values that have at most &k supporis on a
constraint to know the values for which a path consistent support has to be found. This
can be expensive if k is great. the algorithm having to look for k41 supports for each value
on each conatraint. Unconditionally looking for & path consistent support avoids this costly
extra work.

k inverse consistency The aim of Freuder and Elfe when they proposed inverse consis-
tency (Freuder & Elfe. 199G) waa to achieve high order local conaistencies with a good space
com plexity, A k-consistency algorithm removes the instantiation of length k-1 that cannot

203



Domarw Fivrering CoNSISTEMCIES

be extended to any k™ variable. It requires ﬂl:ﬂk_ Lf*=1 sapace to keap track of the deleted
instantiations. Space requirements are no longer a problem with & inverse consistency (1.
k-1}-consistency ), which removes the values that cannot be extended to a consistent instan-
tiation including any k-1 additional variables. Tts linear space complexity would allow using
it on large CNa. However, its worst case time complexity i polynomial with the exponent
dependent on k. which restricts ita use to small values of k.

Path inverse consistency The first level of & inverse consistency removing more values
than AC is path inverse consistency (PIC. & = 3). By definition, (i, a) is path inverse
conaistent. if it can be extended to all the 3-tuples of variables containing i, However, as
said in (Freoder & Elfe, 19946}, not all the 3-tuples need to be checked to enforce PIC. Only
one of the tuples (i, 5, k) and (i, k. ) has to be checked. Moreover, if ¢+ is linked to neither §
mor &, {i,a)can be deleted because of (i, j. k} only if all the values of j or k are path inversa
inconsistent. In such a case, checking (i, §. k) is uaeless gince PIC detecta the inconsistency
of the network when processing § or k.

Neighborhood inverse consistency Since k inverse consistency is polynomial with the
axponent dependent on k, checking the k inverse consistency of all the values is prohibitive if
k is great. However, if the variables are not uniformly constrained, it would be worthwhile to
adapt the level of k inverse congistency to the number of constraints involving them, focusing
filtering effort on the most constrained variables (as it 13 done for adaptive consistency
Dechtar & Pearl, 1988]. This i the basis of neighborhood inverse consistency (NIC, Freudar
& Elfe. 1996}, which removes the values that cannot be extended to a consistent inatantiation
including all the neighboring variables. We have to point out that the behavior of NIC
ia dependent on the structure of the constraint graph. If two variables ¢ and j are not
neighbors. we can add a universal constraint allowing all the pairs of values (2, b) ¢ [} = D;
between ¢ and j. The resulting C'N is equivalent to the initial one since it has the same set of
solutions. However, as opposed to the other filterings atudied in this paper, NIC is affected
by thiz change since it can remowe more values. Obviously, this process increases time
complexity. On complete constraint networks, NIC tries to extend all the valuss to a whole
solution, namely deleting all the globally inconsistent. values (named variabla completability
in Freuder, 1991}. This is a far more difficult task than looking for one solution. To be cost
affective, NIC has to be used only on sparse CNa, where the degree of the variables is amall.

Singleton consistencies I a value (i, a) ia consistent, the conatraint network obtained
by restricting I to the singleton {a} is consistent. Singleton consistencies are a class of
filtering techniques based on this remark. To detect the inconsistency of a value (i.a), a
singleton consistency filtering technique checks whether a given local consistency can datact
the possible inconsistency of Pp oy.). For example, singleton are consistency [SAC, De-
bruyne & Bessiere, 1997h) deletes the values (i, a) such that P|p <. has no are consistent
sub-domain." SAC has been inspired by the strong path consistency algorithm proposed
by MeGragor (MeGragor, 1979). A SAC algorithm is obtained by omitting the deletions

I. Any AC algorithm can be used to know whether enforcing AC an P|s zya) leads to a domain wipe out,
but a laxy approach (such as LACT Schiex, Hégin, (Gaspin, & Verfadllie, 15996) is suthicient.

2049



DERruYNE & BESSIRRE

A binary CN ia (i, j|-consiztent iff ¥i € A", [}, £ @ and any consistent instan-
tiation of ¢ variables can be extended to a consistent instantiation including
any 7 additional variahles.

A value @ £ [} is arc consistent iff, ¥j € A" s.t. O € €, there exists
be Dy at. Cyla b, A domain I is are consistent iff. Ya € [y, (4. a) is arc
consistent. A UN is are consislent ({1, 1}-consistent} ff Y0, € D, 0, is a
non empty arc consistent domain.

A pair of values (. a), (5, 8)) s path consistent iff Wk € A', there exista ¢ € D
a.t. Chpla, o) and Cpfb, e}, otherwise it is path inconsistent. A CN is path
conatsfent ([2, 1]-consistent] iff no path inconsistent. pair of values is allowed.

A binary CN i slrongly palh consgiglend il it 15 node consistent, arc consistent
and path consistent.

A binary ON is path inverse consisfent iff it is (1. 2j-consistent ie.,
Wi, apeD Wi ked at. 7 # & #£ &k # 3. J.beD and Ik c)eD st
Caj(a, b) A Cinla, e) A Clielb. £

A binary CN i neighborhood inverse consistent iff ¥{i aleD, (i, a) can be
extended to a consistent instantiation including the neighborhood of 1.

A binary UN is reslricled path consistent T
Wie A, I} is a non empty arc consistent domain and,

Wi,a) € D, for all j € A" a.t. (. a) has an unique support & in 0,
for all k £ A" linked to both 4 and §. Je & Dy st Cpla, e AT (b e).

A binary CN is k-reslricted path consiztent i

Wie A, I} i5 a non empty arc consistent domain and,

W(i,a) & T, for all 55 € C a1, (¢, a) has at most. k supports in 3y,
db & D s.t. Cyj{a, b} and

Wk £ A linked to both @ and §. Je & D st Chefa, o) AT (b, ).

A binary UN s maz-reslricled polh consiglend il

Wie A, I} i5 a non empty arc consistent domain and,

Wi, a) & T, for all 5 e C.

db & D s.t. Cyj{a, b} and

Wk £ A linked to both @ and §. Je € Oy st O fa, ) AT {h, ).

A binary CN P is singlefon are consistent iff ¥o £ A" D &£ 0 and Wi a) e D,
P, =qap has an arc consistent sub-domain.

A binary CN P is singleton restricied path consistent iff Wi € X' Dy & @ and
W(i.a) € D. Pl o1} has a restricted path consistent sub-domain.

Figure 1: The mentioned local consistencies.

210



Domarw Fivrering CoNSISTEMCIES

MName of Waorst case Worst case
the algorithm time complexity | space complexity
ACT (Bessiere, Frender, & Régin, 1994) ﬂ[ed"}':'] i ed)
RPC2 (Debruyne & Bessiere, 1997a) Ofen + ed? 4+ ed?)i=) Oed + ed)
Max RPCI (Debruyne & Bessiere, 1M7a) | O{en 4+ ed? 4 ed?)i=) O ed 4 ed)
PCS (Singh, 1995) O {ntd¥)l= 2 {n*d)
PCR (Chmeiss & Jégou, 19946) atd?) 2 (nld)*
PICL (Frender & Elfe, 19%6) O {end") 3n)
PIC2 (Debruyne, 2000 en 4+ ed? 4+ EJ*}E'] O ed 4 ed)
NIC1 (Freuder & Elfe, 1996) Og*{n 4 edyd’™* ') iHn]
SACI (Debruyne & Bessiére, 1997h) O {end") (Hed)
SRPC1 (Debroyne & Bessiére, 1997h) en 4+ n"f_e + r.']d":l O ed 4 ed)

=l optimal worst case time complexity.

Table 1: The most efficient algorithms achieving the mentioned local consistencies.”

of pairs of values in that algorithm. Many other singleton consistencies can be considerad
aince any local consistency can be used to detect the possible inconsistency of the CNs
Flp,mqay with [i.a) € D. If a local consistency can be enforced in a polynomial time, the
corresponding singleton consistency also has a polynomial worst case time complexity.

The formal definitions of the local consistencies atudied in this paper are pressntad in
Figure 1. Tabla 1 recalls the time and apace com plexities of the most efficient. algorithms
enforcing them. The worst case time complexity of SACL, SRPCL, and NIC'1 have not bhean
proved to be optimal.

4. Relations between PIC, RPC and Max-RPC

To highlight the relations between PIC, RPC and Max-RPC. lat ua show a property of path
inverse conalatency. Asshown in (Debruyne, 20007, if we assume that the conatraint network
ia are consistent, enforcing PIC requires checking even less 3-tuples than those mentioned in
(Freudar & Elfe, 1996]. If (i, a) is arc consistent, it can ba extended to any 3-tuple (i, j. &)
such that there is no constraint between j and k. Indeed. (i, a) has a support (7. 5] on O
and & support (k. ¢} on Cie, and since j 18 not linked to k, ({1, a), (1. 5), (&, c]) I8 consiatent.
Furthermore, (i,a) can be extended to (i, 7, k) if there i3 no constraint between ¢ and &
(resp. between i and j}. Indeed, (i, a) has a support b in I); (resp. ¢ in D} and this value
being arc consistent too, it has a support ¢ in D (resp. bin D) So, {(,a), (7, 8, (&, )]
is consistent. Consequently, if the constraint network i are consistent, the only 3-tuples
that have to be checked to achieve PIC correspond to the 3-cliques of the constraint graph.

2. However a Hn”d”| data stracture is raquired for the constraint repressneation.
k. Ses= Section 2o tor a dehmicion af m, d. =, 0, and g

211



DERruYNE & BESSIRRE

0 support 1 suppart
=,

(h )
Gt
o @ Eﬁ “*"

Y AT RRCFIC, nd By RPC.FIC, and Mas-RFC
Max-EPC delete [i.a) debete i) because ik uniguoe suppor
iz pod pathconsiskent

2 suppons 2 suppornts
\
| :
a5
|
{0k . .
b I Ll
WE 0 e
4 | E-\%II
I..'Ixa o r
N ey | F‘|| |
| |{g)}. | l“"_-_"'l
)
() (i ajis RPC-cansistent wor . O (10 (i a) is BPCconsistent worl. C
but FIC azd Max-EFC and FIC-consisten! w.rt. C : bt
delele this value Max-BFC deletes this valoe

2 A Jorbidden mir of values.

Figure 2: Examples showing the relations between PIC, RPC and Max-RPC.

Furthermore, the definition of PIC shows that any constraint network involving less than
three variables is path inverse consistent, even though it is not arc consistent.

Property 1 A ON s gath tnverse consislend off
il tnvoloes less than three variables, or
e il iz are consislent and for each value (i, a) in D, for any S-cligue {i.3. k}.
(1, @] can be extended lo o consislent instantiafion of {i. 9. k}.

Thiz property allows us to see the relations betwesen PIC, RPC and Max-RPC. IT &
value {i,a) has no support on a constraint %, the three local consistencies delete this
arc inconsitent value (see Figure 2A). I (4, a) has only one sapport & in 0, PIC, RPC,
and Max-RPC delete (i, a)} bocause of O if ((doa). (5.8)) is path inconsistent (see Figure
2B}. The differeance hetween these three local congistencies appeara if (i a) has at least two
supports on Oy In such a case, (i, a) is restricted path consistent w.r.t. O but PIC can
delete it if there is a 3-clique {i, 7.k} such that all the supports of (i.a) in I[}; are path
inconsiatent hecanse of & (see Figure 207, S0, PIC is more pruningful than RPC. But it

212



Domarw Fivrering CoNSISTEMCIES

often deletes only few additional values because the supports of a value are seldom all path
inconsistent because of the same third variable. Max-RPC i far more pruningful since it
delates (1. a)] because of O if all its supports in 1J; are path inconsistent, even if they are
not path inconsistent because of the same third variable {see Figure 200,

5. Pruning Efficiency

5.1 Qualitative Study

To compare the pruning efficiency of the local consistencies presented above, we use the
transitive relation “stronger” introduced in (Debruyne & Bessiere, 1997h). A local consis-
tency L s slronger than another local consistency LO7 i in any ON in which L holds,
L holds too. Consequently, if L is stronger than LOY, any algorithm achieving IO
delates at least all the values removed by an algorithm achieving LC°. For instance, since
by definition of restricted path consistency RPC is stronger than AC, an RPC algorithm
removes ab least all the arc inconsistent values, A local consistency IO 5 slriclly sironger

than another local consistency LC° if L s stronger than LO and there is at least one CN
in which LY holds and L does not.

Theorem 1 Realricted path consistency s alrictly alranger than AC

Proof By definition of restricted path consistency, RPC is stronger than arc consistency.
Figure 3a shows that there exists a constraint network on which AC holds and RPC does
not. Therefore, RPC is strictly stronger than AC. 0O

Theorem 2 If k = & =0, k-BP( 5 slriclly alronger than E'-RPC

Proof The proof that &-RPC is stronger than E-RPC if & > &' >0 is trivial. Figure g
shows that there exists a constraint network on which ¥-RPC holds and &-RPC (k = &' 20)
does not. Therefore, k-RPC is atrictly stronger than E-RPC if k > &" =0, D

Theorem 3 MWaz-FFP( s sirictly simonger than E-R PO 9k =00

Proof The proof that Max-RPC is stronger than &-RPC %k >0 ia trivial. Figure 3g shows
that for any & =0 there exists a constraint network on which E-RPC holds and Max-RPC
does not. Therefore, Max-RPC is atrictly stronger than &-RPC Ye =0, O

Theorem 4 If A >3 path mnverse consislency s stricily sironger than restricted path
consisleney.

Proof From property 1, PIC is stronger than AC if |4 >3, Now, consider a value (i, a]
having only one support (7, b) on ;. If PIC holds, for any third variable k, {i, a) can be
extended to a consistent instantiation { including {4, f. k} and since b is the only support of
(toa)in Dy T =b. So ({i,a), (7, b)) 1 path consistent and (i, a) is restricted path consistent
w.r.t. ;. Furthermore, Figure 3b shows that there exists a constraint network on which

213



DERruYNE & BESSIRRE

RPC holds and PIC does not. Therefore, path inverse consistency is strictly stronger than
reatricted path consistency if |4 =3, O

Theorem & If|A'| =4 maz-restricted path consisteney e slrictly stronger than palh inverse
congislency.

Proof Suppose there is a max-restricted path consistent CN F with a value (i.a] which
is not path inverse consistent. Since the OUN is max-restricted path consistent. it s also
are consistent by definition of max-restricted path consistency. Thus, because of property
I we know there exist two variables § and k such that {i. j, k} is a clique in the constraint
graph and (:.a) cannot be extended to a consistent instantiation on {i. j. k}. As a result,
none of the supports of (¢ a) on O is path consistent, which contradicts the assumption
that the CN P is max-restricted path consistent. Furthermore, Figure 31 shows that there
exists a constraint network on which path inverse consistency hold and max-restricted path
conaistency does not. Therefore, if |A'| =3, max-RPC is strictly stronger O

Theorem & Singlelon are consialency is glrictly stronger than Maz-BE P

Proof Suppose that there exists a CN F with & singleton are consistent value (i, a) that
ia not max-reatricted path consistent. Let j € A" ba a wvariable such that (i, a) has no
path consistent support in Dy, For each support b of (i, a) in I;, there exists a variable k
such that Ae £ [y, such that Cgla.e) A Chlb, e}, Therefore, all the values of I are arc
inconsistent w.r.t. F|p <.} and (4, a} is not singleton arc consistent. So, SAC is stronger
than Max-RPC. Figure 32 showa that there exista a constraint network on which Max-RPC
holds and SAC does not. Therefore, SAC ia strictly stronger than Max-RPC. O

Theorem T Neighborhood inverse consisglency is slriclly slronger than maz-reafricled palh
consisleney.

Proof Let {:.a) be any value of a neighborhood inverse consistent CN P, There axists a
conaistent instantiation I including ¢ and its neighborhood a.t. [ = a. For any O e C, T
ia a path consistent support of (i, a). Indeed, lot & be any third variable. If &k is linked to 1,
((f, mh, (4. 750 (k. Te)) is & consistent instantiation since P is neighborhood inverse consistent.
Otherwise, there are two cases: First, if k is not linked to j. ({:. a), (5. I;). (k. e]} is consistent
We e Dy: Second, if 307, € €, there exists a consistent instantiation ' of § and its neigh-
borhood s.t. I; = I; and {{¢.a). (5. I}, (k. I})) s consistent. So, {i.a) is max-restricted path
conalstent. Furthermore, Figure 3d shows that there exists a constraint network on which
Max-RPC holds and NIC does not. Therefore, NIC is atrictly stronger than Max-RPC. O

Theorem 8 Sirong palh consislency s glriclly sironger than singlefon arc constslency.
Proof Consider a problem that is strong path consistent. Any pair of values can be ax-

tended to any third variable. Furthermore, since the problem is strong path consistent, it
ia alao arc consistent and a sub-problem obtained by restricting & domain I to a singleton

214



Domarw Fivrering CoNSISTEMCIES

{{i,a)} can be made arc consistent. The initial problem is therefore singleton arc consistent.
Figure 3c shows that there exists a constraint network on which SAC holds and strong PC

does not. Therefore, strong PC is strictly stronger than SAC. D

Theorem 3 Singlelon reslricied poth consizslency i siriclly slronger than singlelon ame
consisleney.

Proof Singleton restricted path consistency is stronger than singleton arc consistency since
RPC s stronger than AC. Figure 3d shows that there exists a conatraint network on which

SAC holds and SRPC does not. Therefore, SRPC is strictly stronger than SAC. O

The stronger relation does not induce a total ordering. Some local consistencies are
incomparable.

Theorem 10

1. IF| & =4, path inverse comaisfency and k-restricted path consislency are incomparable.

e

Netghbarhood ineerse constslency and zinglelon are consislency are tneomparn e,
Netghbarhood inverse constslency and slrong path constslency are incomparable,

Netghborhood inverse consislency and singlelon resiricled palh consislency are incom-

para e,

. Lr

Proof

1. cf. Figure 3h and Figure 3j.
2. «of. Figure 3d and Figure 3.
3. «of. Figure 3d and Figure 3a.
4. of. Figure 3& and Figure 31

Figure 4 summarizes the relations between the local consistencies. There is an arrow
from LO° to LOY W LO7 is strictly stronger than LOY. A crossed line hetween two local
conalstencies means that they are not comparable wort. the “stronger” relation. When
7 13 not stronger than LCY (LCY ia strictly stronger than L', or LC and LOY are not
com parable), a CN in which L holds and O does not can be found in Figure 3. Obviously,
the stronger relation is transitive. In Figure 4 we omit the transitivity ancs.

215



DeERruYNE & BESSIRRE

el gac-w Btrang PO

idi BAC ¥ = NIC  Birong PG 5 BRPC (el HIG = "»BAC NIC-= == &irong PG
Strong PG« == HIC  Max-AFC —= = NG Max-APC-= =8AC HIC < = SRPC
BAC % = BRPC bei

(2] K-APC-% - Max-APC
K-RPC 3 =K-APC H K=kl

(h] 2-RPC % =PIC (I} P x=3-APC iji BRPC = Etrong PO
PIC- “-Max-RPC

The domuin of o variahle.
i A [orkidden  palr of volues,
WA =B A not stronger than B (13 deletes the verlue @ on this A comsistent network)

Figure 3: Some CNs proving the “not stronger” relations between some of the mentioned
local consistencies,

216



Domarw Fivrering CoNSISTEMCIES

SRPG

Ve

Strong PC #—— NIC

NV

SAC

/

Max-RPC

|

k-RPC

(k=1)

AC
A=——>E: Alis strictly stronger than B.
A —+##—B:AandB are incomparable w.r L. the stronger relation.

Figure 4: Relations between the mentioned local consistencies,

5.2 Experimental Evaluation

Figure 4 does not give any quantitative information. A local consistency L can remove
more values than another local consistency LOCY on moat of the ONs even though it is
incomparable with L' because of some particular CNs. When they are comparable, it does
not show if & local consistency is far more proningful than another or if it performs only
few additional value delations. To have some quantitative information about the proning
efficiency of thess local consistencies, we performed an experimental evaluation. The aim of
this evaluation is to show how pruningful a local consistency is on random CNa, with a fixed
number of variables and values, when the number of constraints and the constraint tightness

217



DeERruYNE & BESSIRRE

011 2 3 4 g B T A8 gt 1

Lot anrnnplnnrnnrrnaianil IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TN NINENEN I NN
03 Tightness
1
: Py |
.2 : I .|'r
: e ;
3 ra
30 /o
- avat
5—55 .l’f ", "ﬂf— B AC
=1 i / -"l Tt ----#--APC
&1 i / f fr f e FIC
_;!’ / / | w— D.APC
7 { / 1 e b Max-RPG
= — SAC
8 E %f ----f - - Slrong PG
! c— SAPGC
a- f o NIG
= : | . \Varisble -
1 E _Iﬁ ’ - Inun'lq:ﬂa1f|bllrljlr

Figure 5: The T, bounds for random CNs having 40 variables and 15 values in each domain.

are changing. We used the random uniform CN generator of (Frost, Bessiere, Dechter, &
Régin, 199} which produces instances according to the Maodeal B (Prosser. 1996). Tt involves
four parameters: n the number of variables, d the common size of the initial domaina, pl
the proportion of constrainta in the network (the density pl=1 corresponds to the complete
graph} and p2? the proportion of forbidden pairs of values in & constraint (the tightness).
The ganerated problems have 40 variables and 15 values in each domain. For each local
conaistency and each density pl, two particular values of the tightness have been determinad.
On the one hand, T;(pl) ia the tightness auch that the local consistency does not delete any
walue on 505% of the CNs generated with pl for density. For values of tightness lower than
Tyipl}, the local consistency seldom deletes many values. On the other hand, T,,(pl) ia the
tightness such that the local consistency finds the inconsistency of 50% of the C'Ns generated
with density pl. On constraint networks with tighter constraints, the local consistency
often removes all the values. For all the mentioned local consistencies, the values Th(pl]

218



Domarw Fivrering CoNSISTEMCIES

=
—
—
[
[ %)

4 3 B T B 9 1

01 ] Tightness al
1 —
2= "f i/
PE ‘aly IaN
3, Janry A
= /
A =
1@ f
-n i
R g r —— A
= ! H ---#-- RFC
.B—Et J.j w JI —a—FIC
-y ] r 34— 2-RPC
T . —— Max-RPC
B ; <+ -f- - Slrang PG
] i e —— SRPC
g : 1 —o— NIC
= ; ’ " Variable
1 % A s 44 * completability

Figure &i: The T, bounds for random CNs having 4 variables and 15 values in each domain.

and T,y (pl) for any density pl are given in Figure 5 and Figure 6 respectively. We also
show these bounds for the variable completahbility filtering which removes all the globally
inconsiatent values, and thus is the strongest filtering we can have when we limit filtering to
the domains. To determine the Ty, and T, bounds, 300 C'Na have hean generatad for each
(density, tightness] pair. This explains why the generated problems are relatively small.
As already proved theoretically, PIC is stronger than RPC. Their pruning efficiencies
are closed. RPC deletes most of the path inverse inconaistent values and is halfway hatwesn
AC and Max-RPC in terms of pruning efficiency. &-RPC with & > 1 is incomparable
with PIC! with regard to the stronger relation. However, Figure 5 and Figure 6 show that
2-RPC s more pruningful than PIC. SAC and strong PC have almost the same proning
afficiency. Their T}, limits merge and their T,j; limits show a slight differenca. This confirms
the similitude between SAC and strong PC pointed out in Section 3. Although SRPC and
strong PC are not comparable w.r.t. the atronger relation, SRPC removes is more pruningful
than atrong PC. As predicted in (van Beek, 1984), these polynomial filterings have maore

2149



DERruYNE & BESSIRRE

A |+ | 9 | . Tightness

RPCH

FIC!

2-RPC |

Max-APCH

BAC
Strong PC) - - -

.o
N I |:. P

varigbla X

campletabil ity

Figure 7: The Ty {black points] and Tay (white points) bounds for random CNs having 40
variahles, 15 values in each domain, and density 1.

difficulties to delete inconsistent values on dense problems with loose constrainta. On sparss
CNa, the polynomial local consistencies studied are close to variable completability, whereas
on very densa CNa, Figure 5 and Figure fi show a large range of tightneases hetween them and
variable completability., NIC behaves very differently since on complete constraint networks
it corresponds to variable completability. 5o, on dense CNs, NIC is far more pruningful
than the other local consistencies, On CNs generated with a density lower than 28 NIC
ia less pruningful than SRPC. strong PC and SAC. The more important the propagation
through the network is, the closer Ty and Ty are. If a filtering {such as ACY) uses a very
local property to delete inconsistent values, there is a large set of CNs on which it remowves
some but not all the values, More pruningful local consistencies consider & more important
part of the network to know whether a value s consistent or not. So, they seldom delete
few values. On most of the CNs, they do not delete any value, or detect inconsistency: the
propagation of the first value deletions often leads to a domain wipe out.

6. Time Efficiency
6.1 Radio Link Frequency Assignment Problems

An experimental evaluation has been done on the radio link frequency assignment problems
described in {Cabon, de Givry, Lobjois, Schiex, & Warners, 1998}, namely the instances
of the CELAR® named Scenfll to Scenll, and the GRAPH instances generated using the
GRAPH generator at Delft University named Graph(l to Graphld. In these problems we
hava to assign frequencies to a set. of radio links defined betwean pairs of sites in order to
avoid interferences®. These problams have from 200 to 916 variables and there are 40 values
in average in each domain. The constraints are binary and have a cost of violation specified

4. 'We cthanks che Centre d’Electronigue de " Armement | France).
5. He= http: ) fwww.bia inra frf T fschiex (oo / CELARE html for & more detailsd pressntation of these
prohleme.

221



Domarw Fivrering CoNSISTEMCIES

ACT | RPC2Z | PICZ | Max-RPC1 | 5AC1 | SRPC1 | NIC1
Scen(l? | (.27 . d.:454 A4 455 43408 U
Sceni(ld | (.58 1.55 013 14.21 444 Bdi.al 2054
Scenll | (.89 20 14.74 2054 1444 L462.1% | time oot

Tahle 2: Cpu time performances on some HLFAP instances on which all the local consis-
tencies studied hold.

by a level from ) to 4. The level i} corresponds to hard constraints, and levels from 1 to 4
have a decreasing coat of violation. For each problem ScenXX (resp. GraphXX), we call
ScenX X4, ScenX X2, ScenXX.1 and ScenXX.0 (resp. GraphXX.3, GraphXX.2, GraphXX.1
and GraphXX.0} the problams of satisfaction obtained by considering the problem ScenXX
(resp. GraphXX} with only the constraints of leval ) to 3. 0 to 2, ) to 1, and ) respectively.

In this experimental evaluation, we consider both the cpu time performances and the
percentage of values deleted by the local consistencies studied. The algorithms usad are ACT
(Bessiére, Frauder, & Régin, 1995), RPC2 (Debroyna & Bessiare, 1997a). PIC2 {Debroyne,
2000), Max-RPC1 {Debruyne & Bessiére, 1907Ta), the singleton arc consistency algorithm
of (Debruyne & Bessiere, 1997h) (SACT) based on ACH, a SRPC algorithm based on RPC2
(SRPC1), and the NIC algorithm proposed in {Freoder & Elfe, 1996) (NIC1) using FC-
CBJ [Prosser, 1993} (as in Freuder & Elfe, 196) with dom+deg dynamic variable ordering
heuriatic {minimal domain first, in which ties are broken by choosing the variable with the
highest degree in the constraint graph Frost & Dechter, 1995; Bessiére & Régin, 1996). All
these algorithma have been modified to atop as soon as a domain wipe out occors. We do
not show results on atrong PC in this section becanse on these large problems it requires
often more than our 2 hours time out limit. These algorithms have been testad on each
ScenX X, Scen XXX, GraphXX, and GraphXX.X problem using a Sun UltraSparc ITi 440
Mhz. For sake of clarity, we only show the resulis on some representative problems.

fi.1.1 RESULTS ON PROBLEMS ON WHICH ALL THE STUDIED LOCAL CONSISTENCIES HOLD
(cr. TanLe 2)

If all the local consistencies studied hold on a conatraint network, all the corresponding
filtering algorithms are usaless., They waste time to check whether the local consistencies
hold without deleting any inconsiatent value. On these problems, the stronger the local
conaistency ia, the more important is the time wasted.

We can ses the consequence of the exponential worst case time complexity of NIC1. On
most of these problems, NIC1 requires a reasonable cpu time. But as we can see on the
problem Scenll, a combinatorial explosion can lead to really prohibitive cpu time for NTCL.

fi.1.2 RESULTS ON ARC INCONSISTENT PROBLEMS (CF. TABLE 1)

When arc consistency is sufficient to detect the inconsistency of the problem, stronger local
conalstencies are not always more costly. On Figure 3 we can see that Max-RPC1 has
often the best cpu time performances and on Graph(i for example, ACT 8 one of the

221



DERruYNE & BESSIRRE

ACT | RPC2 | PICZ | Max-RPC1 | 5SAC1 | SRPC1 | NIC1
Scenl(l7 .42 4 (44 ik ()5 (AT 1.5
Ciraph(7 | .11 .14 1z 1 (.24 14 1.0k
Scenl)d .75 45 L] A .52 (AT time out
Ciraph(M | (.45 2y (44 .20 (AT (AT L1

Tahle 3: Cpu time performances on some arc inconsistent RLFAP instances.

MMax-
ACT | RPC2 | PICZ | RPCL1 | SACL | SRPCL | NICL

Soenllt.l | cpu time | (.27 .44 (.46 204 .42 227134 | time out

Hooof IV | T.88 H.E4 1745 9.7 A2AT A205T ?

Seen(ld.l | cpu time | .8 1.5 1L.BY 1) 1657.85 LRI Y

ool DV | 2245 | 2579 ML AL H5.50 5 HbG AL.5T

Giraphid | cpu time | (.51 207 1565 | 25349 | 223513 | time out | 10197

%oof DV | 4.097 i .95 135 14.44 T 14.14
Graphl | cpu time | 1.43 .52 Ar.T Hl.42 | A0H4.13 | time out | 203339
Hooofl IV | 1.43 [ ¥ I.6H e ) .54 T 7.5
Ciraph(Mil | epu time | 0.39 1.x1 n.a (L3 0. 13 111 H.0d
Tl T | 1496 | 17.649 L0k 10ih Lij] Hipl L0k
Graphl2.1 | cpu time | (.73 L35 2.83 adl B.AT S2.12 3497
Tooof T | 1042 | 1223 1545 10ih LiM} il L0k

Table 4: Cpu time parformances and percentages of values delatad by the local consistencies
studied (% of DV] on some RLFAP instances.

most, expensive local consistencies. When enforcing AC requires propagation to find the
arc inconsistency of the problem, a stronger local consistency can wipe out a domain maore
quickly than ACT.

On these constraint networks, all the algorithma used have very low epu time require-
ments, except MICL, which can be very expensive on some instances, such as Scenils.

fi.1.3 RESULTS ON THE OTHER PROBLEMS (CF. TABLE 4]

On many of the RLFAP problems the local consistencies do not delete the same seis of
inconsistent values. We can see an important difference between the pruning efficiencies
especially on the problems ScenXX.1 and GraphXX. 1.

Obviously, on most of these problema. the more proningful the local consistency is, the
more important is the time required. We can see this on the problems Scenl)f.1 and Sceni)9.1
for example. However, ACT, RPC2, PIC2, and Max-EPC1 have cpu time performances in
the same order of magnitude while SACL, SRPC1, and NIC1 are often far more axpensive.

2212



Domarw Fivrering CoNSISTEMCIES

This is especially obvious on Graphid and Graphli, However, it is difficult to say which
ia the most interesting local consistency on these problema since even if SACI, and SRPCI
are coatly, we can see on Scen()f.1 and Graphidd that they can be far more pruningful.

These problems highlight that NICI is not very stable. [t sometimes shows good per-
formances, but an exponential explosion can lead to a prohibitive cost on some instances,
When NIC1 requires a reasonable time, ita pruning efficiency is closar to the one of Max-
RPC1 than to the one of SAC]. These results confirm that if the neighborhoods of the
variables are not small, KTC'1 can be really prohibitive.

On Graph¥.1. PIC2 (and obviously the algorithms enforcing & atronger local consis-
tency) finds the inconsistency of the problem whereas ACT, and RPC2 remove only a part
of the inconsiEtent values. We can ses a similar behavior on Graphl2.1 where Max-RP(C1
wipes out a domain whersas ACT, RPC2 and PIC2 do not find the inconsistency of the
problem. On these instances, Max-EPC1 1= the best choice.

6.2 Randomly Generated Problems

The random uniform CN generator of section 5.2 is used to compare the cpu time requirad
to enforce the local consistencies. We have to point out that NIC has not been designed
to be used on uniform CNs but to adapt filtering effort. to the degree of the variables in
the constraint graph. So, NIC would have hetter parformances on non-uniform CNs than
those presented in this section. The generated problems have 20M) variables and 3 values
in each initial domain. Figure 8 shows the results on CNs with density of (2. These C'Ns
are relatively sparse since the variables have four neighbors on average. Figure 9 presents
performances at density .15 {the variables have 30 neighbors on average). Becanse of the
set. of parameters, there are no flawed variables  (MacIntyre, Prosser, Smith, & Walsh,
1994) in the generated problems.® In addition to the algorithms of the previous section, we
n=e a strong path consistency algorithm based on POR (Chmeiss & Jagoo, 1896) and ACH.
This algorithm stops as sson as & domain wipe out oocurs or as sson a5 a constraint no
longer allows any pair of values. In addition to the percentage of deleted values and cpu
time performances, Figure 8 and Figure 9 show the cpu time to number of deleted values
ratio for each tightness whare the local consistancy removes at least one value on average.
For each tightness, 50 instances were generatad. Figure 8 and Figure 9 show mean values
obtained on a Pentiom T1-266 Mhs with 32 Mb of memory under Linux.

As obsarved in (Gent, MacIntyre, Prosser, Shaw. & Walsh, 1997} for ane consistency,
the filtering algorithms tested have a complexity peak. For low values of the tightness, they
easily prove that the values are locally consistent, and when constraints are very tight, they
quickly wipe out a domain. Each local consistency has & phase transition where most of
the hardest problema for an algorithm achieving this local consistancy tend to occur.

6.3 Experiments on Sparse CNs

Even on aparse (CNa [see Figure #], the cpu time resulta are so different between the al-
gorithms (Th 43min for strong PC at its peak when ACT requires at most .22 seconds on
average) that a logarithmic scale has to be wsed. Strong PC is really prohibitive, even for

fi. Im Section 5.2 the tightnesz reaching 1. thers was obvionzly Hawesd wanables for some s=t= of paramsters.

223



DERruYNE & BESSIRRE

low values of tightness. SRPC and SAC have bad cpu time to number of deleted values
ratios, except. SAC on CNa having very tight constraints becanse the SAC algorithm usad
is based on ACH which can be more efficient. than ACT on such problems. (On these sparse
CMa, NIC has often better cpu time performances than SAC but it does not remove more
values than Max-RPC. Consequently, NIC has & bad cpu time to nomber of deleted values
ratio. Unlike strong PC, SRPC. SAC, and NIC, the cpu time requiremanta of ACT, PIC2,
RPC2 and Max-RPC are of the same order of magnitude. The cpu time to number of
deleted values ratios of these four last filterings are also very close, with a little advantage
for PIC2. Althoogh PIC is stronger than RPC, PIC2 can be less expensive than RPC2 on
aparae (Ne. If there are faw 3-cliques in the constraint graph, PIC2 does not require far
more cpu time than ACT whereas RPC2 is about two times as expensive as ACT since it
lonks for two supports for each value on each constraint.

6.4 Experiments on more Dense CRa

On more dense CNg (see Figure 9], the complexity peaks of ACT, RPC2, PIC2, and Max-
RPC stay close to each other. PIC? & less worthwhile since it deletes few additional values
compared to RPC2 while ita cpu time requirements are closs to those of Max-RPC. Max-
EPC has one of the best cpu time to number of deleted values ratios. As soon as RPC
leads to a domain wipe out, the cpu time performances of SRPC and RPC2 merge. Indead,
the SRPC algorithm used enforces RPC'2 hefore checking the restricted path consistency of
the sub-problems P Dy={a} for each [i.a) € D. If all the values of a domain are restricted
path inconsiatent, the RPC preprocessing finds the global inconsistency of the problam and
the SRPC algorithm stops. SRPC ia less expensive than strong PC although it ia more
pruningful. These two filterings remain the most expensive. NIC is the most pruningful
local congistency on these CNs. Hence, on a large range of tightnesses, NIC has the hest
cpu time to number of deleted values ratio. However, on some instances, NIC cannot avoid
the combinatorial explosion. Although NIC requires “only™ fifteen minutes on average
at tightness .52, more than two hours are required on some instances. [t is conceivable
that instances on which NIC requires far more cpu time exist for this set of parameters.
Obviously, the set of CNs on which NIC ia prohibitive grows when the density increases.
The results on SAC have a lower standard deviation. SAC never requires more than fifty
two minutes on the problems generated for these experiments.

8.5 Discussion

What can we conclude from these results? Strong PC is by far the least interesting filtaring
technique. Compared to SAC, which removes most. of the strong path inconsistent values,
strong PC is really prohibitive.™ Achieving SAC or SRPC is costly as long as these two
local consistencies do not delete any value. Obviously, although SAC and SRPC are maore
expensive than Max-RPC on almost all the generated problems, we cannot say that it is
better to uwse AMax-RPC. Indesd, at density .15 for example, Max-EPC is useless for

7. We can point owt chat when the path consistency of a constraint can be expressed without explicitly
staring the set of forbidden tuples, path consistency can be wsed [eg. temporal networks  Allen. 1583,
canstramt networks Smith, 1992).

224



Domarw Fivrering CoNSISTEMCIES

\p.s CPU HIME {In 5L n=200, d=30, and p1=.02
Thitrmin
1E44
A
Sy ity = e it — 1Eminl Snec
1% Sirarg PC
dmindine
1E42
et I -r"“’}r
Wﬂﬂ e Iiln i
g .
1E41 _'_'_..-'_'_-I_'_._ﬂ— o

e

SAC ) I
O —— 1:" ==

[—i

e L= u—r—-:l—-:-—':'—":"'"

iE-
1E-E
N [R-2 01 5 H
e Tightness |
1% 16 1% @0 EB% 14 3% 49 4% =@ =% Bl B4 PO T4 AD BN @0 8% 54
. Fercentages of values de=leb=d
Ightness
1
1 8 b 1 P 23 19 3% 40 4% B 2% Bl &5 71 7R AD ES A g 09
1eop SpU time 1o number of deleied values ratic
H | B
iEei el
pg | _Shorg PO
1Esb): .
BAC
1E-1
1E-3 Ty
iE-2 H
iEa i
— 1B :
PE-d l .
iE-8 H
1B
iEa].
e T e b = b Tightness

1 L 13 15 20 2] 11 EH] 44 42 21 - Ed [ ] T TS AD 1] L] 12 =
—— %07 —ap— AFC2 —pPIC? g Mas-AFC— 580 o SAFC —p— Sirong PO —— HIC

Figure 8: Experimental evaluation on random CNs with n=20M, d=3), and pl=.02.
225



DERruYNE & BESSIRRE

(pon CPU time {in sec) n=200, d=30, and p1=15

iEed

1E43

1E42

1E43

i B 0 I% @1 % D 3% 44
Percaniage oi values delsted

Tightness

5 1 1§ 20 2% 3 3% 40 4% D 55 Bl BN D 7§ A0 BE 90 B§ 9@
u lm2 i number of deleted values rallo

\

1
1+ FF'

1E+D

L k] m -] BD [ ] ad

1 L 13 15 20 2] 11 EH] 44 42 21 - Ed [ ] T TS AD 1] L] By 20
——ACT e AP —p FIC? g Maa-AFD e SAC  — e TAPL —p— Sl PO ——H

Figure 9: Experimental evaluation on random CNs with n=20M, d=3), and pl=_15.

226



Domarw Fivrering CoNSISTEMCIES

tightnesses lower than .63 since it does not delete any value, while for SRPC the limit is .57
of tightness. Furthermaore, for gingleton consistencies we can argue that the algorithm usad
to achieve them is not optimal. An algorithm reusing part of the filtering performed on
FPlp,=qa} to process other sub-problems Pl opap. ((ia) and (f. 5] belonging to T would
improve cpu time performances. However, the cpu time to number of deleted values ratios of
SAC and SRPC algorithma are often among the worat ones, especially on sparse CNa. SAC
and SRPC are a0 expensive that it is hardly likely that enhancements of these algorithms
could lead them to be the most worthwhile filterings. On sparse uniform CNs, NIC is not
the best choice. Compared to Max-RPC. it does not delete enough values to offset the
additional cpu time cost. Furthermore, NIC cannot be used on dense CNa since its cpu
time requirementa become greater than those of a search algorithm. So, NIC has to be usad
only on “relatively” dense C'Ns, as those of Figure 9 on which NIC is worthwhile on average
(although on some instances a combinatorial explosion cannot be avoided). On very dense
CMa, the worst case time complexity of Max-BEPC and PIC2 iz close to the one of the best
path consistency algorithm {(3{en + ed® 4+ cd*) against {n"d*}). However. the experiments
underline that achieving Max-RPC and PIC2 is far less expensive in practice. Com pared
to RPC2 and Max-RPC, PIC2 is not a good solution in-between. The cpu time to numbear
of deleted values ratios of RPC2 and Max-RPC are batter than the one of PIC2 {excapt on
very sparse ('Ns on which PIC2 can be less expensive than RPC2). Indeed, PIC2 deletes
only few additional values compared to EPC2, while its cpu time performances are close to
those of Max-RPC.

Cpu time performances are even more essential when the aim 5 to maintain a local con-
sistency during search. Maintaining a local consistency during search requires to repeatedly
propagate the choice of a value for a variable (namely the restriction of a domain to &
singleton} or the refutation of a value. To be worthwhile, a local consistency has to require
lesa time to detect that a branch of the search tree does not lead to a solution than a search
algorithm to explore this branch. So. maintaining a local consistency during search can
outperform MAC on hard problams only if this local congistency is more pruningful than
AC while requiring only a little additional cpu time. With regard to this criterion, we can
discard strong PC, SAC, SRPC, and NIC on dense CNa because they are too expensive. It
ia conceivable that we can find instances on which maintaining thesa consistencies during
search outperforms MAC, but the more expensive the maintained local consistency s, the
more seldom the problems on which MAC is outperformed will be. On sparse UNa, NIC is
not prohibitive, but it deletes only few additional values compared to Max-EPC and it has
therefore & bad cpu time to number of deleted values ratio. Finally, The most promising
local consistencies are RPC and Max-REPC. If we sxclude are consistency, RPC s the least
expensive local consistency we studied. Furthermore, the RPC algorithms delete most of
the path inverse inconsistent values. Although Max-RPC is far more pruningful than arc
conaistency, experiments show that in practice, Max-RPC has very good cpu time results.
Therefore, it seems very likely that maintaining RPC or Mac-RPC during search could
outperform MAC on very hard problems.

To confirm these results, an algorithm called Quick that maintaing an adaptation of
Max-RPC has hean compared to MAC. The results of these experimenta [Debruyna, 19949)
show that Quick has better cpu time performances than MAC on large and hard randomly
generated CNa that are relatively sparse. More interestingly, Quick has a more impor-

227



DERruYNE & BESSIRRE

tant stability than MAC (the cpu time performances of Quick have a very low standard
deviation). It would be very interesting to propose efficient. algorithms that maintain the
local consistencies studied in this paper and to compare these algorithma. Such a study
would allow us to know whether during search, the more advantageous local consistencies
remain RPC and Max-RPC as during a preprocessing step. First results on the effect of
maintaining SAC during search are given in [Prosser, Stergiou, & Walsh, 2000].

7. Conclusion

In this paper we sxtended the idea of restricted path consistency to k-RPC and Max-
RPC, which are more pruningful local consistencies. We proposed a new class of local
conaistencies called singleton consistencies. We studied these new local consistencies and
the other local consistencies that alike can be used on large CNs while removing more values
than arc consistency. We showed some relations betwesn them and we compared hoth
theoretically and experimentally their pruning and time afficiencies. The most pruningful
are neighborhood inverse consistency and singleton restricted path consistency. However,
SRPC 1 expensive in time and the exponential worst case time com plexity of NIC makes it
unusehble on dense CNs. IF we are looking for a local consistency that wouold advantageously
be maintained during search., RPC and Max RPC seem to be the most promising local
conaistencies, Indeed, they are relatively inexpensive and far more pruningful than arc

Conastency.

8, Acknowledgements

We would like to thank Toby Walsh for his suggestions for improving the presentation of
the figures in Section 5.

References

Allen, J. (1983}, Maintaining Knowladge about Temporal Intervals. Communicafions of
ihe AN, Hﬁ'{f .I'__.i'. b5 L

Bacchus, F.. & van Run, P. {18495). Dynamic variable ordering in caps. In Proceedings of
(CF-95, Cagsia, France, pp. 258275,

Berlandier, P. {1995). Improving domain filtering using restricted path consistency. In
FProceedings of IEEE (CATA-05,

Ressiere, C., Frender, E., & Régin, J. (1995). Using inference to reduce arc-consistency
computation. In Proceedings of LICALRS, Wonidréal, Canada, pp. 592-595.

Bessiere, ., Frender, ., & Régin, J. (199]. Using conatraint metaknowledge to reduce
arc consistency computation. Artificial Mntelligence, 10771}, 125-144.

Ressiere, C., & Régin, 1. (1996). MAC and combined hearistics: Two reasons to forsake FC
{and CBJT) on hard problems. In Proceedings of CP-86, Cambridge MA, pp. 61-75.

228



Domarw Fivrering CoNSISTEMCIES

Cabon, C., de Givry, 5., Lobjois, L., Schiex. T., & Warners, I. (1994}. Radio link frequency
assignment benchmarks, CONSTRAINTS, §71), 7954,

Cheasaman, P.. Kanefeky, B., & Taylor, W. [1891). Where the really hard problems ara. In
FProceedings of INCALBE, Sydney, Auslralia, pp. 20420,

Chmeisa, A., & Jagou, P. (1996). Two new constraint propagation algorithma requiring
amall space complexity. In Proceedings of TEEE NWTALSS, Touwlouse, France, pp.
286280,

Debruyne, R. (19993). A strong local consistency for conatraint satisfaction. In Proceedings
of TEEE ICTATI-#S, Chicage TL, pp. 2200,

Debruyne, R. (20000, A property of path inverse consistency leading to an optimal algo-
rithm. In Proceedings of ECALDE, Berlin, Germany, pp. #8592,

Debruyne, R., & Beasiare, C. [1997a). From restricted path consistency to max-restricted
path consistency. In Proceedings of CFP-97, Linz, Ausglria, pp. 312-326.

Debruyne, R., & Bessiere, C. (1997h). Some practicable filtering techniques for the con-
straint satisfaction problem. In Proceedings of IICAL-9%, Nagoga, Japgan, pp. 412-417.

Dechter, K., & Meiri, 1. {1984). Experimental evaluation of preprocessing algorithms for
constraint satisfaction problems. Arfificial Tnielligence, 68, 211241,

Dechter, R., & Pearl, 1. (1988). Network-based heuristics for constraint-satisfaction prob-
lems. Arificial Fnlelligence, 34, 1-35.

Freader, E. {18582). A suofficient condition for backtrack-free search. Jowrnal of the ACM,
20{1). 232,

Freader, E. (1885). A sufficient condition for backtrack-bounded search. Journal of the
ACM. 32(4). T35 -Th1.

Freader, E. (1991}, Completable representations of constraint satisfaction problema. In
Froceedings of RE-91, Cambridge MA, pp. 156-195.

Freuder, E., & Elfe, C. (199G). Neighborhood inverse consistency preprocessing. In Fro-
ceedings of AAALSE, Portland OR, pp. A2 HE.

Froat, .. Bessiera, ., Dechter, R., & Régin, J. {1996). Random uniform cap genarators.
In htlp:/fwww.ies uci.edu/” froalfeap/generalolr himi.

Froat, D, & Dechter, R. {195]. Look-ahead value ordering for conatraint satisfaction
problems. In Proceedings of INCA-25, Menilréal, Canada, pp. 572-575.

CGaschnig, J. (1974). A constraint satisfaction method for inference making. In Proceedings
af the 12th Annual Allerton Conf. Circudt System Theory, ULEL., Urbana-Champaign
I, pp. S66-874.

2249



DERruYNE & BESSIRRE

Cient, 1., MacIntyre, E., Prosser. P., Shaw. P.. & Walsh, T. [197). The constrainedness of
arc consistency. In Proceedings of CP-97, Linz, Auslria, pp. 3273410,

Golomb, 5., & Baumert, I {1965]. Backtrack programming. Journal of the ACM, 12(§).
BlG-524.

Grant, 5., & Smith, B. {1896). The phase transition behaviour of maintaining arc consis-
tency. In Proceedings aof FOARSS, Budopest, Hungary, pp. 175179

Haralick, R.. & Elliott, (3. (1980). Increasing tree ssarch afficiency for constraint satisfaction
problema. Ariificial Inlelligence, 14, 263-313.

Kumar, V. (1992}, Algorithms for constraint satisfaction problems: A survey. AT Magazine,
f.":'{.f}. F2-44.

MacIntyre, E., Proaser, P., Smith, B.. & Walsh, T. (1998). Random constraint satisfaction:
theaory meets practice. In Proceedingz of CP-88, Fiza, TNaly, Vol. 19, pp. 325-3340.

MeGiregor, 1. (1879). Relational consistency algorithma and their application in finding
aubgraph and graph isomorphiams. Information Sciences, 19, 229-250).

Meseguer, P. [1989]. Constraint satisfaction problems: An overview. ATCOM, 2, 3-17.

Nadel. B. (1948}, Tree search and arc consistency in constraint satisfaction algorithms. in
L. Kanal and V. Kumar, edilors, Search in Artificial Intelligence, Springer-Verdag,
RT3

Fromser, P. (1993). Hybrid algorithms for the constraint satisfaction problam. Compufational
Inbelligence, B{3), 268209,

Prosser, P. [1996]. An empirical stody of phase transition in hinary constraint satisfaction
problema. Artificial Inlelligence, K1, 81-109.

Prosser, P., Stergion, K., & Walsh, T. {2000). Singleton consistencies. In Proceedings of
CP-1), Simgapore, pp. 353365,

Sabin, D, & Freuder, E. (1984}, Contradicting conventional wisdom in constraint satisfac-
tion. In Proceedings of ECARYY, Amsterdam, Netherlands.

Schiex. T., Régin, J.. Gaspin, C.. & Verfaillie, G. {1996]. Lazy arc consistency. In Procead-
ings of AAALSE, Porlland OR, pp. 216-22].

Singh, M. (1995). Path consistency revisited. In Proceedings of IEEE ICTAI-95, Washington
D

Smith. B. {1992). How to Solve the Zebra Problem, or Path Consistency the Easy Way. In
FProveedings of ECAL-RE, pp. 36-37.

Taang. E. (1903}, Foundations of Constraint Sotisfaction. London, Academic Press.

van Besk, P. (1994). On the inherent level of local consistency in constraint networks. In
FProceedings of AAAT-RY, Sealile WA, pp. 368-373.

E



